| # Owner(s): ["module: __torch_dispatch__"] |
| |
| import tempfile |
| import torch |
| from copy import deepcopy |
| from torch.library import Library |
| from torch.cuda.jiterator import _create_jit_fn |
| import unittest |
| from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, IS_WINDOWS |
| from torch.utils._mode_utils import no_dispatch, all_same_mode |
| from torch.testing._internal.logging_tensor import LoggingTensor, LoggingTensorReentrant, LoggingTensorMode, \ |
| log_input, capture_logs, capture_logs_with_logging_tensor_mode |
| from torch.utils._pytree import tree_map, tree_map_only |
| from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode, _get_current_dispatch_mode_stack |
| |
| import logging |
| |
| |
| class TestPythonRegistration(TestCase): |
| def test_override_aten_ops_with_multiple_libraries(self) -> None: |
| x = torch.tensor([1, 2]) |
| my_lib1 = Library("aten", "IMPL") |
| my_lib2 = Library("aten", "IMPL") |
| |
| # Example 1 |
| def my_neg(*args, **kwargs): |
| return args[0]._neg_view() |
| |
| # Now we are secretly making the operator a view op so autograd needs to know how |
| # to handle it |
| my_lib1.impl('neg', my_neg, "AutogradCPU") |
| |
| self.assertTrue(torch.neg(x).is_neg()) |
| |
| # RuntimeError: impl("aten::neg", ...): |
| # Explicitly provided namespace (aten) in operator name does not match ... |
| with self.assertRaisesRegex(RuntimeError, "operator name does not match namespace"): |
| my_lib3 = Library("foo", "DEF") |
| my_lib3.define("neg(Tensor self) -> Tensor") |
| my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU") |
| del my_lib3 |
| |
| # Example 2 |
| def my_mul(*args, **kwargs): |
| return torch.zeros_like(args[0]) |
| |
| # torch.ops.aten.mul.Tensor |
| my_lib2.impl("aten::mul.Tensor", my_mul, "ZeroTensor") |
| |
| y = torch._efficientzerotensor(2) |
| self.assertFalse(torch.mul(x, y)._is_zerotensor()) |
| |
| # Assert that a user can't override the behavior of a (ns, op, dispatch_key) |
| # combination if someone overrided the behavior for the same before them |
| with self.assertRaisesRegex(RuntimeError, 'already a kernel registered from python'): |
| my_lib2.impl(torch.ops.aten.mul.Tensor, my_mul, "ZeroTensor") |
| |
| del my_lib1 |
| |
| # Validate that lib2 is not affected by removing lib1 |
| self.assertFalse(torch.mul(x, y)._is_zerotensor()) |
| |
| del my_lib2 |
| |
| # Validate that the old behavior is restored for neg and mul |
| self.assertFalse(torch.neg(x).is_neg()) |
| self.assertTrue(torch.mul(x, y)._is_zerotensor()) |
| |
| def test_error_if_fn_not_callable(self): |
| with self.assertRaisesRegex(TypeError, "Input function is required to be a callable"): |
| my_lib = Library("aten", "IMPL") |
| my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU") |
| |
| def test_override_cpu_sum(self) -> None: |
| # Example 1 |
| run = [False] |
| |
| def my_sum(*args, **kwargs): |
| run[0] = True |
| return args[0] |
| |
| my_lib1 = Library("aten", "IMPL") |
| my_lib1.impl('aten::sum', my_sum, "CPU") |
| x = torch.tensor([1, 2]) |
| self.assertEqual(torch.sum(x), x) |
| self.assertTrue(run[0]) |
| del my_lib1 |
| # Validate that the old behavior is restored for sum |
| self.assertEqual(torch.sum(x), torch.tensor(3)) |
| |
| def test_override_cuda_with_jiterator(self) -> None: |
| def override_where_cuda() -> None: |
| # Example 1: Invert the behavior of where's condition input |
| not_where_code_string = ''' |
| template <typename T> T inverted_where(bool cond, T a, T b){ |
| return !cond ? a : b; |
| } |
| ''' |
| jitted_where = _create_jit_fn(not_where_code_string) |
| |
| CALLED = [False] |
| |
| def inverted_where(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_where(*args, **kwargs) |
| |
| # overriding where's cuda kernel with Jiterator generated kernel |
| my_lib = Library("aten", "IMPL") |
| my_lib.impl('aten::where.self', inverted_where, "CUDA") |
| |
| device = 'cuda' |
| cond = torch.tensor([True, True, False], device=device, dtype=torch.bool) |
| x = torch.tensor([1, 2, 3], device=device) |
| y = torch.tensor([-1, -2, -3], device=device) |
| |
| self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3])) |
| self.assertTrue(CALLED[0]) |
| del my_lib |
| |
| # behavior restored after deregistration |
| self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3])) |
| |
| def override_gelu_cuda() -> None: |
| # Example 2: Use relu to approximate gelu for faster compute |
| fastest_gelu_code_string = ''' |
| template <typename T> T fast_gelu(T a){ |
| return a > 0 ? a : 0; |
| } |
| ''' |
| jitted_gelu = _create_jit_fn(fastest_gelu_code_string) |
| |
| CALLED = [False] |
| |
| def fast_gelu(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_gelu(*args, **kwargs) |
| |
| # overriding gelu's cuda kernel with Jiterator generated relu kernel |
| my_lib = Library("aten", "IMPL") |
| my_lib.impl('aten::gelu', fast_gelu, "CUDA") |
| |
| x = torch.rand([3, 3], device='cuda', dtype=torch.float) |
| self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x)) |
| self.assertTrue(CALLED[0]) |
| del my_lib |
| |
| # behavior restored after deregistration |
| self.assertNotEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x)) |
| |
| def override_exp_cuda() -> None: |
| # Example 3: Preventing exp from exploding for float16 |
| clipped_exp_code_string = ''' |
| template <typename T> T clipped_exp(T a){ |
| return a > T(10.0) ? T(22026.4657948) : exp(a); |
| } |
| ''' |
| jitted_exp = _create_jit_fn(clipped_exp_code_string) |
| |
| CALLED = [False] |
| |
| def clipped_exp(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_exp(*args, **kwargs) |
| |
| # overriding exp's cuda kernel with clipped_exp kernel |
| my_lib = Library("aten", "IMPL") |
| my_lib.impl('aten::exp', clipped_exp, "CUDA") |
| |
