| syntax = "proto2"; |
| |
| package caffe2; |
| |
| // A few notes about the Caffe2's protobuffer convention: |
| // (1) Most objects are registered by their types, such as operators and nets. |
| // For these, we have a string-type field "type" for registration purposes. |
| // (2) We do not use extension because that used to create quite some conflicts |
| // in Caffe's protobuf design. |
| // (3) We have not used any proto3 specific features, such as Any or Map. This |
| // is mainly for backward compatibility purposes but we may consider using |
| // those in the future. |
| |
| // TensorProto stores serialized Tensor objects. |
| message TensorProto { |
| // The dimensions in the tensor. |
| repeated int64 dims = 1; |
| |
| // Data type |
| enum DataType { |
| UNDEFINED = 0; |
| |
| // Basic types |
| FLOAT = 1; // float |
| INT32 = 2; // int |
| BYTE = 3; // byte, when deserialized, is going to be restored as uint8 |
| STRING = 4; // string |
| |
| // Less-commonly used data types |
| BOOL = 5; // bool |
| UINT8 = 6; // uint8_t |
| INT8 = 7; // int8_t |
| UINT16 = 8; // uint16_t |
| INT16 = 9; // int16_t |
| INT64 = 10; // int64_t |
| FLOAT16 = 12; // at::Half |
| DOUBLE = 13; // double |
| |
| ZERO_COLLISION_HASH = 14; // zero-collision hash state |
| REBATCHING_BUFFER = 15; // rebatching buffer |
| } |
| // The type of the deserialized tensor data |
| optional DataType data_type = 2 [ default = FLOAT ]; |
| |
| // The format of the serialized data. |
| enum SerializationFormat { |
| // FMT_PROTOBUF is the existing serialization format from before the |
| // data_format field was introduced. Most data types are serialized using |
| // the protobuf typed fields, although in some cases raw little endian data |
| // is stored in the byte_data field instead. |
| FMT_PROTOBUF = 0; |
| // bfloat16 data stored in the raw_data field. |
| FMT_BFLOAT16 = 1; |
| } |
| // data_format is a SerializationFormat enum value. |
| // However, we intentionally store it as an integer value so we can |
| // distinguish between old messages that do not have a data_format value vs |
| // new messages that have a SerializationFormat value that we don't |
| // understand. If we stored this as an enum then protobuf would deserialize |
| // both of these cases the same way. |
| optional uint32 data_format = 15 [ default = 0 ]; |
| |
| // For float |
| repeated float float_data = 3 [ packed = true ]; |
| // For int32, uint8, int8, uint16, int16, bool, and float16 |
| // Note about float16: in storage we will basically convert float16 byte-wise |
| // to unsigned short and then store them in the int32_data field. |
| // Note: storing int8 and uint8 values in this field unfortunately results in |
| // larger serialized data than necessary, as protobuf's varint encoding |
| // scheme requires 2 bytes to represent int8 and uint8 values that have the |
| // MSB set. |
| repeated int32 int32_data = 4 [ packed = true ]; |
| // For bytes |
| optional bytes byte_data = 5; |
| // For strings |
| repeated bytes string_data = 6; |
| // For double |
| repeated double double_data = 9 [ packed = true ]; |
| // For int64 |
| repeated int64 int64_data = 10 [ packed = true ]; |
| // store the raw data, contents are serialized as little-endian |
| optional bytes raw_data = 13; |
| |
| // Optionally, a name for the tensor. |
| optional string name = 7; |
| |
| // Optionally, a TensorProto can contain the details about the device that |
| // it was serialized from. This is useful in cases like snapshotting a whole |
| // workspace in a multi-GPU environment. |
| optional DeviceOption device_detail = 8; |
| |
| // When loading from chunks this is going to indicate where to put data in the |
| // full array. When not used full data have to be present |
| message Segment { |
| required int64 begin = 1; |
| required int64 end = 2; |
| } |
| optional Segment segment = 11; |
| |
| // Field numbers 12 and 14 were previously used for now-deprecated fields. |
| // reserved 12, 14; |
| } |
| |
| message QTensorProto { |
| repeated int64 dims = 1; |
| required int32 precision = 2; |
| required double scale = 3; |
| required double bias = 4; |
| required bool is_signed = 5; |
| repeated int32 data = 6 [ packed = true ]; |
| optional string name = 7; |
| optional TensorProto.DataType data_type = 8 [ default = INT32 ]; |
| |
| // Multi-group quantization params |
