| #pragma once |
| |
| #include <unordered_set> |
| #include "caffe2/core/net.h" |
| #include "caffe2/core/tensor.h" |
| #include "caffe2/predictor/predictor_config.h" |
| |
| namespace caffe2 { |
| |
| class TORCH_API Predictor { |
| public: |
| using TensorList = std::vector<TensorCPU>; |
| using TensorMap = std::unordered_map<std::string, TensorCPU>; |
| |
| Predictor( |
| const NetDef& init_net, |
| const NetDef& run_net, |
| Workspace* parent = nullptr, |
| bool run_init = true, |
| int optimization = 1); |
| |
| Predictor(PredictorConfig config); |
| |
| virtual ~Predictor() {} |
| |
| // Executes `run_net` on the inputs. |
| // The first `inputs.size()` inputs from run_net::external_inputs |
| // are shared with the data in `inputs`. |
| |
| // Precondition: |
| // inputs.size() <= run_net_.external_inputs.size() |
| |
| // Postcondition: |
| // outputs->size() == run_net.external_inputs.size() |
| |
| // NOTE: output is a part of thread local workspace |
| // and is only valid until the next predictor execution. |
| |
| // Returns true on success |
| virtual bool operator()(const TensorList& inputs, TensorList* outputs); |
| |
| // Similar to run, but consumes a map of name to tensor as input |
| bool operator()(const TensorMap& inputs, TensorList* outputs); |
| |
| // Similar to the other run fns, except inputs and outputs are both maps of |
| // string name to tensor. |
| bool operator()(const TensorMap& inputs, TensorMap* outputs); |
| |
| const NetDef& def() const { |
| return *config_.predict_net; |
| }; |
| |
| Workspace* ws() { |
| return config_.ws.get(); |
| }; |
| |
| const std::vector<std::string>& input_names() const { |
| return config_.input_names; |
| } |
| |
| const std::vector<std::string>& output_names() const { |
| return config_.output_names; |
| } |
| |
| private: |
| bool run_map_workspace(const TensorMap& inputs); |
| |
| protected: |
| PredictorConfig config_; |
| }; |
| } // namespace caffe2 |