blob: c00e25ec7316b1dca66a8f77d9738c170b36d625 [file] [log] [blame]
# mypy: allow-untyped-defs
import dataclasses
import functools
import inspect
import sys
import typing
import weakref
import warnings
from torchgen.model import FunctionSchema, OperatorName, SchemaKind, BaseType, ListType, BaseTy
import torch
import torch._C as _C
import torch.library as library
from torch.library import get_ctx
from .autograd import autograd_kernel_indirection, construct_autograd_kernel
import torch._library.infer_schema
from torch._library.infer_schema import infer_schema
"""
torch._custom_op is deprecated. We shipped a production-ready version of it into torch.library.
Please use those APIs instead.
"""
__all__ = ["custom_op", "CustomOp", "get_ctx"]
SUPPORTED_DEVICE_TYPE_TO_KEY = {
"cpu": "CPU",
"cuda": "CUDA",
}
# We will not let users register CustomOps with anything that could look like
# PyTorch internals to avoid confusion.
RESERVED_NS = {
"prim",
"prims",
"aten",
"at",
"torch",
"pytorch",
}
def warn_deprecated():
warnings.warn(
"torch._custom_op is deprecated and will be removed in PyTorch 2.6, please "
"use the equivalent torch.library API instead.", DeprecationWarning)
def custom_op(
qualname: str, manual_schema: typing.Optional[str] = None
) -> typing.Callable:
r"""
This API is deprecated, please use torch.library.custom_op instead
"""
warn_deprecated()
def inner(func):
if not inspect.isfunction(func):
raise ValueError(
f"custom_op(...)(func): Expected `func` to be a Python "
f"function, got: {type(func)}"
)
ns, name = parse_qualname(qualname)
validate_namespace(ns)
if func.__name__ != name:
raise ValueError(
f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
f"to have name '{name}' but got '{func.__name__}'. "
f"Please either change the name of `func` or the qualname that "
f"is passed to `custom_op`"
)
schema = infer_schema(func, mutates_args=()) if manual_schema is None else manual_schema
schema_str = f"{name}{schema}"
function_schema = FunctionSchema.parse(schema_str)
validate_schema(function_schema)
if manual_schema is not None:
validate_function_matches_schema(function_schema, func)
lib = library.Library(ns, "FRAGMENT")
lib.define(schema_str)
ophandle = find_ophandle_or_throw(ns, function_schema.name)
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True)
result.__name__ = func.__name__
result.__module__ = func.__module__
result.__doc__ = func.__doc__
library.impl(lib, result._opname, "Autograd")(
autograd_kernel_indirection(weakref.proxy(result))
)
torch._C._dispatch_set_report_error_callback(
ophandle, functools.partial(report_error_callback, weakref.proxy(result))
)
return result
return inner
# Global dictionary holding references to all CustomOp objects
# Yes, it keeps all CustomOps alive (see NOTE [CustomOp lifetime])
# Used to query the CustomOp associated with a specific C++ dispatcher operator.
# An example usage is FakeTensor: FakeTensor checks if a specific operator
# has an implementation registered via the CustomOp API.
# Indexed by qualname (e.g. aten::foo)
global_registry: typing.Dict[str, "CustomOp"] = {}
class CustomOp:
r"""
This API is deprecated, please use torch.library.custom_op instead
"""
def __init__(self, lib, cpp_ns, schema, operator_name, ophandle, *, _private_access=False):
super().__init__()
warn_deprecated()
if not _private_access:
raise RuntimeError(
"The CustomOp constructor is private and we do not guarantee "
"BC for it. Please use custom_op(...) to create a CustomOp object"
)
name = f"{cpp_ns}::{operator_name}"
