| # Copyright (c) 2016-present, Facebook, Inc. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ############################################################################## |
| |
| |
| |
| |
| |
| |
| import unittest |
| from caffe2.python import workspace, brew, model_helper |
| from caffe2.python.modeling.gradient_clipping import GradientClipping |
| |
| import numpy as np |
| |
| |
| class GradientClippingTest(unittest.TestCase): |
| def test_gradient_clipping_by_norm(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| net_modifier = GradientClipping( |
| grad_clip_method='by_norm', |
| clip_norm_type='l2_norm', |
| clip_threshold=0.1, |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 2 * (3 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 17) |
| |
| def test_gradient_clipping_by_norm_l1_norm(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| net_modifier = GradientClipping( |
| grad_clip_method='by_norm', |
| clip_norm_type='l1_norm', |
| clip_threshold=0.1, |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 2 * (2 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 15) |
| |
| def test_gradient_clipping_by_norm_using_param_norm(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| net_modifier = GradientClipping( |
| grad_clip_method='by_norm', |
| clip_norm_type='l2_norm', |
| clip_threshold=0.1, |
| use_parameter_norm=True, |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 2 * (5 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 21) |
| |
| def test_gradient_clipping_by_norm_compute_norm_ratio(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| net_modifier = GradientClipping( |
| grad_clip_method='by_norm', |
| clip_norm_type='l2_norm', |
| clip_threshold=0.1, |
| use_parameter_norm=True, |
| compute_norm_ratio=True, |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 2 * (6 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 23) |
| |
| def test_gradient_clipping_by_value(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| clip_max = 1e-8 |
| clip_min = 0 |
| net_modifier = GradientClipping( |
| grad_clip_method='by_value', |
| clip_max=clip_max, |
| clip_min=clip_min, |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 2 * (1 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 13) |
| |
| fc1_w_grad = workspace.FetchBlob('fc1_w_grad') |
| self.assertLessEqual(np.amax(fc1_w_grad), clip_max) |
| self.assertGreaterEqual(np.amin(fc1_w_grad), clip_min) |
| |
| def test_gradient_clipping_by_norm_including_blobs(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| net_modifier = GradientClipping( |
| grad_clip_method='by_norm', |
| clip_norm_type='l2_norm', |
| clip_threshold=0.1, |
| blobs_to_include=['fc1_w'], |
| blobs_to_exclude=None |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 1 * (3 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 14) |
| |
| def test_gradient_clipping_by_norm_excluding_blobs(self): |
| model = model_helper.ModelHelper(name="test") |
| data = model.net.AddExternalInput("data") |
| fc1 = brew.fc(model, data, "fc1", dim_in=4, dim_out=2) |
| |
| # no operator name set, will use default |
| fc2 = brew.fc(model, fc1, "fc2", dim_in=2, dim_out=1) |
| |
| sigm = model.net.Sigmoid(fc2, 'sigm') |
| sq = model.net.SquaredL2Distance([sigm, 'label'], 'sq') |
| loss = model.net.SumElements(sq, 'loss') |
| |
| grad_map = model.AddGradientOperators([loss]) |
| |
| grad_map_for_param = {key: grad_map[key] for key in ['fc1_w', 'fc2_w']} |
| |
| net_modifier = GradientClipping( |
| grad_clip_method='by_norm', |
| clip_norm_type='l2_norm', |
| clip_threshold=0.1, |
| blobs_to_include=None, |
| blobs_to_exclude=['fc1_w', 'fc2_w'] |
| ) |
| |
| net_modifier(model.net, grad_map=grad_map_for_param) |
| |
| workspace.FeedBlob('data', np.random.rand(10, 4).astype(np.float32)) |
| workspace.FeedBlob('label', np.random.rand(10, 1).astype(np.float32)) |
| |
| workspace.RunNetOnce(model.param_init_net) |
| workspace.RunNetOnce(model.net) |
| |
| # 5 forward ops + 6 backward ops + 0 * (3 gradient clipping ops) |
| self.assertEqual(len(model.net.Proto().op), 11) |