blob: c5ab8bd2e4759a06602ce2c04607751ffef38bcf [file] [log] [blame]
#include "caffe2/sgd/learning_rate_adaption_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(
LearningRateAdaption,
LearningRateAdaptionOp<float, CPUContext>);
OPERATOR_SCHEMA(LearningRateAdaption)
.NumInputs(3)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Learning Rate Adaption is an operation that perform one iteration of
gradient descent based on learning rate:
lr(k) = lr(k-1) - lr_alpha * df(k-1)/dlr,
where df(k-1)/dlr is the gradient of objective function f on lr, and
lr_alpha is a learning rate hyperparameter. It can be prove that
df(k-1)/dlr equals INNERPRODUCT(grad(k-1), -grad(k-2)), where grad(k-1) is
the grad of f(k-1) on parameters. When the argument
"normalized_lr_adaption" is false, we simply perform the
following update:
lr(k) = lr(k-1) - lr_alpha * INNERPRODUCT(grad(k-1), grad(k-2)).
If we set "normalized_lr_adaption" to be true, we do not directly apply
INNERPRODUCT(grad(k-1), -grad(k-2)) as the grad. Instead, we perform the
following update:
lr(k) = lr(k-1) + lr_alpha * cosineSimilarity(grad(k-1), grad(k-2)).
)DOC")
.Arg(
"lr_alpha",
"the learning rate for performing gradient descent on learning rate lr")
.Arg(
"normalized_lr_adaption",
"whether to apply normalized lr adaption or not")
.Input(0, "lr", "Learning rate")
.Input(1, "grad", "Gradient computed")
.Input(2, "effgrad", "The effective grad")
.Output(0, "output_lr", "Updated learning rate");
NO_GRADIENT(LearningRateAdaption);
} // namespace caffe2