| |
| |
| |
| |
| |
| from caffe2.python.core import DataType, BlobReference, ScopedBlobReference |
| from caffe2.python.modeling.parameter_info import ParameterInfo |
| |
| |
| class Initializer(object): |
| ''' |
| This class abstracts out parameter creation. One can come up with a new |
| Initializer in order to implement more complex parameter initialization logic |
| ''' |
| |
| def __init__(self, operator_name=None, **kwargs): |
| self.operator_name = operator_name |
| self.operator_kwargs = kwargs |
| |
| def update(self, operator_name, kwargs): |
| if self.operator_name is not None: |
| raise Exception("Operator name overwrites are not allowed") |
| self.operator_name = operator_name |
| self.operator_kwargs = kwargs |
| |
| def create_param(self, param_name, init_net, shape): |
| param = init_net.__getattr__(self.operator_name)( |
| [], param_name, shape=shape, **self.operator_kwargs) |
| return ParameterInfo( |
| param_id=None, |
| param=param, |
| shape=shape, |
| ) |
| |
| |
| class ExternalInitializer(object): |
| ''' |
| This class is used in cases when the parameter should not be initialized by |
| the initializer, but rather provided in the workspace when param_init_net is |
| executed. |
| |
| Current version is not doing any real sanity checks to the parameter. |
| ''' |
| |
| def create_param(self, param_name, init_net, shape): |
| if isinstance(param_name, BlobReference): |
| param = BlobReference(str(param_name), init_net) |
| elif isinstance(param_name, str): |
| param = ScopedBlobReference(param_name, init_net) |
| else: |
| raise TypeError("Unsupported type for param_name") |
| # TODO(amalevich): Add operator that will check param in the workspace |
| return ParameterInfo( |
| param_id=None, |
| param=param, |
| shape=shape, |
| ) |
| |
| |
| class PseudoFP16Initializer(Initializer): |
| ''' |
| Used in cases when the parameter should be used at half (16-bit) precision |
| for compute purposes (i.e. on the forward and backward pass) but |
| needs to be stored and optimized at single (32-bit) precision so tiny |
| gradients with small learning rates don't underflow FP16 precision. |
| A 32-bit copy of the 16-bit blob is stored in the ParameterInfo. |
| This is helpful for mixed-precision training, see |
| https://arxiv.org/abs/1710.03740 for details. |
| ''' |
| def update(self, operator_name, kwargs): |
| if self.operator_name is not None: |
| raise Exception("Operator name overwrites are not allowed") |
| self.operator_name = operator_name |
| self.operator_kwargs = kwargs |
| |
| def create_param(self, param_name, init_net, shape): |
| # create master fp32 copy |
| param_fp32 = init_net.__getattr__(self.operator_name)( |
| [], param_name + "_fp32", shape=shape, |
| **self.operator_kwargs) |
| # cast to fp16 copy |
| param = init_net.FloatToHalf( |
| param_fp32, param_name) |
| |
| return ParameterInfo( |
| param_id=None, |
| param=param, |
| shape=shape, |
| blob_copy={DataType.FLOAT: param_fp32} |
| ) |
| |
| |
| class ReversePseudoFP16Initializer(Initializer): |
| ''' |
| Like PseudoFP16Initializer above, except the primary blob is taken to |
| be the 32-bit precision parameter, and the 16-bit version of the blob |
| is stored in blob_copy instead. |
| ''' |
| def update(self, operator_name, kwargs): |
| if self.operator_name is not None: |
| raise Exception("Operator name overwrites are not allowed") |
| self.operator_name = operator_name |
| self.operator_kwargs = kwargs |
| |
| def create_param(self, param_name, init_net, shape): |
| # create master fp32 copy |
| param_fp32 = init_net.__getattr__(self.operator_name)( |
| [], param_name, shape=shape, |
| **self.operator_kwargs) |
| # cast to fp16 copy |
| param_fp16 = init_net.FloatToHalf( |
| param_fp32, param_name + "_fp16") |
| |
| return ParameterInfo( |
| param_id=None, |
| param=param_fp32, |
| shape=shape, |
| blob_copy={DataType.FLOAT16: param_fp16} |
| ) |
| |
| def update_initializer(initializer_class, |
| operator_name_and_kwargs, |
| default_operator_name_and_kwargs): |
| ''' |
| A helper function to convert from operator_name_and_kwargs to new |
| object of type initializer_class. This function serves two purposes: |
| |
| 1. Support for custom initialization operators being passed in |
| 2. Allow user to specify a custom Initializer without overwriting |
| default operators used for initialization |
| |
| If initializer_class is None, creates a default initializer using |
| the Initializer class and operator_name_and_kwargs provided |
| |
| If operator_name_and_kwargs is None, uses default_operator_name_and_kwargs |
| |
| returns an instantiated Initializer object |
| ''' |
| def get_initializer_args(): |
| return ( |
| operator_name_and_kwargs or |
| default_operator_name_and_kwargs |
| ) |
| |
| if initializer_class is not None: |
| init = initializer_class(get_initializer_args()[0], |
| **get_initializer_args()[1]) |
| else: |
| init = Initializer( |
| get_initializer_args()[0], |
| **get_initializer_args()[1] |
| ) |
| return init |