| x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16) |
| self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16)) |
| self.assertTrue(CALLED[0]) |
| del my_lib |
| |
| # behavior restored after deregistration |
| self.assertEqual(torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16)) |
| |
| def override_add_cuda() -> None: |
| # Example 4: simulate a hardware bug, where the adder is always off by 1 |
| buggy_add_code_string = ''' |
| template <typename T> T buggy_add(T a, T b){ |
| return a + b + T(1); |
| } |
| ''' |
| jitted_add = _create_jit_fn(buggy_add_code_string) |
| |
| CALLED = [False] |
| |
| def buggy_add(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_add(*args, **kwargs) |
| |
| my_lib = Library("aten", "IMPL") |
| my_lib.impl('aten::add.Tensor', buggy_add, "CUDA") |
| |
| x_cpu = torch.rand([3, 3], device='cpu') |
| y_cpu = torch.rand([3], device='cpu') |
| |
| x_cuda = x_cpu.cuda() |
| y_cuda = y_cpu.cuda() |
| |
| self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1) |
| self.assertTrue(CALLED[0]) |
| del my_lib |
| |
| # behavior restored after deregistration |
| self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu) |
| |
| if torch.cuda.is_available() and not TEST_WITH_ROCM: |
| override_where_cuda() |
| override_gelu_cuda() |
| override_exp_cuda() |
| override_add_cuda() |
| |
| def test_extend_library_with_dispatch_key_arg(self): |
| def my_sum(*args, **kwargs): |
| return args[0] |
| my_lib1 = Library("aten", "IMPL", dispatch_key="CPU") |
| |
| # RuntimeError: Explicitly provided dispatch key (Conjugate) is |
| # inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block |
| with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"): |
| my_lib1.impl('sum', my_sum, "Conjugate") |
| my_lib1.impl('aten::sum', my_sum) |
| x = torch.tensor([1, 2]) |
| self.assertEqual(torch.sum(x), x) |
| del my_lib1 |
| |
| def test_create_new_library(self) -> None: |
| my_lib1 = Library("foo", "DEF") |
| |
| my_lib1.define("sum(Tensor self) -> Tensor") |
| |
| # Example 1 |
| @torch.library.impl(my_lib1, "sum", "CPU") |
| def my_sum(*args, **kwargs): |
| return args[0] |
| |
| x = torch.tensor([1, 2]) |
| self.assertEqual(torch.ops.foo.sum(x), x) |
| |
| my_lib2 = Library("foo", "IMPL") |
| |
| # Example 2 |
| @torch.library.impl(my_lib2, torch.ops.foo.sum.default, "ZeroTensor") |
| def my_sum_zt(*args, **kwargs): |
| if args[0]._is_zerotensor(): |
| return torch._efficientzerotensor(args[0].shape) |
| else: |
| return args[0] |
| |
| y = torch._efficientzerotensor(3) |
| self.assertTrue(torch.ops.foo.sum(y)._is_zerotensor()) |
| self.assertEqual(torch.ops.foo.sum(x), x) |
| |
| del my_lib2 |
| del my_lib1 |
| |
| @unittest.skipIf(IS_WINDOWS, "Skipped under Windows") |
| def test_alias_analysis(self): |
| def test_helper(alias_analysis=""): |
| my_lib1 = Library("foo", "DEF") |
| |
| called = [0] |
| |
| @torch.library.define(my_lib1, "_op() -> None", alias_analysis=alias_analysis) |
| def _op(*args, **kwargs): |
| called[0] += 1 |
| |
| @torch.jit.script |
| def _test(): |
| torch.ops.foo._op() |
| |
| assert "foo::_op" in str(_test.graph) |
| |
| with self.assertRaises(AssertionError): |
| test_helper("") # alias_analysis="FROM_SCHEMA" |
| |
| test_helper("CONSERVATIVE") |
| |
| def test_error_for_unsupported_ns_or_kind(self) -> None: |
| with self.assertRaisesRegex(ValueError, "Unsupported kind"): |
| my_lib1 = Library("myns", "BLA") |
| |
| with self.assertRaisesRegex(ValueError, "reserved namespace"): |
| my_lib1 = Library("prim", "DEF") |
| |
| class TestPythonDispatch(TestCase): |
| def test_basic(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) |
| log_input("x", x) |
| y = x * x |
| saved_x = y.grad_fn._saved_self |
| grad_y = LoggingTensor(torch.tensor([1.0])) |
| log_input("grad_y", grad_y) |
| g, = torch.autograd.grad((y,), (x,), (grad_y,)) |
| |
| self.assertEqual(g.elem, torch.tensor([6.0])) |
| with torch.no_grad(): |
| self.assertEqual(saved_x, x) |
| self.assertEqual(saved_x._version, x._version) |
| x.add_(2) |
| self.assertEqual(saved_x, x) |
| # TODO: figure out why broken |
| # self.assertEqual(saved_x._version, x._version) |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = torch._ops.aten.mul.Tensor($0, $0) |
| $2 = input('grad_y') |
| True = torch._ops.aten.is_same_size.default($1, $2) |
| $3 = torch._ops.aten.mul.Tensor($2, $0) |
| $4 = torch._ops.aten.mul.Tensor($2, $0) |
| $5 = torch._ops.aten.add.Tensor($4, $3)''') |
| |
| def test_out(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1)) |
| y = LoggingTensor(torch.zeros(1)) |
| log_input("x", x) |
| log_input("y", y) |
| torch.abs(x, out=y) |
| |
| self.assertEqual(y.elem, torch.ones(1)) |
| # TODO: arguably this shouldn't pass and we should complain |
| # that out isn't a kwarg |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = input('y') |
| $2 = torch._ops.aten.abs.out($0, out=$1)''') |
| |
| def test_kwarg_only(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1)) |
| y = LoggingTensor(torch.ones(1, 1)) |
| z = LoggingTensor(torch.ones(1)) |
| log_input("x", x) |
| log_input("y", y) |
| log_input("z", z) |
| torch.addmv(x, y, z) |
| torch.addmv(x, y, z, beta=1) |
| torch.addmv(x, y, z, beta=2) |
| torch.addmv(x, y, z, alpha=2) |
| torch.addmv(x, y, z, beta=2, alpha=2) |
| |
| # The expectation is that beta/alpha don't show up when they're |
| # defaulted. This is even if the user explicitly specified it. |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = input('y') |
| $2 = input('z') |
| $3 = torch._ops.aten.addmv.default($0, $1, $2) |
| $4 = torch._ops.aten.addmv.default($0, $1, $2) |
| $5 = torch._ops.aten.addmv.default($0, $1, $2, beta=2) |
| $6 = torch._ops.aten.addmv.default($0, $1, $2, alpha=2) |
| $7 = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)''') |
| |