| repeated double scales = 9; |
| repeated double biases = 10; |
| |
| // Multi-group quantization needed, indicates in which dimension |
| // we do the "group wise quantization" |
| optional int32 axis = 11; |
| |
| // It should be true if it is a multi-group quantization proto |
| optional bool is_multiparam = 12 [ default = false ]; |
| } |
| |
| // TensorProtos stores multiple TensorProto objects in one single proto. This |
| // is useful for small tensors; For anything big, consider using a DB for |
| // storage. |
| message TensorProtos { |
| repeated TensorProto protos = 1; |
| } |
| |
| message TensorShape { |
| repeated int64 dims = 1; |
| optional TensorProto.DataType data_type = 2 [ default = FLOAT ]; |
| repeated int32 unknown_dims = 3; |
| optional bool unknown_shape = 4 [ default = false ]; |
| optional string name = 5; |
| } |
| |
| message TensorShapes { |
| repeated TensorShape shapes = 1; |
| } |
| |
| // TensorBoundShape is used to save bound shape inference result for a tensor. |
| // TensorBoundShape.shape is inferred shape for this tensor. |
| // TensorBoundShape.dimType contains dim_type for every dimension. |
| // eg: for dimension i, shape.dims[i] is the inferred shape and |
| // dim_type[i] is corresponding dim_type. |
| message TensorBoundShape { |
| optional TensorShape shape = 1; |
| enum DimType { |
| UNKNOWN = 0; // unknown |
| CONSTANT = 1; // constant |
| // batch, corresponding dimension is batch_size |
| BATCH = 2; |
| // batch_of_feature_max, |
| // corresponding shape is inferred_feature_length * batch_size |
| BATCH_OF_FEATURE_MAX = 3; |
| // batch_of_feature_max_default |
| // corresponding shape is default_feature_length * batch_size |
| BATCH_OF_FEATURE_MAX_DEFAULT = 4; |
| // feature_max, corresponding shape is inferred_feature_length |
| FEATURE_MAX = 5; |
| // feature_max_default, corresponding shape is default_feature_length |
| FEATURE_MAX_DEFAULT = 6; |
| } |
| repeated DimType dim_type = 2; // dim_type.size() == shape.dims.size() |
| optional string name = 3; |
| // a flag to indicate whether the shape is final and cannot be changed |
| // eg: input/output of in-place ops |
| optional bool shape_is_final = 4; |
| } |
| |
| message TensorBoundShapes { |
| repeated TensorBoundShape shapes = 1; |
| optional int64 max_batch_size = 2; |
| optional int64 max_feature_len = 3; |
| } |
| |
| message AOTConfig { |
| required int64 max_batch_size = 1; |
| required int64 max_seq_size = 2; |
| required bool in_batch_broadcast = 3; |
| optional string onnxifi_blacklist_ops = 4; |
| optional int32 onnxifi_min_ops = 5; |
| } |
| |
| // A named argument containing either singular float, integer and string |
| // values, or repeated float, int and string arrays. |
| message Argument { |
| optional string name = 1; |
| |
| optional float f = 2; |
| optional int64 i = 3; |
| optional bytes s = 4; |
| optional TensorProto t = 10; |
| optional NetDef n = 8; |
| |
| repeated float floats = 5; |
| repeated int64 ints = 6; |
| repeated bytes strings = 7; |
| repeated TensorProto tensors = 11; |
| repeated NetDef nets = 9; |
| repeated QTensorProto qtensors = 12; |
| } |
| |
| // DeviceType that Caffe2 currently supports. |
| // Note: if you add a device type, make sure you add the corresponding device |
| // line in the DeviceTypeName() function in caffe2/utils/proto_utils.cc |
| // and update c10/core/DeviceType.h |
| enum DeviceTypeProto { |
| PROTO_CPU = 0; // In default, we will use CPU. |
| PROTO_CUDA = 1; // CUDA. |
| PROTO_MKLDNN = 2; // Reserved for explicit MKLDNN |
| PROTO_OPENGL = 3; // OpenGL |
| PROTO_OPENCL = 4; // OpenCL |
| PROTO_IDEEP = 5; // IDEEP. |
| PROTO_HIP = 6; // AMD HIP |
| PROTO_FPGA = 7; // FPGA |
| PROTO_ORT = 8; // ONNX Runtime |
| PROTO_XLA = 9; // XLA / TPU |
| PROTO_MPS = 10; // MPS |
| // Change the following number if you add more devices in the code. |
| PROTO_COMPILE_TIME_MAX_DEVICE_TYPES = 11; |
| } |
| |
| // Device-specific options. We do not distinguish DeviceOption protos for |
| // different DeviceTypes, so currently all devices share the same DeviceOption |
| // proto. Fields that are specific to a device type is ignored if the type does |
| // not match. |
| // Note: if you add fields to the DeviceOption, make sure you add the |
| // corresponding changes to IsSameDevice() function in utils/proto_utils.{h,cc}. |