self._schema = schema
self._cpp_ns = cpp_ns
self._lib: library.Library = lib
self._ophandle: _C._DispatchOperatorHandle = ophandle
# Has the name of the op, e.g. "foo". We cache here for convenience.
self._opname: str = operator_name
# this is _opname but with namespace. e.g. "custom::foo"
self._qualname: str = name
self.__name__ = None # mypy requires this
# NB: Some of these impls are registered as kernels to DispatchKeys.
# Modifying the _impls dict directly won't do anything in that case.
self._impls: typing.Dict[str, typing.Optional[FuncAndLocation]] = {}
# See NOTE [CustomOp autograd kernel indirection]
self._registered_autograd_kernel_indirection = False
global_registry[self._qualname] = self
def _register_autograd_kernel_indirection(self):
assert not self._registered_autograd_kernel_indirection
self._lib.impl(self._opname, autograd_kernel_indirection(weakref.proxy(self)), "Autograd")
self._registered_autograd_kernel_indirection = True
# Records the impl and the source location in self._impls
# Note that this doesn't cause torch.library to use the impl, that
# needs to be done in a separate self._lib.impl call.
def _register_impl(self, kind, func, stacklevel=2):
if self._has_impl(kind):
func_and_location = self._impls[kind]
assert func_and_location is not None # Pacify mypy
location = func_and_location.location
raise RuntimeError(
f"Attempting to register a {kind} impl for operator {self._qualname} "
f"that already has a {kind} impl registered from Python at "
f"{location}. This is not supported."
)
frame = inspect.getframeinfo(sys._getframe(stacklevel))
location = f"{frame.filename}:{frame.lineno}"
self._impls[kind] = FuncAndLocation(func, location)
def _get_impl(self, kind):
return self._impls[kind]
def _has_impl(self, kind):
return kind in self._impls
def _destroy(self):
# NOTE: [CustomOp lifetime]
# A CustomOp, once created, lives forever. The mechanism is that the
# global registry holds a reference to it. However, to make testing
# easier, we want to be able to destroy CustomOp objects.
# CustomOp._destroy does the job, though it leaves the CustomOp
# in a garbage state.
del self._lib
opnamespace = getattr(torch.ops, self._cpp_ns)
if hasattr(opnamespace, self._opname):
delattr(opnamespace, self._opname)
del global_registry[self._qualname]
def __repr__(self):
return f'<CustomOp(op="{self._qualname}")>'
def __call__(self, *args, **kwargs):
# Bypass torch.ops.* and directly do OperatorHandle::callBoxed.
# Using torch.ops.* is a bit of a pain (it can be slow and it has lifetime
# issues from caching operators that make testing CustomOp difficult).
result = _C._dispatch_call_boxed(self._ophandle, *args, **kwargs)
return result
def impl(
self, device_types: typing.Union[str, typing.Iterable[str]], _stacklevel=2,
) -> typing.Callable:
r"""
This API is deprecated, please use torch.library.custom_op instead
"""
if isinstance(device_types, str):
device_types = [device_types]
for device_type in device_types:
validate_device_type(device_type)
def inner(f):
for device_type in set(device_types):
self._check_doesnt_have_library_impl(device_type)
self._register_impl(device_type, f, stacklevel=_stacklevel)
dispatch_key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type]
library.impl(self._lib, self._opname, dispatch_key)(f)
return f
return inner
def _check_doesnt_have_library_impl(self, device_type):
if self._has_impl(device_type):
return
key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type]
if _C._dispatch_has_computed_kernel_for_dispatch_key(self._qualname, key):
raise RuntimeError(
f"impl(..., device_types={device_type}): the operator {self._qualname} "
f"already has an implementation for this device type via a "
f"pre-existing torch.library or TORCH_LIBRARY registration.")
def impl_factory(self) -> typing.Callable:
r"""Register an implementation for a factory function."""
def inner(f):
self._register_impl("factory", f)
library.impl(self._lib, self._opname, "BackendSelect")(f)
return f
return inner
def impl_abstract(self, _stacklevel=2) -> typing.Callable:
r"""
This API is deprecated, please use torch.library.custom_op instead
"""
def inner(f):
self._check_doesnt_have_library_meta_impl()
self._register_impl("abstract", f, stacklevel=_stacklevel)
location = self._get_impl("abstract").location
qualname = self._qualname
# Handle DispatchKey.Meta registration
@functools.wraps(f)
def f_with_ctx(*args, **kwargs):
def error_on_ctx():
raise RuntimeError(
f"Attempted to call get_ctx() for the meta implementation "
f"for {qualname}."