| def test_kwarg_only_and_positional_default(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1)) |
| log_input("x", x) |
| torch.ops.aten._foobar(x) |
| torch.ops.aten._foobar(x, False) |
| torch.ops.aten._foobar(x, arg3=False) |
| torch.ops.aten._foobar(x, False, arg3=False) |
| |
| # What we are testing here is that we omit arg2 |
| # if it is defaulted, even if a kwarg is set |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = torch._ops.aten._foobar.default($0) |
| $2 = torch._ops.aten._foobar.default($0, False) |
| $3 = torch._ops.aten._foobar.default($0, arg3=False) |
| $4 = torch._ops.aten._foobar.default($0, False, arg3=False)''') |
| |
| def test_produce_real_type(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(2, 2)) |
| log_input("x", x) |
| x.to(dtype=torch.double) # non-optional dtype |
| torch.cumprod(x, 0, dtype=torch.double) # optional dtype |
| x[:, 1].contiguous(memory_format=torch.contiguous_format) # optional memory format |
| # There doesn't appear to be any layout signatures which are |
| # triggerable using tensor subclasses (need to use a mode) |
| |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = torch._ops.aten._to_copy.default($0, dtype=torch.float64) |
| $2 = torch._ops.aten.cumprod.default($0, 0, dtype=torch.float64) |
| $3 = torch._ops.aten.slice.Tensor($0, 0, 0, 9223372036854775807) |
| $4 = torch._ops.aten.select.int($3, 1, 1) |
| $5 = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_format)''') |
| |
| def test_list_ret(self) -> None: |
| # test all sequence types are permissible returns |
| for list_type in (list, tuple): |
| class A(torch._C._TensorBase): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| if func.overloadpacket == torch.ops.aten.split: |
| with no_dispatch(): |
| return list_type(torch.split(*args)) |
| else: |
| raise AssertionError(f"unrecognized func: {func}") |
| |
| self.assertEqual( |
| torch.split(A(torch.tensor([0, 1])), 2), |
| torch.split(torch.tensor([0, 1]), 2) |
| ) |
| |
| def test_invalid_ret(self) -> None: |
| # test invalid return gets reasonable error message |
| class A(torch._C._TensorBase): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return "arf" |
| |
| # Wobbles depending on NDEBUG mode of pybind11 |
| self.assertRaisesRegex( |
| RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(), |
| ) |
| self.assertRaisesRegexp( |
| RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(), |
| ) |
| |
| def test_detach_appears_twice_when_called_once(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) |
| log_input("x", x) |
| x.detach() |
| # FIXME: We actually want this to emit a single detach. However, |
| # it currently emits two, for reasons unclear to us. Leaving |
| # this test here to make sure we don't regress even further (it |
| # would be bad if calling .detach() once emits 3+ detaches). |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = torch._ops.aten.detach.default($0) |
| $2 = torch._ops.aten.detach.default($1)''') |
| |
| def test_storage(self) -> None: |
| # For now, just make sure it doesn't crash. Ideally, we should |
| # return some virtual storage that is safe to work with |
| x = LoggingTensor(torch.ones(1)) |
| self.assertRaises(RuntimeError, lambda: x.storage()) |
| |
| def test_make_wrapper_subclass_noalloc(self) -> None: |
| # This is ludicrously big (8TB) and this should pass because wrapper |
| # subclasses don't allocate |
| torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,)) |
| |
| def test_version(self) -> None: |
| x = LoggingTensor(torch.ones(1)) |
| prev_vc = x._version |
| x.detach().add_(2) |
| cur_vc = x._version |
| self.assertNotEqual(prev_vc, cur_vc) |
| x.data.add_(2) |
| self.assertEqual(cur_vc, x._version) |
| |
| def test_subclass_priority(self) -> None: |
| class ErrorA(RuntimeError): |
| pass |
| |
| class ErrorB(RuntimeError): |
| pass |
| |
| # The big tests for code coverage are test_precedence_semantics in |
| # test_overrides.py; this is just to make sure it is wired up at all |
| # correctly for __torch_dispatch__ |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise ErrorA |
| |
| class B(A): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise ErrorB |
| |
| self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1)))) |
| self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1)))) |
| self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1)))) |
| self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1)))) |
| |
| def test_format(self) -> None: |
| x = LoggingTensor(torch.ones(1)) |
| s1 = str(x) |
| s2 = repr(x) |
| s3 = f"{x}" |
| self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""") |
| self.assertEqual(s1, s2) |
| self.assertEqual(s1, s3) |
| |
| def test_custom_autograd(self) -> None: |
| escape = [None] |
| |
| class Square(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| y = x ** 2 |
| ctx.save_for_backward(x) |
| return y |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| assert isinstance(grad_output, LoggingTensor) |
| x, = ctx.saved_tensors |
| assert isinstance(x, LoggingTensor) |
| escape[0] = x |
| return grad_output * 2 * x |
| |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1), requires_grad=True) |
| log_input("x", x) |
| x.grad = LoggingTensor(torch.zeros(1)) |
| log_input("x.grad", x.grad) |
| y = Square.apply(x) |
| grad_output = LoggingTensor(torch.ones(1)) |
| log_input("grad_output", grad_output) |
| y.backward(grad_output) |
| |
| with torch.no_grad(): |
| self.assertEqual(escape[0], x) |
| self.assertEqual(escape[0]._version, x._version) |
| # TODO: figure out why x.requires_grad = False doesn't |
| # trigger an error for LoggingTensor |
| x.add_(2) |
| self.assertEqual(escape[0], x) |
| # TODO: figure out why this is broken |
| # self.assertEqual(escape[0]._version, x._version) |
