| |
| |
| |
| |
| |
| from caffe2.python import schema |
| from caffe2.python.layers.layers import ModelLayer |
| |
| import numpy as np |
| |
| |
| class RandomFourierFeatures(ModelLayer): |
| """ |
| Implementation of random fourier feature map for feature processing. |
| |
| Applies sqrt(2 / output_dims) * cos(wx+b), where: |
| output_dims is the output feature dimensions, and |
| wx + b applies FC using randomized, fixed weight and bias parameters |
| |
| For more information, see the original paper: |
| https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf |
| |
| Inputs: |
| output_dims -- output feature dimensions |
| sigma -- bandwidth for the Gaussian kernel estimator |
| w_init -- initialization options for weight parameter |
| b_init -- initialization options for bias parameter |
| |
| """ |
| def __init__( |
| self, |
| model, |
| input_record, |
| output_dims, |
| sigma, # bandwidth |
| w_init=None, |
| b_init=None, |
| name='random_fourier_features', |
| **kwargs): |
| |
| super(RandomFourierFeatures, self).__init__(model, name, input_record, |
| **kwargs) |
| assert isinstance(input_record, schema.Scalar), "Incorrect input type" |
| |
| input_dims = input_record.field_type().shape[0] |
| assert input_dims >= 1, "Expected input dimensions >= 1, got %s" \ |
| % input_dims |
| self.output_dims = output_dims |
| assert self.output_dims >= 1, "Expected output dimensions >= 1, got %s" \ |
| % self.output_dims |
| |
| self.output_schema = schema.Scalar( |
| (np.float32, (self.output_dims, )), |
| self.get_next_blob_reference('output') |
| ) |
| |
| assert sigma > 0.0, "Expected bandwidth > 0, got %s" % sigma |
| |
| # Initialize train_init_net parameters |
| w_init = w_init if w_init else ( |
| 'GaussianFill', {'mean': 0.0, 'std': 1.0 / sigma} |
| ) |
| |
| b_init = b_init if b_init else ( |
| 'UniformFill', {'min': 0.0, 'max': 2 * np.pi} |
| ) |
| |
| self.w = self.create_param(param_name='w', |
| shape=[self.output_dims, input_dims], |
| initializer=w_init, |
| optimizer=model.NoOptim) |
| |
| self.b = self.create_param(param_name='b', |
| shape=[self.output_dims], |
| initializer=b_init, |
| optimizer=model.NoOptim) |
| |
| def add_ops(self, net): |
| # Random features: wx + b |
| cosine_arg = net.FC(self.input_record.field_blobs() + [self.w, self.b], |
| net.NextScopedBlob("cosine_arg")) |
| |
| # Apply cosine to new vectors |
| new_feature_vec = net.Cos([cosine_arg], |
| net.NextScopedBlob('new_feature_vec')) |
| |
| # Multiply each element in vector by sqrt(2/D) |
| scale = np.sqrt(2.0 / self.output_dims) |
| net.Scale([new_feature_vec], |
| self.output_schema.field_blobs(), |
| scale=scale) |