blob: 7b0cbbb75d2a192abdadd3c131cefb726a8e63b5 [file] [log] [blame]
# mypy: allow-untyped-defs
from __future__ import annotations
import atexit
import collections
import contextlib
import copy
import dataclasses
import datetime
import dis
import enum
import functools
import gc
import importlib
import inspect
import itertools
import linecache
import logging
import math
import operator
import os
import re
import sys
import threading
import time
import types
import typing
import uuid
import warnings
import weakref
from contextlib import contextmanager
from dataclasses import is_dataclass
from functools import lru_cache
from types import MethodWrapperType
from typing import (
Any,
Callable,
cast,
ClassVar,
Counter,
DefaultDict,
Deque,
Dict,
Iterable,
Iterator,
KeysView,
List,
Optional,
overload,
Set,
Tuple,
Type,
TypeVar,
Union,
ValuesView,
)
from typing_extensions import Literal, TypeGuard
import torch
import torch._functorch.config
import torch._inductor.config as inductor_config
import torch.fx.experimental.symbolic_shapes
import torch.utils._pytree as pytree
from torch import fx
from torch._C import (
_get_function_stack_at,
_instruction_counter,
_len_torch_function_stack,
_pop_torch_function_stack,
_push_on_torch_function_stack,
)
from torch._dispatch.python import enable_python_dispatcher
from torch._guards import Source, TracingContext
from torch._subclasses.meta_utils import is_sparse_compressed
from torch._utils_internal import log_chromium_event_internal, log_compilation_event
from torch.fx._utils import _format_graph_code, lazy_format_graph_code
from torch.nn.modules.lazy import LazyModuleMixin
from torch.utils._triton import has_triton, has_triton_package
from torch.utils.hooks import RemovableHandle
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
try:
import torch._logging
import torch._numpy as tnp
from torch._guards import detect_fake_mode # noqa: F401n
from torch._logging import LazyString
from . import config
# NOTE: Make sure `NP_SUPPORTED_MODULES` and `NP_TO_TNP_MODULE` are in sync.
if np:
NP_SUPPORTED_MODULES: Tuple[types.ModuleType, ...] = (
np,
np.fft,
np.linalg,
np.random,
)
NP_TO_TNP_MODULE = {
np: tnp,
np.fft: tnp.fft,
np.linalg: tnp.linalg,
np.random: tnp.random,
}
else:
NP_SUPPORTED_MODULES = ()
NP_TO_TNP_MODULE = {}
from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
except ImportError:
pass
T = TypeVar("T")
unpatched_nn_module_getattr = torch.nn.Module.__getattr__
counters: DefaultDict[str, Counter[str]] = collections.defaultdict(collections.Counter)
optimus_scuba_log: Dict[str, Any] = {}
troubleshooting_url = (
"https://pytorch.org/docs/main/torch.compiler_troubleshooting.html"
)
nnmodule_doc_url = "https://pytorch.org/docs/main/torch.compiler_nn_module.html"
nnmodule_doc_url_msg = f"See {nnmodule_doc_url} for more information and limitations."