| |
| self.assertExpectedInline('\n'.join(logs), '''\ |
| $0 = input('x') |
| $1 = input('x.grad') |
| $2 = torch._ops.aten.pow.Tensor_Scalar($0, 2) |
| $3 = input('grad_output') |
| True = torch._ops.aten.is_same_size.default($2, $3) |
| $4 = torch._ops.aten.mul.Tensor($3, 2) |
| $5 = torch._ops.aten.mul.Tensor($4, $0) |
| $6 = torch._ops.aten.add_.Tensor($1, $5)''') |
| |
| def test_subclass_creation(self): |
| # Make sure these statements runs without error |
| # In particular checking that when internal detach returns |
| # subclasses, these are cleanly overwritten. |
| class Foo(torch.Tensor): |
| pass |
| |
| err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor" |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2))) |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| b = LoggingTensor(torch.rand(2)).as_subclass(Foo) |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| Foo(LoggingTensor(torch.rand(2))) |
| |
| with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"): |
| torch.Tensor._make_wrapper_subclass(Foo, (2, 2)) |
| |
| def test_new_ones(self) -> None: |
| class MyTensor(torch.Tensor): |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return MyTensor(3) |
| |
| self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor) |
| |
| def test_like(self) -> None: |
| class MyTensor(torch.Tensor): |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return MyTensor(3) |
| |
| for f in ["empty", "ones", "rand", "randn", "zeros"]: |
| f_name = f + "_like" |
| self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor) |
| |
| self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor) |
| self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor) |
| |
| def test_make_wrapper_subclass_propagates_metadata(self) -> None: |
| class WrapperTensor(torch.Tensor): |
| elem: torch.Tensor |
| |
| __slots__ = ['elem'] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] |
| cls, elem.size(), |
| dtype=elem.dtype, layout=elem.layout, |
| device=elem.device, requires_grad=elem.requires_grad, |
| strides=elem.stride(), storage_offset=elem.storage_offset()) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise RuntimeError("NYI") |
| |
| # non-contiguous strides, non-zero storage offset |
| x = torch.randn(4, 6).t().diagonal(offset=2) |
| y = WrapperTensor(x) |
| self.assertEqual(y.size(), x.size()) |
| self.assertEqual(y.stride(), x.stride()) |
| self.assertEqual(y.storage_offset(), x.storage_offset()) |
| |
| def test_wrapper_subclass_serializes(self) -> None: |
| with tempfile.TemporaryFile() as f: |
| x = LoggingTensor(torch.randn(3)) |
| torch.save(x, f) |
| f.seek(0) |
| x_loaded = torch.load(f) |
| self.assertTrue(type(x_loaded) is type(x)) |
| self.assertEqual(x.elem, x_loaded.elem) |
| self.assertFalse(x is x_loaded) |
| |
| def test_deepcopy_wrapper_subclass(self) -> None: |
| x = LoggingTensor(torch.randn(3)) |
| x_copy = deepcopy(x) |
| self.assertTrue(type(x_copy) is type(x)) |
| self.assertEqual(x.elem, x_copy.elem) |
| self.assertFalse(x is x_copy) |
| |
| def test_deepcopy_wrapper_subclass_with_clone_returning_different_type(self) -> None: |
| |
| class MyWrapperTensor(torch.Tensor): |
| elem: torch.Tensor |
| |
| __slots__ = ['elem'] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] |
| cls, elem.size(), |
| dtype=elem.dtype, layout=elem.layout, |
| device=elem.device, requires_grad=elem.requires_grad, |
| strides=elem.stride(), storage_offset=elem.storage_offset()) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| if func.overloadpacket.__name__ == "clone": |
| # Return a plain tensor from clone(). |
| return args[0].elem.clone() |
| raise RuntimeError("NYI") |
| |
| # NB: The default Tensor.__torch_function__ implementation called for deepcopy |
| # disables __torch_function__ by the time we get to clone(), so there is no need to |
| # explicitly disable __torch_function__ for this subclass. |
| |
| x = MyWrapperTensor(torch.randn(3)) |
| with self.assertRaisesRegex(RuntimeError, |
| "for which cloning returns another instance of the same subclass"): |
| x_copy = deepcopy(x) |
| |
| def test_deepcopy_non_wrapper_subclass(self) -> None: |
| |
| # Ensure correct error is thrown for common error cases. |
| class SubTensorError1(torch.Tensor): |
| # Default implementation of new_empty() returns a plain tensor. |
| pass |
| |
| class SubTensorError2(torch.Tensor): |
| # new_empty() incorrectly returns a different type (i.e. a plain tensor). |
| def new_empty(self, shape): |
| return torch.Tensor(shape) |
| |
| for error_cls in [SubTensorError1, SubTensorError2]: |
| x = error_cls(3) |
| with self.assertRaisesRegex(RuntimeError, |
| "for which that function returns another instance of the same subclass"): |
| x_copy = deepcopy(x) |
| |
| # Ensure a correctly implemented new_empty() causes deepcopy() to work. |
| class SubTensorSuccess(torch.Tensor): |
| def new_empty(self, shape): |
| return type(self)(shape) |
| |
| x = SubTensorSuccess(3) |
| x_copy = deepcopy(x) |
| self.assertIs(type(x_copy), type(x)) |
| |
| def test_index_put_where_only_index_is_subclass(self) -> None: |
| called_funcs = [] |
| |
| class MyTensor(torch.Tensor): |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| elem: torch.Tensor |
| __slots__ = ['elem'] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( |
| cls, elem.size(), |
| dtype=elem.dtype, layout=elem.layout, |
| device=elem.device, requires_grad=elem.requires_grad |
| ) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called_funcs.append(func) |
| return MyTensor(torch.tensor(3)) |
| |
| x = torch.randn(3, 3) |
| idxs = (MyTensor(torch.tensor(0)),) |
| v = torch.randn(1) |
| res = x.index_put_(idxs, v) |
| self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default]) |
| |