| message DeviceOption { |
| // [general] Options that need to be carried out before running the execution. |
| // optional DeviceType device_type = 1 [ default = CPU ]; |
| optional int32 device_type = 1 [ default = 0 ]; // 0 is CPU. |
| // [general] Used together with device_type to identify the exact device |
| optional int32 device_id = 2; |
| // [general] The random seed to start the device random number generator with. |
| optional uint32 random_seed = 3; |
| // [general] What node this op should execute on. |
| // Used for net transformation purposes. Must be empty at execution time. |
| optional string node_name = 4; |
| // [CPU and Linux specific] NUMA node id |
| optional int32 numa_node_id = 5; |
| // [general] Extra information passed, not used at execution time currently. |
| repeated string extra_info = 6; |
| } |
| |
| // Operator Definition. |
| message OperatorDef { |
| repeated string input = 1; // the name of the input blobs |
| repeated string output = 2; // the name of output top blobs |
| optional string name = 3; // the operator name. This is optional. |
| // the operator type. This is needed to create the object from the operator |
| // registry. |
| optional string type = 4; |
| // arg is for the argument defined in operator schema |
| repeated Argument arg = 5; |
| |
| // The device option that the operator should run under. |
| optional DeviceOption device_option = 6; |
| |
| // Optionally, one can specify an engine when there are multiple |
| // implementations available simultaneously for one device type. |
| // If one specifies an engine but that engine does not exist in the compiled |
| // Caffe2 binary, Caffe2 will fall back to the default engine of that device |
| // type. |
| optional string engine = 7; |
| |
| // Additional 'fake' inputs used for expressing control dependencies |
| // in the operator graph. This can be used to ensure that an |
| // operator does not run until another operator is ready, for e.g. |
| // scheduling control. These are not passed as actual inputs to the |
| // Operator implementation, and are only used by the Net class for |
| // scheduling purposes. |
| repeated string control_input = 8; |
| |
| // is_gradient_op argument is only used as a hint in shape inference |
| // and has no runtime significance |
| optional bool is_gradient_op = 9 [ default = false ]; |
| |
| // debug information associated with the construction of the operator. |
| // This is an optional string with no assumed characteristics as |
| // operators can be constructed in any language. |
| optional string debug_info = 10; |
| |
| // the domain of the operator to help runtime distinguish which operator |
| // library this OperatorDef refers to. For example, both caffe2 and aten |
| // has `Add` operator, with domain, we can easily decide which operator |
| // to execute. to support multiple operator libs, we use domain to |
| // distinguish which operator lib we refer to: |
| // - "caffe2" means this uses Caffe2 operator library |
| // - "aten" means this uses ATen operator library |
| // - "c10" is for the fused library |
| // - if the domain is missing or empty, we use "caffe2", this is for |
| // legacy models, new serializer should always export an OperatorDef |
| // with domain and op_version |
| optional string domain = 11; |
| // each operator is has its own version number. |
| // operator version information |
| // each time, we change the API or semantics of the operator, |
| // we bump the version for the operator. |
| // the runtime system should check the op_version of each OperatorDef |
| // and decide it should reject or accept the model |
| optional int64 op_version = 12; |
| } |
| |
| // MapFieldEntry follows the pattern for cross-proto-version maps. |
| // See https://developers.google.com/protocol-buffers/docs/proto3#maps |
| message MapFieldEntry { |
| required string key = 1; |
| required string val = 2; |
| }; |
| |
| // Used to hold backend-specific options. |
| message BackendOptions { |
| // Name of the backend that the specified options apply to. |
| required string backend_name = 1; |
| // Flexible map for passing in the options. |
| repeated MapFieldEntry option = 2; |
| }; |
| |
| // Partition definition. |
| message PartitionInfo { |
| // Name of the partition. |
| required string name = 1; |
| |
| // A list of logic device ID, indicating which devices this partition |