log = logging.getLogger(__name__)
# profiling compilation time by function
compilation_time_metrics: Dict[str, List[float]] = {}
# profiling compilation time by frame phase
frame_phase_timing: Dict[str, Dict[str, float]] = collections.defaultdict(
lambda: collections.defaultdict(float)
)
timer_counter = itertools.count()
def tabulate(
rows: Union[List[Tuple[str, object]], List[List[object]]],
headers: Union[Tuple[str, ...], List[str]],
) -> str:
try:
import tabulate
return tabulate.tabulate(rows, headers=headers)
except ImportError:
return "\n".join(
", ".join(map(str, row)) for row in itertools.chain([headers], rows)
)
curr_frame = 0
# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def increment_frame() -> None:
global curr_frame
curr_frame = curr_frame + 1
# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def reset_frame_count() -> None:
global curr_frame
frame_phase_timing.clear()
compilation_time_metrics.clear()
curr_frame = 0
op_count = 0
def increment_op_count(cnt: int) -> None:
global op_count
op_count += cnt
# Calculate total time spent so far for each phase
# For example, {'entire_frame_compile':8.574629999999999, 'backend_compile':5.26806}
def calculate_time_spent() -> Dict[str, float]:
total_wall_time = 0.0
total_by_key = {}
for timings in frame_phase_timing.values():
total_wall_time += timings.get(
"entire_frame_compile", timings.get("inductor_compile", 0)
)
for key, timing in timings.items():
if key not in total_by_key:
total_by_key[key] = timing
else:
total_by_key[key] += timing
if total_by_key:
total_by_key["total_wall_time"] = total_wall_time
return total_by_key
# Print a report of time spent so far
# Ex:
# TIMING:
# entire_frame_compile:8.574629999999999
# backend_compile:5.26806
def print_time_report() -> None:
total_by_key = calculate_time_spent()
out = "TIMING:"
for key, value in total_by_key.items():
out = f"{out} {key}:{round(value, 5)}"
print(out)
def _add_time_spent(key: str, phase_name: str, time_spent: float) -> None:
frame_phase_timing[key][phase_name] += time_spent
def get_cache_stats() -> Dict[str, Any]:
"""Get a bunch of metadata about cache hits and misses to use in chromium events"""
cache_stats = {
"fxgraph_cache_hit": counters["inductor"]["fxgraph_cache_hit"],
"fxgraph_cache_miss": counters["inductor"]["fxgraph_cache_miss"],
"fxgraph_cache_bypass": counters["inductor"]["fxgraph_cache_bypass"],
}
return cache_stats
# dynamo_timed is a context manager
# By wrapping a function in dynamo_timed, we can store a record in compilation_time_metrics
# where the key is the functions name.
# For example:
#
# def _foo(...):
# with dynamo_timed("_foo"):
# ...
#
# Would show up as an entry in our timing dict:
# OrderedDict([('_foo', [0.083690, 0.23949, 3.1425e-05])])
# This is extremely useful for granular debugging.
#
# Although it is tempting to use dynamo_timed as a decorator, please do not.
# In its decorator form it makes cProfile traces less useful as dynamo_timed
# suddenly becomes a bottleneck for lots of function calls (as only one parent
# pointer is recorded).
#
# For a higher-level mode, pass a phase_name into dynamo_timed
# phase_names record an extra record into a separate compilation timing structure,
# one keyed on frame+name rather than function.
# The frame is incremented outside of this function, in def increment_frame() above.
# `fwd_only` is used to identify if this phase or function is only called
# during compiling fwd graphs, e.g, `entire_frame_compile` and `backend_compile`.
# The other phases (`inductor_compile` and `code_gen`) are called for both fwd and bwd graphs.
@contextmanager
def dynamo_timed(
key: str,
phase_name: Optional[str] = None,
fwd_only: bool = True,
):
chromium_log: ChromiumEventLogger = get_chromium_event_logger()
if key not in compilation_time_metrics:
compilation_time_metrics[key] = []
fail_type: Optional[str] = None
fail_reason: Optional[str] = None
time_spent = float("-inf")
start = time.time_ns()
try:
with torch.profiler.record_function(f"{key} (dynamo_timed)"):
t0 = time.time()
chromium_log.log_event_start(key, start, None)
if phase_name:
chromium_log.log_event_start(phase_name, start)
yield
time_spent = time.time() - t0
compilation_time_metrics[key].append(time_spent)
except Exception as e:
fail_type = str(type(e))
fail_reason = str(e)
raise
finally:
# Always log the end event even on exception
if phase_name:
chromium_log.log_event_end(
phase_name,
time.time_ns(),
{"cache_stats": get_cache_stats()},
start,
)
chromium_log.log_event_end(
key, time.time_ns(), {"cache_stats": get_cache_stats()}, start
)
# Only record backward compilation metrics if phase_name is not None!
if phase_name:
frame_key = str(curr_frame)
# fwd only compilation stages: entire_frame_compile, backend_compile.
# use frame_key as time aggregation key.
if fwd_only and fail_type is None:
_add_time_spent(frame_key, phase_name, time_spent)
else:
# fwd + bwd compilation stages: inductor_compile, code_gen.
# use frame_key as time aggregation key for fwd graphs;
# use compile_id as time aggregation key for bwd graphs.
if torch._guards.TracingContext.try_get() is not None:
aot_graph_name = str(
torch._guards.TracingContext.get().aot_graph_name
)
if (
"forward" in aot_graph_name or "inference" in aot_graph_name
) and fail_type is None:
_add_time_spent(frame_key, phase_name, time_spent)
elif "backward" in aot_graph_name:
compile_id = str(
torch._guards.CompileContext.current_compile_id()
)
if fail_type is None:
_add_time_spent(compile_id, phase_name, time_spent)
# log backward compilation metrics at the end of `inductor_compile` of bwd graph,
# one record for one bwd graph.
if phase_name == "inductor_compile":
if fail_type is None:
inductor_compile_time = frame_phase_timing[
compile_id
].get("inductor_compile", None)
code_gen_time = frame_phase_timing[compile_id].get(
"code_gen", None
)
else:
inductor_compile_time = None
code_gen_time = None
metrics = BwdCompilationMetrics(
compile_id,
inductor_compile_time,
code_gen_time,
fail_type,
fail_reason,
)
record_compilation_metrics(metrics)
@overload
def compile_times(repr: Literal["str"], aggregate: bool = False) -> str:
...
@overload
def compile_times(
repr: Literal["csv"], aggregate: bool = False
) -> Tuple[List[str], List[object]]:
...
def compile_times(repr="str", aggregate: bool = False):
"""
Get metrics about torchdynamo frontend/backend compilation times.
Accumulates information from functions tagged with `dynamo_timed`.
repr='str' returns a printable string for user interaction, and 'csv'
returns headers, rows which can be logged for output
aggregate causes values from multiple compilations (e.g. split graphs)
to be accumulated into one value. If false, expect more than one value
per metric.
"""
def fmt_fn(values, item_fn=lambda x: x):
if aggregate:
return item_fn(sum(values))
return ", ".join(map(item_fn, values))
if repr == "str":
rows = [
(k, fmt_fn(compilation_time_metrics[k], item_fn=lambda x: f"{x:.4f}"))
for k in compilation_time_metrics
]
out = "TorchDynamo compilation metrics:\n"
out += tabulate(rows, headers=("Function", "Runtimes (s)"))
return out
elif repr == "csv":
values = [
fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
for v in compilation_time_metrics.values()
]
headers = list(compilation_time_metrics.keys())
return headers, values
return None
@atexit.register
def dump_compile_times() -> None:
log.info(compile_times(repr="str", aggregate=True))
tensortype_to_dtype = {
torch.FloatTensor: (torch.float32, torch.float),
torch.DoubleTensor: (torch.float64, torch.double),
torch.HalfTensor: (torch.float16, torch.half),
torch.BFloat16Tensor: (torch.bfloat16,),
torch.ByteTensor: (torch.uint8,),
torch.CharTensor: (torch.int8,),
torch.LongTensor: (torch.int64, torch.long),
torch.IntTensor: (torch.int32, torch.int),
torch.ShortTensor: (torch.int16, torch.short),
torch.BoolTensor: (torch.bool,),
}
class DuplicateWarningChecker:
def __init__(self, maxsize: int = 4096) -> None:
self.maxsize = maxsize
self.reset()
def reset(self):
self.set = collections.OrderedDict()
def add(self, key: Union[str, Tuple[object, object]]) -> bool:
if key in self.set:
self.set.move_to_end(key, last=True)
if not config.verbose:
return False
else:
self.set[key] = None