| def test_torch_dispatch_mode_basic(self) -> None: |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode(): |
| torch.empty([]) |
| self.assertExpectedInline('\n'.join(logs), """\ |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""") |
| |
| def test_torch_dispatch_mode_unrelated_tensors(self) -> None: |
| x = torch.randn([]) |
| y = torch.randn([]) |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode(): |
| x + y |
| self.assertExpectedInline('\n'.join(logs), """\ |
| $2 = torch._ops.aten.add.Tensor($0, $1)""") |
| |
| def test_nested_push_logging_tensor_mode(self): |
| x = torch.randn([]) |
| y = torch.randn([]) |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode(): |
| with LoggingTensorMode(): |
| torch.empty([]) |
| x + y |
| |
| self.assertExpectedInline('\n'.join(logs), """\ |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $3 = torch._ops.aten.add.Tensor($1, $2) |
| $3 = torch._ops.aten.add.Tensor($1, $2)""") |
| |
| def test_capture_logs_with_torch_dispatch_mode(self): |
| x = torch.randn([]) |
| y = torch.randn([]) |
| with capture_logs_with_logging_tensor_mode() as logs: |
| torch.empty([]) |
| x + y |
| self.assertExpectedInline('\n'.join(logs), """\ |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $3 = torch._ops.aten.add.Tensor($1, $2)""") |
| |
| x = torch.randn([]) |
| y = torch.randn([]) |
| |
| with capture_logs_with_logging_tensor_mode() as logs1: |
| with capture_logs_with_logging_tensor_mode() as logs2: |
| torch.empty([]) |
| x + y |
| |
| self.assertExpectedInline('\n'.join(logs2), """\ |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $3 = torch._ops.aten.add.Tensor($1, $2) |
| $3 = torch._ops.aten.add.Tensor($1, $2)""") |
| |
| self.assertEqual(logs1, logs2) |
| |
| def test_torch_dispatch_mode_subclass_priority(self) -> None: |
| class ErrorA(RuntimeError): |
| pass |
| |
| class ErrorB(RuntimeError): |
| pass |
| |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| with AMode(): |
| raise ErrorA |
| |
| class B(A): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| with BMode(): |
| func(*args, **kwargs) |
| |
| class AMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorA |
| |
| class BMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorB |
| |
| a = A(torch.empty(1)) |
| b = B(torch.empty(1)) |
| with self.assertRaises(ErrorA): |
| a + a |
| with self.assertRaises(ErrorB): |
| a + b |
| |
| # B has precedence over A due to the subclass relationship yet |
| # modes take precedence over arguments |
| with self.assertRaises(ErrorA): |
| with AMode(): |
| b + b |
| with self.assertRaises(ErrorB): |
| with BMode(): |
| a + a |
| with self.assertRaises(ErrorB): |
| with BMode(): |
| a + b |
| |
| def test_mode_with_make_subclass(self): |
| class SubTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| class BasicMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| return func(*args, **kwargs) |
| |
| x = torch.randn(3) |
| with BasicMode(): |
| y = SubTensor(x) |
| self.assertIsInstance(y, SubTensor) |
| |
| def test_torch_dispatch_mode_respects_no_dispatch(self) -> None: |
| with capture_logs(is_mode=True) as logs1: |
| with LoggingTensorMode(): |
| torch.ones([2, 3]) |
| with no_dispatch(): |
| torch.ones([2, 3]) |
| with capture_logs(is_mode=True) as logs2: |
| with LoggingTensorMode(): |
| torch.ones([2, 3]) |
| self.assertEqual(logs1, logs2) |
| |
| def test_shallow_copy_and_detach(self) -> None: |
| seen = set() |
| test_case = self |
| |
| class TestMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| tree_map_only(torch.Tensor, lambda t: test_case.assertIn(t, seen), (args, kwargs)) |
| if kwargs is None: |
| kwargs = {} |
| r = func(*args, **kwargs) |
| tree_map_only(torch.Tensor, lambda t: seen.add(t), r) |
| return r |
| |
| with TestMode(): |
| x = torch.randn(3, requires_grad=True) |
| loss = (x * x).sum() |
| loss.backward() |
| |
| def test_exception_handling(self): |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| class AMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| if func.__name__ == 'randn.default': |
| raise RuntimeError() |
| return A(torch.zeros(())) |
| |
| with AMode(): |
| try: |
| torch.randn(()) |
| except RuntimeError: |
| pass |
| self.assertTrue(isinstance(torch.zeros(()), A)) |
| |
| def test_with_mode_created_separately(self): |
| class ErrorA(RuntimeError): |
| pass |
| |
| class A(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorA() |
| |
| x = A() |
| with self.assertRaises(ErrorA): |
| with x: |
| torch.empty([]) |
| |
| def test_with_nested_modes(self): |
| class ErrorA(RuntimeError): |
| def __init__(self, msg): |
| return super().__init__(msg) |
| |
| class A(TorchDispatchMode): |
| def __init__(self, msg): |
| self.msg = msg |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorA(self.msg) |
| |
| with self.assertRaisesRegex(ErrorA, "layer2"): |
| with A("layer1"): |
| with A("layer2"): |
| torch.empty([]) |
| |
| def test_make_subclass_with_modes(self): |
| class ModeTensor(torch.Tensor): |
| def __new__(cls, elem, mode): |
| r = torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| r.elem = elem |
| r.mode = mode |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise NotImplementedError("Shouldn't be here") |
| |
| class Mode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| def unwrap(e): |
| if isinstance(e, ModeTensor): |
| return e.elem |
| else: |
| return e |
| |
| def wrap(t): |
| if isinstance(t, torch.Tensor): |
| return ModeTensor(t, self) |
| else: |
| return t |
| |
| return wrap(func(*tuple(unwrap(a) for a in args), **kwargs)) |
| |
| class BasicMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| return func(*args, **kwargs) |
| |
| x = torch.tensor(4.) |
| with Mode(): |
| y = x + x |
| z = y + y |
| self.assertIsInstance(y, ModeTensor) |
| self.assertIsInstance(z, ModeTensor) |
| |
