| import argparse |
| import functools |
| import traceback |
| from torch.utils.jit.log_extract import extract_ir, load_graph_and_inputs, run_baseline_no_fusion, run_nnc, run_nvfuser |
| from typing import List, Tuple, Callable, Optional |
| |
| ''' |
| Usage: |
| 1. Run your script and pipe into a log file |
| PYTORCH_JIT_LOG_LEVEL=">>graph_fuser" python3 my_test.py &> log.txt |
| 2. Run log_extract: |
| log_extract.py log.txt --nvfuser --nnc-dynamic --nnc-static |
| |
| You can also extract the list of extracted IR: |
| log_extract.py log.txt --output |
| |
| Passing in --graphs 0 2 will only run graphs 0 and 2 |
| ''' |
| |
| |
| def test_runners(graphs: List[str], runners: List[Tuple[str, Callable]], graph_set: Optional[List[int]]): |
| for i, ir in enumerate(graphs): |
| _, inputs = load_graph_and_inputs(ir) |
| if graph_set and i not in graph_set: |
| continue |
| |
| print(f"Running Graph {i}") |
| prev_result = None |
| prev_runner_name = None |
| for runner in runners: |
| runner_name, runner_fn = runner |
| try: |
| result = runner_fn(ir, inputs) |
| if prev_result: |
| improvement = (prev_result / result - 1) * 100 |
| print(f"{runner_name} : {result:.6f} ms improvement over {prev_runner_name}: improvement: {improvement:.2f}%") |
| else: |
| print(f"{runner_name} : {result:.6f} ms") |
| prev_result = result |
| prev_runner_name = runner_name |
| except RuntimeError: |
| print(f" Graph {i} failed for {runner_name} :", traceback.format_exc()) |
| |
| |
| def run(): |
| parser = argparse.ArgumentParser( |
| description="Extracts torchscript IR from log files and, optionally, benchmarks it or outputs the IR" |
| ) |
| parser.add_argument("filename", help="Filename of log file") |
| parser.add_argument("--nvfuser", dest="nvfuser", action="store_true", help="benchmark nvfuser") |
| parser.add_argument("--no-nvfuser", dest="nvfuser", action="store_false", help="DON'T benchmark nvfuser") |
| parser.set_defaults(nvfuser=False) |
| parser.add_argument("--nnc-static", dest="nnc_static", action="store_true", help="benchmark nnc static") |
| parser.add_argument("--no-nnc-static", dest="nnc_static", action="store_false", help="DON'T benchmark nnc static") |
| parser.set_defaults(nnc_static=False) |
| |
| parser.add_argument("--nnc-dynamic", dest="nnc_dynamic", action="store_true", help="nnc with dynamic shapes") |
| parser.add_argument( |
| "--no-nnc-dynamic", |
| dest="nnc_dynamic", |
| action="store_false", |
| help="DONT't benchmark nnc with dynamic shapes") |
| parser.set_defaults(nnc_dynamic=False) |
| |
| |
| parser.add_argument("--baseline", dest="baseline", action="store_true", help="benchmark baseline") |
| parser.add_argument("--no-baseline", dest="baseline", action="store_false", help="DON'T benchmark baseline") |
| parser.set_defaults(baseline=False) |
| |
| parser.add_argument("--output", dest="output", action="store_true", help="Output graph IR") |
| parser.add_argument("--no-output", dest="output", action="store_false", help="DON'T output graph IR") |
| parser.set_defaults(output=False) |
| |
| parser.add_argument('--graphs', nargs="+", type=int, help="Run only specified graph indices") |
| |
| |
| args = parser.parse_args() |
| graphs = extract_ir(args.filename) |
| |
| graph_set = args.graphs |
| graph_set = graph_set if graph_set else None |
| |
| options = [] |
| if args.baseline: |
| options.append(("Baseline no fusion", run_baseline_no_fusion)) |
| if args.nnc_dynamic: |
| options.append(("NNC Dynamic", functools.partial(run_nnc, dynamic=True))) |
| if args.nnc_static: |
| options.append(("NNC Static", functools.partial(run_nnc, dynamic=False))) |
| if args.nvfuser: |
| options.append(("NVFuser", run_nvfuser)) |
| |
| test_runners(graphs, options, graph_set) |
| |
| if args.output: |
| quoted = [] |
| for i, ir in enumerate(graphs): |
| if graph_set and i not in graph_set: |
| continue |
| quoted.append("\"\"\"" + ir + "\"\"\"") |
| print("[" + ", ".join(quoted) + "]") |
| |
| if __name__ == "__main__": |
| run() |