while len(self.set) > self.maxsize:
self.set.popitem(last=False)
return True
graph_break_dup_warning_checker = DuplicateWarningChecker()
def setup_compile_debug():
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
if compile_debug:
return add_file_handler()
return contextlib.ExitStack()
def reset_graph_break_dup_checker() -> None:
graph_break_dup_warning_checker.reset()
def add_file_handler():
log_path = os.path.join(get_debug_dir(), "torchdynamo")
os.makedirs(log_path, exist_ok=True)
log_file_handler = logging.FileHandler(os.path.join(log_path, "debug.log"))
logger = logging.getLogger("torch._dynamo")
logger.addHandler(log_file_handler)
exitstack = contextlib.ExitStack()
exitstack.callback(lambda: logger.removeHandler(log_file_handler))
return exitstack
def setup_log_file():
exitstack = contextlib.ExitStack()
if config.log_file_name is not None:
log_file_handler = logging.FileHandler(config.log_file_name)
for logger in torch._logging._internal.get_loggers():
logger.addHandler(log_file_handler)
exitstack.callback(lambda: logger.removeHandler(log_file_handler))
return exitstack
return exitstack
def gen_record_file_name(exc, code) -> str:
return f"{get_debug_dir()}/error_recordings/\
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"
def write_record_to_file(filename: str, exec_record) -> None:
try:
if os.path.exists(filename):
log.warning(
"Unable to write execution record %s; file already exists.", filename
)
else:
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "wb") as f:
exec_record.dump(f)
except Exception:
log.exception("Unable to write execution record %s", filename)
def count_calls(g: fx.Graph) -> int:
c = 0
for n in g.nodes:
if "call" in n.op:
c += 1
return c
def identity(x):
return x
def hashable(x):
try:
hash(x)
return True
except TypeError:
return False
# cannot hash writable memoryview object
except ValueError:
return False
def nothing(*args, **kwargs):
pass
class ExactWeakKeyDictionary:
"""Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""
def __init__(self):
self.values = {}
self.refs = {}
def __getitem__(self, key):
return self.values[id(key)]
def get(self, key, default=None):
return self.values.get(id(key), default)
def __contains__(self, key):
return id(key) in self.values
def __setitem__(self, key, value):
idx = id(key)
if idx not in self.refs:
self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
self.values[idx] = value
def _remove_id(self, idx):
if idx in self.values:
del self.values[idx]
if idx in self.refs:
del self.refs[idx]
def clear(self):
self.refs.clear()
self.values.clear()
@overload
def istype(obj: object, allowed_types: Type[T]) -> TypeGuard[T]:
...
@overload
def istype(
obj: object, allowed_types: Tuple[Type[List[T]], Type[Tuple[T, ...]]]
) -> TypeGuard[T]:
...
@overload
def istype(obj: object, allowed_types: Iterable[type]) -> bool:
...
def istype(obj, allowed_types):
"""isinstance() without subclasses"""
if isinstance(allowed_types, (tuple, list, set)):
return type(obj) in allowed_types
return type(obj) is allowed_types
if sys.version_info >= (3, 12):
# Some typing classes moved to C in 3.12,
# which no longer have the _Final mixin.
_builtin_final_typing_classes = (
typing.ParamSpecArgs,
typing.ParamSpecKwargs,
typing.ParamSpec,
typing.TypeVar,
typing.TypeVarTuple,
typing.TypeAliasType,
)
def is_typing(value):