| with Mode(): |
| with BasicMode(): # we can't nest two modes that call make_subclass because it only accepts vanilla tensors |
| y = x + x |
| z = y + y |
| self.assertIsInstance(y, ModeTensor) |
| self.assertIsInstance(z, ModeTensor) |
| |
| assert self.assertRaisesRegex(RuntimeError, "subclass Mode but.* associated to a python object of type Mode") |
| |
| def test_notimplemented_mode(self): |
| sub_count = 0 |
| |
| class PoliteMode(TorchDispatchMode): |
| def __init__(self): |
| self.pre_count = 0 |
| self.post_count = 0 |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| self.pre_count += 1 |
| if any(t is not torch.Tensor for t in types): |
| return NotImplemented |
| self.post_count += 1 |
| return func(*args, **kwargs) |
| |
| class SubTensor(torch.Tensor): |
| def __new__(cls, elem): |
| r = torch.Tensor._make_wrapper_subclass(cls, elem.shape) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| nonlocal sub_count |
| sub_count += 1 |
| |
| def unwrap(t): |
| if isinstance(t, SubTensor): |
| return t.elem |
| else: |
| return t |
| |
| return func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) |
| |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| a = SubTensor(torch.randn(2)) |
| with PoliteMode() as mode: |
| a.abs() |
| |
| self.assertEqual(mode.pre_count, 2) |
| self.assertEqual(mode.post_count, 1) |
| self.assertEqual(sub_count, 1) |
| |
| # make sure this doesn't error |
| with PoliteMode(): |
| with PoliteMode(): |
| a.abs() |
| |
| def test_nesting_same_mode(self): |
| # If the pushed mode is the same instance as the current mode, we allow pushing an already active mode. |
| |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode() as reenabled: |
| with reenabled: |
| torch.empty([]) |
| self.assertExpectedInline('\n'.join(logs), """\ |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""") |
| |
| |
| def test_error_using_class_method_on_mode(self): |
| class A(TorchDispatchMode): |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return func(args, kwargs) |
| |
| x = torch.tensor(5.) |
| with self.assertRaisesRegex(RuntimeError, "should be a normal method not a class method"): |
| with A(): |
| x + x |
| |
| def test_get_cur_mode(self): |
| class A(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| pass |
| |
| self.assertEqual(_get_current_dispatch_mode(), None) |
| |
| with A() as mode1: |
| self.assertEqual(_get_current_dispatch_mode(), mode1) |
| |
| with mode1: |
| with A() as mode2: |
| self.assertEqual(_get_current_dispatch_mode(), mode2) |
| |
| def test_get_mode_stack(self): |
| class A(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| pass |
| |
| self.assertEqual(_get_current_dispatch_mode_stack(), []) |
| |
| with A() as mode1: |
| self.assertEqual(_get_current_dispatch_mode_stack(), [mode1]) |
| |
| with mode1: |
| with A() as mode2: |
| self.assertEqual(_get_current_dispatch_mode_stack(), [mode1, mode2]) |
| |
| def test_all_same_mode(self): |
| x = LoggingTensorMode() |
| y = LoggingTensorMode() |
| self.assertTrue(all_same_mode([x, x, x])) |
| self.assertFalse(all_same_mode([x, None])) |
| self.assertFalse(all_same_mode([x, y])) |
| |
| def test_tolist_numpy_with_torch_dispatch_mode(self) -> None: |
| x = LoggingTensor(torch.tensor([2.0, 3.0])) |
| with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."): |
| x.tolist() |
| with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."): |
| x.numpy() |
| with self.assertRaises(AssertionError): |
| self.assertEqual(x, None) |
| |
| def test_subclass_autograd_device_check(self) -> None: |
| class NonWrapperSubclass(torch.Tensor): |
| elem: torch.Tensor |
| |
| __slots__ = ['elem'] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| # Wrong device here! |
| r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad) |
| # ...the real tensor is held as an element on the tensor. |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| def unwrap(e): |
| return e.elem if isinstance(e, NonWrapperSubclass) else e |
| |
| def wrap(e): |
| return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e |
| |
| rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))) |
| logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs) |
| return rs |
| |
| x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True)) |
| y = torch.randn(2, requires_grad=True) |
| z = x * y |
| self.assertIsInstance(z, NonWrapperSubclass) |
| z.sum().backward(torch.tensor(1)) |
| self.assertEqual(x.grad, y) |
| self.assertEqual(y.grad, x) |
| |
| def test_none_wrapping(self): |
| # A Tensor subclass that returns None when doing add |
| # See LoggingTensor above for more details on the subclass |
| class SubclassWithNone(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( |
| cls, elem.size(), |
| dtype=elem.dtype, layout=elem.layout, |
| device=elem.device, requires_grad=elem.requires_grad |
| ) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| def unwrap(e): |
| return e.elem if isinstance(e, SubclassWithNone) else e |
| |
| def wrap(e): |
| return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e |
| |
| rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))) |
| if func.overloadpacket.__name__ == "add": |
| return None |
| else: |
| return rs |
| |
| x = SubclassWithNone(torch.rand(2)) |
| # Make sure both run without error |
| self.assertIsInstance(x * 2, SubclassWithNone) |
| self.assertIsNone(x + 2) |
| |
| x.requires_grad_() |
| out = x.acos().sum() |
| |
| # The backward of acos does add then rsqrt so here we make sure that the |
| # undefined Tensor generated by the user code is nicely handled. |
| # If acos formula changes in the future, this can be replaced by any other |
| # function that does add then something in the backward in a composite way |
| with self.assertRaisesRegex(RuntimeError, "but got None"): |