f"You have presumably called get_ctx() because the operator "
f"has a data-dependent output shape; if so, there is no "
f"such meta implementation and this error is the correct "
f"behavior. Otherwise, please remove the call to get_ctx() "
f"in the implementation registered with impl_abstract "
f"at {location}"
)
with torch._library.fake_impl.set_ctx_getter(error_on_ctx):
return f(*args, **kwargs)
self._lib.impl(self._opname, f_with_ctx, "Meta")
return f
return inner
def _check_can_register_backward(self):
def error(detail):
raise RuntimeError(
f"Cannot use torch._custom_ops APIs to register backward "
f"formula for {detail}. Got operator "
f"{self._qualname} with schema: {schema}"
)
schema = self._schema
if schema.kind() != SchemaKind.functional:
error("non-functional operator")
rets = schema.returns
if not schema.returns:
error("operator with no returns")
assert len(rets) > 0
is_non_mutating_view = any(
r.annotation is not None and not r.annotation.is_write for r in rets
)
if is_non_mutating_view:
error("operator that returns views")
# We make assumptions about the schema's return types.
allowed_return_types = {
BaseType(BaseTy.int): "int",
BaseType(BaseTy.SymInt): "SymInt",
BaseType(BaseTy.bool): "bool",
BaseType(BaseTy.float): "float",
BaseType(BaseTy.Tensor): "Tensor",
ListType(BaseType(BaseTy.Tensor), None): "List[Tensor]",
}
for ret in schema.returns:
if ret.type in allowed_return_types:
continue
error(f"operator with return not in {list(allowed_return_types.values())} (got {ret.type})")
def _check_doesnt_have_library_autograd_impl(self):
if self._registered_autograd_kernel_indirection:
return
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"):
raise RuntimeError(
f"impl_backward/impl_save_for_backward: the operator {self._qualname} "
f"already has an implementation for this device type via a "
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd."
f"CompositeImplicitAutograd operators do not need an autograd formula; "
f"instead, the operator will decompose into its constituents and those "
f"can have autograd formulas defined on them.")
# We can improve this by adding "all Autograd<BACKEND> keys", but
# realistically people will just be using this API for CPU/CUDA for now.
for key in ["Autograd", "AutogradCPU", "AutogradCUDA"]:
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, key):
raise RuntimeError(
f"impl_backward/impl_save_for_backward: "
f"the operator {self._qualname} already has an Autograd kernel "
f"registered to DispatchKey::{key} vi a pre-existing "
f"torch.library or TORCH_LIBRARY registration. Please either "
f"remove those registrations or don't use the torch._custom_ops APIs")
def _check_doesnt_have_library_meta_impl(self):
if self._has_impl("abstract"):
return
# If the user's operator is CompositeExplicitAutograd,
# allow them to impl_abstract. This is being pragmatic
# (existing custom ops may have CompositeExplicitAutograd
# registration that don't work with Meta kernels, so this
# gives them an escape hatch).
if (
_C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeExplicitAutograd")
and not _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta")
):
return
# Otherwise, if the user's already has a Meta kernel or their
# op is CompositeImplicitAutograd or some other alias dispatch key,
# raise.
# Special case for CompositeImplicitAutograd
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"):
raise RuntimeError(
f"impl_abstract(...): the operator {self._qualname} "
f"already has an implementation for this device type via a "
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd."
f"CompositeImplicitAutograd operators do not need an abstract impl; "
f"instead, the operator will decompose into its constituents and those "
f"can have abstract impls defined on them.")
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta"):
raise RuntimeError(
f"impl_abstract(...): the operator {self._qualname} "
f"already has an DispatchKey::Meta implementation via a "
f"pre-existing torch.library or TORCH_LIBRARY registration. "
f"Please either remove that registration or don't call impl_abstract.")
# NOTE ["backward", "save_for_backward", and "autograd"]
# As a part of the explicit autograd API, a user must provide us
# a "save_for_backward" function and a "backward" function.
# When both of these have been provided, then we automatically
# construct the "autograd" kernel.
def _register_autograd_kernel(self):
assert self._has_impl("backward")
assert self._has_impl("save_for_backward")
kernel = construct_autograd_kernel(
self._schema,
self._output_differentiability,
self,
get_op(self._qualname),
self._get_impl("save_for_backward").func,
self._get_impl("backward").func)
self._register_impl("autograd", kernel)
def impl_save_for_backward(self, _stacklevel=2):
r"""Register a function that tells us what to save for backward.
Please see impl_backward for more details.