# _Final catches most of typing classes:
# - Any
# - Callable
# - Union
# ...
#
# NB: we intentionally ignore classes that inherit from Generic, since they
# can be used as both TypingVariable as well as UserDefinedClassVariable.
if sys.version_info >= (3, 12) and isinstance(value, _builtin_final_typing_classes):
return True
return isinstance(value, typing._Final) or value is typing.Generic # type: ignore[attr-defined]
def is_numpy_int_type(value):
if not np:
return False
return istype(
value,
(
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
),
)
def is_numpy_float_type(value):
if not np:
return False
return istype(
value,
(
np.float16,
np.float32,
np.float64,
),
)
def is_lru_cache_wrapped_function(value):
return isinstance(value, functools._lru_cache_wrapper) and is_function(
inspect.getattr_static(value, "__wrapped__")
)
def is_function_or_wrapper(value):
return is_function(value) or isinstance(
value, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
)
def is_function(value):
return isinstance(
value,
(
types.FunctionType,
types.BuiltinFunctionType,
types.MethodDescriptorType,
types.WrapperDescriptorType,
),
)
def is_wrapper_or_member_descriptor(value):
return isinstance(
value,
(
# set up by PyGetSetDef
types.GetSetDescriptorType,
# set by PyMethodDef, e.g. list.append
types.MethodDescriptorType,
# slots - list.__add__
types.WrapperDescriptorType,
# set up by PyMemberDef
types.MemberDescriptorType,
# wrapper over C functions
types.MethodWrapperType,
),
)
def unwrap_if_wrapper(fn):
return unwrap_with_attr_name_if_wrapper(fn)[0]
def unwrap_with_attr_name_if_wrapper(fn):
# TODO(anijain2305) - Investigate if we can get rid of this function
# unpack @torch._dynamo.optimize()(fn) wrapped function
if is_function(fn) and inspect.getattr_static(fn, "_torchdynamo_inline", False):
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
attr_name = "_torchdynamo_inline"
else:
attr_name = None
return fn, attr_name
def is_numpy_ndarray(value):
if not np:
return False
return istype(value, np.ndarray)
def istensor(obj):
"""Check of obj is a tensor"""
tensor_list: Tuple[type, ...] = (
torch.Tensor,
torch.nn.Parameter,
*config.traceable_tensor_subclasses,
)
tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
return istype(obj, tensor_list)
def is_lazy_module(mod):
return isinstance(mod, LazyModuleMixin)
@functools.lru_cache(4096)
def print_once(*args):
print(*args)
def make_cell(val=None):
"""Some black magic to create a cell object that usually only exists in a closure"""
x = val
def f():
return x
assert f.__closure__ is not None and len(f.__closure__) == 1
return f.__closure__[0]
def proxy_args_kwargs(args, kwargs):
try:
proxy_args = tuple(arg.as_proxy() for arg in args)
proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
return proxy_args, proxy_kwargs
except NotImplementedError as e:
from .exc import unimplemented
from .variables.base import typestr
unimplemented(
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}",
from_exc=e,
)
@dataclasses.dataclass
class CompilationMetrics:
compile_id: str
frame_key: str
co_name: str
co_filename: str
co_firstlineno: int
cache_size: int
accumulated_cache_size: int
guard_count: Optional[int]
shape_env_guard_count: Optional[int]
graph_op_count: Optional[int]
graph_node_count: Optional[int]
graph_input_count: Optional[int]
start_time: float
entire_frame_compile_time_s: Optional[float]
backend_compile_time_s: Optional[float]
inductor_compile_time_s: Optional[float]
code_gen_time_s: Optional[float]
fail_type: Optional[str]
fail_reason: Optional[str]
fail_user_frame_filename: Optional[str]
fail_user_frame_lineno: Optional[int]
non_compliant_ops: Set[str]
compliant_custom_ops: Set[str]
restart_reasons: Set[str]
dynamo_time_before_restart_s: float
# Sometimes, we will finish analyzing a frame but conclude we don't want
# to install any guarded code. True means we actually decided to install
# a compiled frame
has_guarded_code: bool
possibly_missed_reinplacing_opportunities: Optional[int]
@dataclasses.dataclass
class BwdCompilationMetrics:
compile_id: str
inductor_compile_time_s: Optional[float]
code_gen_time_s: Optional[float]
fail_type: Optional[str]
fail_reason: Optional[str]
DEFAULT_COMPILATION_METRICS_LIMIT = 64
_compilation_metrics: Deque[
Union[CompilationMetrics, BwdCompilationMetrics]
] = collections.deque(maxlen=DEFAULT_COMPILATION_METRICS_LIMIT)
def record_compilation_metrics(
compilation_metrics: Union[CompilationMetrics, BwdCompilationMetrics]
):
global _compilation_metrics
_compilation_metrics.append(compilation_metrics)
if isinstance(compilation_metrics, CompilationMetrics):
name = "compilation_metrics"
else:
name = "bwd_compilation_metrics"
torch._logging.trace_structured(
name,
lambda: {
k: list(v) if isinstance(v, set) else v
for k, v in dataclasses.asdict(compilation_metrics).items()
},
)
if config.log_compilation_metrics:
log_compilation_event(compilation_metrics)
def set_compilation_metrics_limit(new_size: int) -> None:
global _compilation_metrics
while len(_compilation_metrics) > new_size:
_compilation_metrics.popleft()
new_deque = collections.deque(_compilation_metrics, maxlen=new_size)
_compilation_metrics = new_deque
def clear_compilation_metrics() -> None:
global _compilation_metrics
_compilation_metrics.clear()
def get_compilation_metrics() -> List[Union[CompilationMetrics, BwdCompilationMetrics]]:
return list(_compilation_metrics)
class ChromiumEventLogger:
"""Logs chromium events to structured logs. tlparse will concatenate these into a perfetto UI link.