| // can be executed on. If empty, it means the partition won't run on |
| // device but on host CPU instead. |
| repeated int32 device_id = 2; |
| |
| // Extra debug info. |
| optional string extra_info = 3; |
| |
| // Flexible map for passing options specific to a backend. |
| repeated BackendOptions backend_options = 4; |
| } |
| |
| // Network definition. |
| message NetDef { |
| optional string name = 1; // the network's name |
| // Operators that the network contains. |
| // Note: this is not named "operator" because that is a reserved word in C++. |
| repeated OperatorDef op = 2; |
| |
| // The type of network that the net should be run with. This routes the |
| // network instantiation to different execution modes. The default mode, |
| // "simple", runs the operators in a sequential way as the original Caffe |
| // implementation does. |
| optional string type = 3; |
| |
| // the number of workers, if the operators in the network is to be carried out |
| // in parallel. |
| // Note: This is to be deprecated. Using the arg field with "num_workers" as |
| // key. |
| // Note 2: The old uses of this were never actually cleaned up |
| optional int32 num_workers = 4; |
| |
| // The device option for the network. If a network has a specific device |
| // option and one of its operators does not have it set, we will copy over the |
| // device option to the operator. This allows us to basically avoid putting |
| // device options at every operator. |
| optional DeviceOption device_option = 5; |
| |
| repeated Argument arg = 6; |
| |
| // Two optional fields to declare external input and output of a net. |
| // If these two are set, when a net is created, we will sanity check for |
| // every op whether its input is declared (either as an external input, |
| // or as an intermediate blob created by one of the ops), and sanity check |
| // if all blobs in external_output are produced. |
| // |
| // In cases of memory optimization, declaring external_input and |
| // external_output also ensures that storage of these blobs are persistent: |
| // for any blob in external_input and external_output, after a network run |
| // finishes, their content are actually the right content. Any intermediate |
| // blobs' contents may be overwritten. |
| repeated string external_input = 7; |
| repeated string external_output = 8; |
| |
| // Partitioning info, indexed by partition names. |
| repeated PartitionInfo partition_info = 9; |
| } |
| |
| // ExecutionStep is actually a sort-of-hacky way we simulate iteration right |
| // now. |
| message ExecutionStep { |
| // ExecutionStep should either contain a set of substeps, or a set of |
| // network names to run in this execution step. They should NOT both be set |
| // at the same time. |
| optional string name = 1; |
| // An execution step could be recursive, in which it involves a set of |
| // substeps. |
| repeated ExecutionStep substep = 2; |
| // Alternatively, an execution step could involve one or more networks. |
| // Note that you cannot have both substeps and networks. Choose one. |
| // Note that an execution step refers networks by their name. The actual |
| // network definition of the same name should be included in the network field |
| // of the plan. The reason is that a network object might hold internal states |
| // (think of a data layer), so we want to have the same network object that |
| // multiple steps could ask to run. |
| repeated string network = 3; |
| // Number of iterations to run this step. The substeps or the networks |
| // specified will be run sequentially, and one sequential run is considered |
| // one iteration. If this is not set, the number of iterations is assumed to |
| // be 1. |
| optional int64 num_iter = 4; |
| |
| // Criteria network specifies a single output (TensorCPU<bool>) of |
| // size (1), is run on every iteration by the executor, and |
| // execution terminates when the output[0] is `false`. |
| optional string criteria_network = 5 [ deprecated = true ]; |
| |
| // DEPRECATED. Use `run_every_ms`. |
| optional string report_net = 7; |
| optional int32 report_interval = 8; |
| |
| // If provided, execute this step at every time interval (in millisecs) |
| // while its sibiling execution steps execute in parallel. This step is |
| // guaranteed to run at least once after all non-interval siblings finished. |