| out.backward() |
| |
| def test_storage_can_be_converted_to_python_object(self): |
| s = torch.Storage() |
| z = LoggingTensor(torch.empty([])) |
| z.set_(s) |
| |
| def test_autograd_in_attr(self): |
| # We want the wrapped Tensor to require gradients! |
| true_t = torch.rand(2, requires_grad=True) |
| t = LoggingTensorReentrant(true_t) |
| |
| out = t + 2 |
| |
| self.assertFalse(out.requires_grad) |
| self.assertIsNone(out.grad_fn) |
| |
| self.assertTrue(out.elem.requires_grad) |
| self.assertIsNotNone(out.elem.grad_fn) |
| |
| with self.assertRaisesRegex(RuntimeError, "does not require grad"): |
| out.sum().backward() |
| |
| out.elem.sum().backward() |
| |
| self.assertIsNone(t.grad) |
| self.assertIsNotNone(t.elem.grad) |
| |
| def test_dispatch_super_call(self): |
| called = [] |
| |
| class SubTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem) |
| |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called.append(func) |
| return super().__torch_dispatch__(func, types, args, kwargs) |
| |
| x = torch.randn(2) |
| y = torch.randn(2) |
| self.assertEqual(SubTensor(x) + SubTensor(y), x + y) |
| self.assertEqual(called, [torch.ops.aten.add.Tensor]) |
| |
| def test_dispatch_super_call_list_arg(self): |
| called = [] |
| |
| class SubTensorWithListArg(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem) |
| |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called.append(func) |
| return super().__torch_dispatch__(func, types, list(args), kwargs) |
| |
| x = torch.randn(2) |
| self.assertEqual(SubTensorWithListArg(x).neg(), x.neg()) |
| self.assertEqual(called, [torch.ops.aten.neg.default]) |
| |
| def test_dispatch_super_dont_autograd(self): |
| called = [] |
| |
| class SubTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called.append(func) |
| # This argument still requires grad because it was passed |
| # through directly... |
| self.assertTrue(args[0].requires_grad) |
| r = super().__torch_dispatch__(func, types, args, kwargs) |
| # But the output better not require grad, because that means |
| # you did autograd again in torch dispatch (oops) |
| self.assertFalse(r.requires_grad) |
| return r |
| |
| x = SubTensor(torch.randn(2, requires_grad=True)) |
| x.neg() |
| self.assertEqual(called, [torch.ops.aten.neg.default]) |
| |
| def test_set_data(self): |
| called = 0 |
| |
| class SubTensor(torch.Tensor): |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| nonlocal called |
| called += 1 |
| return super().__torch_dispatch__(func, types, args, kwargs) |
| |
| x = SubTensor(torch.empty(2)) |
| x.data |
| self.assertEqual(called, 1) |
| x.data = torch.empty(2) |
| self.assertEqual(called, 1) |
| x.data |
| self.assertEqual(called, 2) |
| self.assertIs(type(x), SubTensor) |
| x.set_(torch.empty(2)) |
| self.assertEqual(called, 3) |
| x.data |
| self.assertEqual(called, 4) |
| self.assertIs(type(x), SubTensor) |
| |
| def test_construct_int_tensor(self): |
| class SubTensor(torch.Tensor): |
| pass |
| # should not fail |
| SubTensor(torch.zeros(2, dtype=torch.int)) |
| |
| def test_multiple_ops_subclass(self): |
| # This is a Direct Subclass, don't do that! |
| class MySubclass(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| r = torch.Tensor._make_subclass(cls, elem) |
| return r |
| |
| __torch_function__ = torch._C._disabled_torch_function_impl |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| with no_dispatch(): |
| return func(*args, **kwargs) |
| |
| x = MySubclass(torch.rand(2, 2, dtype=torch.complex64)) |
| y = x.conj() |
| # Details of the bug that this tests for: |
| # Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU} |
| # There are a few calls to the dispatcher that are going to happen here: |
| # - call_exp: User calling exp on y |
| # - PythonTLSSnapshot: records the TLS on entry and redispatch |
| # - AutogradCPU: no input requires grad, so does nothing and redispatch |
| # - Conjugate: no special implementation for exp: use the fallback that |
| # first clone the Tensor (to materialize the conj) then redispatch |
| # - call_clone: conjugate fallback calling clone on y |
| # - PythonTLSSnapshot: records the TLS on entry and redispatch |
| # - (AutogradCPU: skipped as autograd added itself to the exclude set above) |
| # - Conjugate: special implementation for clone: just skip this key |
| # - Python: Reset the TLS based on the snapshot above and call the user implementation (this |
| # actually calls into the dispatcher again but since we disable both our keys |
| # before, not detailed here) |
| # - exit Python: restore the TLS and exit |
| # - exit Conjugate: nothing was inplace so just exit |
| # - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty |
| # - Python: Reset the TLS again based on the snapshot. <- this used to fail |
| # - More steps.... |
| y.exp() |
| |
| @staticmethod |
| def subclass_helper(cls, data, use_wrapper_subclass, **kwargs): |
| if use_wrapper_subclass: |
| kwargs["device"] = data.device |
| kwargs["dtype"] = data.dtype |
| kwargs["layout"] = data.layout |
| kwargs["requires_grad"] = True |
| return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs) # type: ignore[attr-defined] |
| else: |
| return torch.Tensor._make_subclass(cls, data, True, **kwargs) |
| |
| def test_is_contiguous_slow_path(self): |
| data = torch.randn(3, 3) |
| contiguous_data = data.clone() |
| not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2)) |
| |
| for use_wrapper_subclass in [True, False]: |
| class ExampleTensor1(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class ExampleTensor2(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.is_contiguous: |
| return contiguous_data.is_contiguous() |
| return NotImplemented |
| |
| class ExampleTensor3(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.is_contiguous: |