"""
def inner(f):
self._check_can_register_backward()
self._check_doesnt_have_library_autograd_impl()
if not self._registered_autograd_kernel_indirection:
self._register_autograd_kernel_indirection()
self._register_impl("save_for_backward", f, stacklevel=_stacklevel)
if self._has_impl("backward"):
self._register_autograd_kernel()
return inner
def impl_backward(self, output_differentiability=None, _stacklevel=2):
r"""
This API is deprecated, please use torch.library.custom_op instead
"""
if output_differentiability is not None:
def yell():
raise RuntimeError(
f"impl_backward(output_differentiability): expected "
f"output_differentiability to be a list of bools with "
f"length equal to the number of outputs of this CustomOp "
f"got: {output_differentiability}")
if not isinstance(output_differentiability, list):
yell()
for diff in output_differentiability:
if not isinstance(diff, bool):
yell()
if len(self._schema.returns) != len(output_differentiability):
yell()
def inner(f):
self._check_can_register_backward()
self._check_doesnt_have_library_autograd_impl()
if not self._registered_autograd_kernel_indirection:
self._register_autograd_kernel_indirection()
self._register_impl("backward", f, stacklevel=_stacklevel)
self._output_differentiability = output_differentiability
if self._has_impl("save_for_backward"):
self._register_autograd_kernel()
return inner
@dataclasses.dataclass
class FuncAndLocation:
func: typing.Callable
location: str
def find_ophandle_or_throw(cpp_ns: str, operator_name: OperatorName):
overload_name = (
"" if operator_name.overload_name is None else operator_name.overload_name
)
return _C._dispatch_find_schema_or_throw(
f"{cpp_ns}::{str(operator_name.name)}", overload_name
)
def validate_namespace(ns: str) -> None:
if "." in ns:
raise ValueError(
f'custom_op(..., ns="{ns}"): expected ns to not contain any . (and be a '
f"valid variable name)"
)
if ns in RESERVED_NS:
raise ValueError(
f"custom_op(..., ns='{ns}'): '{ns}' is a reserved namespace, "
f"please choose something else. "
)
def validate_schema(schema: FunctionSchema) -> None:
if not torch._library.utils.is_functional_schema(schema):
raise ValueError(
f"custom_op only supports functional operators "
f"(ops that do not mutate any inputs, do not return "
f"views of the inputs, and has at least one return). "
f"Got the following non-functional schema: {schema}"
)
# For simplicity: don't allow self arguments
if schema.arguments.self_arg is not None:
raise ValueError(
f"custom_op does not support arguments named 'self'. Please "
f"rename your argument. Got: {schema}"
)
def parse_qualname(qualname: str) -> typing.Tuple[str, str]:
names = qualname.split("::", 1)
if len(names) != 2:
raise ValueError(f"Expected there to be a namespace in {qualname}, i.e. The "
f"operator name should look something like ns::foo")
if '.' in names[1]:
raise ValueError(f"The torch.custom_ops APIs do not handle overloads, "
f"i.e. operator names with '.' in them. "
f"Please name your operator something like ns::foo. "
f"Got: {qualname}")
return names[0], names[1]
def validate_device_type(device_type: str) -> None:
if device_type not in SUPPORTED_DEVICE_TYPE_TO_KEY:
raise ValueError(
f"CustomOp.impl(device_types=[{device_type}, ...]): we only support device_type "
f"in {SUPPORTED_DEVICE_TYPE_TO_KEY.keys()}."