| optional int64 run_every_ms = 11; |
| |
| // If false or not set, execute sub-steps serially. |
| // If true, execute all substeps concurrently, each one in a separate thread. |
| optional bool concurrent_substeps = 6; |
| |
| // Name of a scalar boolean tensor. |
| // ES checks this blob AFTER every substeps/subnets. |
| // If specified, and the value is true, then ES will skip the rest and return |
| // immediately. |
| // This means that the report_net and the first step will always be called. |
| // Use cases: |
| // 1) the first substep stops the rest if data condition not met |
| // 2) the first substep decide which of the rest of the steps should be run. |
| // 3) external control |
| // |
| // ** It is the user's responsibility to not to put this blob in race |
| // conditions. |
| // ** For example when setting this blob in concurrent substeps |
| optional string should_stop_blob = 9; |
| |
| // if only_once is true, this step will only be executed once. this ONLY takes |
| // effect when using should_stop_blob |
| optional bool only_once = 10; |
| |
| // Whether to create a child workspace for this step. |
| // If yes, the workflow and nets are re-created every time this step is run. |
| optional bool create_workspace = 12; |
| |
| // How many copies of the children execution steps to run concurrently. |
| optional int32 num_concurrent_instances = 13; |
| } |
| |
| message PlanDef { |
| // All the networks that are used in this execution. Note that networks should |
| // be ordered in the way they are executed, i.e. for a layer in a network, all |
| // its input blobs should already have been initialized by the layers or |
| // networks defined before it. |
| optional string name = 1; |
| // The networks that are going to be used in this plan. |
| repeated NetDef network = 2; |
| repeated ExecutionStep execution_step = 3; |
| } |
| |
| // Protobuf format for blobs that are not Tensors. We use a key to store the |
| // type of the blob. For example for a serialized DBProto, the type should |
| // be "DBReader" and the content should be a serialized DBProto object. |
| message BlobProto { |
| optional string name = 1; |
| optional string type = 2; |
| optional TensorProto tensor = 3; |
| optional bytes content = 4; |
| optional QTensorProto qtensor = 5; |
| // If blob is not Tensor and is divided into chunks, content_num_chunks |
| // contains number of chunks, into which blob was divided. |
| optional int32 content_num_chunks = 6; |
| optional int32 content_chunk_id = 7; |
| } |
| |
| // Protobuf format to serialize DBReader. |
| message DBReaderProto { |
| // The name for the DB object in the workspace. |
| optional string name = 1; |
| // The source of the DB |
| optional string source = 2; |
| // The type of the DB |
| optional string db_type = 3; |
| // The current key of the DB if the DB supports seeking. |
| optional string key = 4; |
| } |
| |
| message BlobSerializationOptions { |
| // This set of options will only apply to blobs whose name matches this |
| // pattern. If the blob_name_pattern is empty then it will be treated as |
| // matching all blobs. |
| optional string blob_name_regex = 1; |
| |
| // Note: |
| // - a chunk_size of 0 means "use the default chunk size". The default chunk |
| // size is controlled by the --caffe2_tensor_chunk_size command line flag. |
| // - a chunk size of -1 means to disable chunking, and serialize the blob in |
| // a single chunk. |
| optional int64 chunk_size = 2; |
| |
| enum FloatFormat { |
| // Use the current default serialization format, as chosen by the |
| // current version of the code. (At the time of writing this is PROTOBUF) |
| FLOAT_DEFAULT = 0; |
| // Store the data in the TensorProto's float_data field |
| FLOAT_PROTOBUF = 1; |
| // Serialize float values as bfloat16. Note that this conversion is lossy. |
| FLOAT_BFLOAT16 = 2; |
| } |
| |
| // Settings for how to serialize tensors containing float values |
| optional FloatFormat float_format = 3; |
| } |
| |
| message SerializationOptions { |
| // A set of options to use when serialializing blobs. |
| // This is a list, sorted from highest to lowest precedence. When |
| // serializing a blob, the first entry whose blob_name_pattern matches the |
| // blob name will be used. |
| repeated BlobSerializationOptions options = 1; |
| } |