| return not_contiguous_data.is_contiguous() |
| return NotImplemented |
| |
| err_msg = "no implementation found for 'torch.ops.aten.is_contiguous'" |
| e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.is_contiguous() |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.contiguous() |
| |
| e = ExampleTensor2(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.is_contiguous(), True) |
| e.contiguous() # this will just return the original TensorImpl since is_contiguous = True |
| |
| err_msg = "no implementation found for" |
| e = ExampleTensor3(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.is_contiguous(), False) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.contiguous() |
| |
| def test_device_slowpath(self): |
| for use_wrapper_subclass in [True]: |
| class ExampleTensor1(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class ExampleTensor2(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.device: |
| return torch.device('meta') |
| return NotImplemented |
| |
| class ExampleTensor3(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.device: |
| return torch.device('meta') |
| return NotImplemented |
| |
| err_msg = "no implementation found for 'torch.ops.prim.device'" |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) |
| e.device() |
| |
| ten = torch.rand([1]) |
| e = ExampleTensor2(torch.randn(3, 3, device='cpu'), use_wrapper_subclass) |
| self.assertEqual(e.device.type, 'meta') |
| self.assertEqual(ten.type_as(e).device.type, 'meta') |
| |
| e = ExampleTensor3(torch.randn(3, 3, device='cpu'), use_wrapper_subclass) |
| self.assertEqual(e.device.type, 'meta') |
| self.assertEqual(ten.type_as(e).device.type, 'meta') |
| |
| def test_dim_slowpath(self): |
| data = torch.randn(3, 3) |
| |
| for use_wrapper_subclass in [True, False]: |
| class DimNotImplementedTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class DimImplementedTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| return NotImplemented |
| |
| err_msg = "no implementation found for 'torch.ops.aten.dim'" |
| e = DimNotImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.dim() |
| |
| t = DimImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(t.dim(), 2) |
| |
| def test_maybe_tuple_bug(self): |
| class T(torch.Tensor): |
| @classmethod |
| def __torch_function__(cls, *args, **kwargs): |
| pass |
| a = torch.rand(3) |
| |
| a[[T(), T()]] |
| |
| def test_standard_is_not_subclass(self): |
| # https://github.com/pytorch/pytorch/issues/79079 |
| self.assertFalse(torch._C._dispatch_isTensorSubclassLike(torch.empty(0))) |
| |
| def test_strides_slow_path(self): |
| for use_wrapper_subclass in [True, False]: |
| class StridesNotImplemented(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class StridesCustomReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func == torch.ops.aten.sym_stride.default: |
| return (4, 2) |
| return NotImplemented |
| |
| class StridesDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func == torch.ops.aten.sym_stride.default: |
| return None |
| return NotImplemented |
| |
| err_msg = "no implementation found for 'torch.ops.aten.sym_stride'" |
| e = StridesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| e.stride() |
| |
| e = StridesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.stride(), (4, 2)) |
| |
| e = StridesDefaultReturn(torch.randn(6, 2), use_wrapper_subclass) |
| self.assertEqual(e.stride(), (2, 1)) |
| |
| def test_sizes_slow_path(self): |
| for use_wrapper_subclass in [True, False]: |
| data = torch.randn(6, 2) |
| |
| class SizesNotImplemented(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| return NotImplemented |
| |
| class SizesCustomReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| if func.overloadpacket == torch.ops.aten.sym_size: |
| return (5, 3) |
| return NotImplemented |
| |
| class SizesDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes") |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| if func.overloadpacket == torch.ops.aten.sym_size: |
| return None |
| return NotImplemented |
| |
| err_msg = "no implementation found for 'torch.ops.aten.sym_size'" |
| e = SizesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| e.size() |
| |
| e = SizesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.size(), (5, 3)) |
| |
| e = SizesDefaultReturn(torch.randn(4, 2), use_wrapper_subclass) |
| self.assertEqual(e.size(), (4, 2)) |
| |
| def test_layout_slow_path(self): |
| for use_wrapper_subclass in [True, False]: |
| data = torch.randn(6, 2) |
| |
| class LayoutNotImplemented(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class LayoutCustomReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.layout: |
| return torch.sparse_csr |
| return NotImplemented |
| |
| class LayoutDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.layout: |
| return data.layout |
| return NotImplemented |
| |
| err_msg = "no implementation found for 'torch.ops.prim.layout'" |
| e = LayoutNotImplemented(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.layout |
| |
| e = LayoutCustomReturn(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.layout, torch.sparse_csr) |
| |
| e = LayoutDefaultReturn(torch.randn(4, 2), use_wrapper_subclass) |
| self.assertEqual(e.layout, torch.strided) |
| |
| class TestPythonDispatcher(TestCase): |
| def test_basic(self): |
| x = torch.randn(2, requires_grad=True) |
| r = torch._C._EnablePythonDispatcher() |
| torch.add(x, x) |
| |
| def test_lstsq(self): |
| a = torch.randn(4, 3) |
| b = torch.rand(4, 3) |
| expected_shape = torch.linalg.lstsq(a, b).solution.shape |
| r = torch._C._EnablePythonDispatcher() |
| python_disp_shape = torch.linalg.lstsq(a, b).solution.shape |
| self.assertEqual(expected_shape, python_disp_shape) |
| |
| if __name__ == '__main__': |
| run_tests() |