)
def supported_param(param: inspect.Parameter) -> bool:
return param.kind in (
inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY,
)
def validate_function_matches_schema(
schema: FunctionSchema, func: typing.Callable
) -> None:
sig = inspect.signature(func)
if not all(supported_param(p) for _, p in sig.parameters.items()):
raise ValueError(
f"custom_op(..., manual_schema)(func): positional-only args, "
f"varargs, and kwargs are not supported. Please rewrite `func` "
f"to not have them. Got `func` with signature: {sig}"
)
if (
any(
p.annotation is not inspect.Parameter.empty
for _, p in sig.parameters.items()
)
or sig.return_annotation is not inspect.Signature.empty
):
raise ValueError(
f"custom_op(..., manual_schema)(func): When passing in a manual "
f"schema, we expect `func` to have no type annotations to avoid "
f"ambiguity. Got `func` with signature: {sig}"
)
positional = [
(name, param)
for name, param in sig.parameters.items()
if param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
]
kwargonly = [
(name, param)
for name, param in sig.parameters.items()
if param.kind == inspect.Parameter.KEYWORD_ONLY
]
def error():
raise ValueError(
f"custom_op(..., manual_schema)(func): When passing in a manual "
f"schema, we expect `func`'s signature to match `manual_schema` "
f"(aside from type annotations). "
f"func's signature: {sig}, manual_schema: {schema}"
)
def error_default_args():
raise ValueError(
f"custom_op(..., manual_schema)(func): "
f"neither func nor manual_schema should have default "
f"arguments. Got "
f"func's signature: {sig}, manual_schema: {schema}"
)
def compare(sig_args, schema_args):
if len(sig_args) != len(schema_args):
error()
for (name, param), arg in zip(sig_args, schema_args):
if name != arg.name:
error()
if param.default is not inspect.Parameter.empty or arg.default is not None:
error_default_args()
compare(positional, schema.arguments.flat_positional)
compare(kwargonly, schema.arguments.flat_kwarg_only)
def report_error_callback(custom_op: typing.Any, key: str) -> None:
if key == "Undefined":
raise NotImplementedError(
f"{custom_op}: There were no Tensor inputs to this operator "
f"(e.g. you passed an empty list of Tensors). If your operator is a "
f"factory function (that is, it takes no Tensors and constructs "
f"a new one), then please use CustomOp.impl_factory to register "
f"an implementation for it"
)
if key == "Meta":
raise NotImplementedError(
f"{custom_op}: when running with device='Meta' tensors: there is no "
f"abstract impl registered for this CustomOp. Please register one via "
f"CustomOp.impl_abstract to get this CustomOp to work with Meta tensors"
)
if key in ("CPU", "CUDA"):
device = key.lower()
raise NotImplementedError(
f"{custom_op}: when running with device='{device}' tensors: there is no "
f"{device} impl registered for this CustomOp. Please register one via "
f"CustomOp.impl(device_type='{device}')"
)
raise NotImplementedError(
f"{custom_op}: No implementation for dispatch key {key}. It is likely "
f"that we have not added this functionality yet, please either open an "
f"issue or if you're feeling adventurous, use the low-level "
f"torch.library API"
)
def custom_op_from_existing(op):
ns = op.namespace
lib = torch.library.Library(ns, "FRAGMENT")
name = op.name().split("::")[-1]
schema_str = str(op._schema)
# CustomOp expects the schema string without the namespace
schema_str = schema_str.split("::")[-1]
schema = FunctionSchema.parse(schema_str)
return CustomOp(lib, ns, schema, name, op, _private_access=True)
def get_op(qualname):
def error_not_found():
raise ValueError(
f"Could not find the operator {qualname}. Please make sure you have "
f"already registered the operator and (if registered from C++) "
f"loaded it via torch.ops.load_library.")
ns, name = parse_qualname(qualname)
if not hasattr(torch.ops, ns):
error_not_found()
opnamespace = getattr(torch.ops, ns)
if not hasattr(opnamespace, name):
error_not_found()
packet = getattr(opnamespace, name)
if not hasattr(packet, 'default'):
error_not_found()
return packet.default
def _find_custom_op(qualname, also_check_torch_library=False):
if qualname in global_registry:
return global_registry[qualname]
if not also_check_torch_library:
raise RuntimeError(
f'Could not find custom op "{qualname}". Did you register it via '
f"the torch._custom_ops API?")
overload = get_op(qualname)
result = custom_op_from_existing(overload)
return result
def get_abstract_impl(qualname):
if qualname not in torch._custom_op.impl.global_registry:
return None
custom_op = torch._custom_op.impl.global_registry[qualname]
if custom_op is None:
return None
if not custom_op._has_impl("abstract"):
return None
return custom_op._get_impl("abstract").func
def _custom_op_with_schema(qualname, schema, needs_fixed_stride_order=True):
ns, name = qualname.split("::")
schema_str = f"{name}{schema}"
function_schema = FunctionSchema.parse(schema_str)
validate_schema(function_schema)
tags = [torch._C.Tag.needs_fixed_stride_order] if needs_fixed_stride_order else []
lib = library.Library(ns, "FRAGMENT")
lib.define(schema_str, tags=tags)
ophandle = find_ophandle_or_throw(ns, function_schema.name)
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True)
result._register_autograd_kernel_indirection()
torch._C._dispatch_set_report_error_callback(
ophandle, functools.partial(report_error_callback, weakref.proxy(result))
)
return get_op(qualname)