See https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview#heading=h.yr4qxyxotyw for
a specification of the Chromium Event JSON format.
"""
def get_stack(self):
if hasattr(self.tls, "stack"):
return self.tls.stack
else:
self.tls.stack = ["__start__"]
return self.tls.stack
def __init__(self):
self.tls = threading.local()
# Generate a unique id for this logger, which we can use in scuba to filter down
# to a single python run.
self.id_ = str(uuid.uuid4())
# TODO: log to init/id tlparse after I add support for it
log.info("ChromiumEventLogger initialized with id %s", self.id_)
def log_event_start(
self,
event_name: str,
time_ns: int,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""
Logs the start of a single event.
:param str event_name Name of event to appear in trace
:param time_ns Timestamp in nanoseconds
:param metadata: Any extra metadata associated with this event
"""
event = self._log_timed_event(
event_name,
time_ns,
"B",
metadata,
)
log_chromium_event_internal(event, self.get_stack(), self.id_)
self.get_stack().append(event_name)
def reset(self) -> None:
# We this on every compile in case a compile crashes or restarts and we haven't
# cleared the stack.
stack = self.get_stack()
stack.clear()
stack.append("__start__")
def log_event_end(
self,
event_name: str,
time_ns: int,
metadata: Optional[Dict[str, Any]] = None,
start_time_ns: Optional[int] = None,
) -> None:
"""
Logs the end of a single event. This function should only be
called after log_event_start with the same event_name.
:param event_name: Name of event to appear in trace
:param time_ns: Timestamp in nanoseconds
:param metadata: Any extra metadata associated with this event
"""
# These stack health checks currently never happen,
# but they're written this way to future proof any weird event
# overlaps in the future.
stack = self.get_stack()
if event_name not in stack:
# Something went wrong, we never called start on this event,
# or it was skipped due to overlapping events below
log.warning("ChromiumEventLogger: Start event not in stack, ignoring")
return
event = self._log_timed_event(
event_name,
time_ns,
"E",
metadata,
)
while event_name != stack[-1]:
# If the event isn't the most recent one to end, pop
# off the stack until it is.
# Since event_name in self.stack, this pop is always safe
log.warning(
"ChromiumEventLogger: Detected overlapping events, fixing stack"
)
stack.pop()
log_chromium_event_internal(event, stack, self.id_, start_time_ns)
# Finally pop the actual event off the stack
stack.pop()
def _log_timed_event(
self,
event_name: str,
time_ns: int,
phase: str,
metadata: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""
Logs a timed event in chromium format. See log_event_start, log_event_end, etc.
"""
event = {
"name": event_name,
"ts": time_ns / 1000, # Chromium events are in micro seconds
"args": metadata,
"ph": phase,
# These categories are needed in all chromium traces
"cat": "dynamo_timed",
"tid": 0,
"pid": 0, # pid should be specified on all logs, we don't personally care about the actual process id
}
torch._logging.trace_structured(
"chromium_event",
payload_fn=lambda: event,
suppress_context=False,
expect_trace_id=False, # Not every chromium event will have a trace_id
)
return event
def log_instant_event(
self,
event_name: str,
time_ns: int,
metadata: Optional[Dict[str, Any]] = None,
) -> None:
"""
Log an instant event with no associated duration.
:param str event_name: Name of event to appear in trace
:param int time_ns Timestamp in nanoseconds
:param Optional[Dict[str, Any]] metadata: Any extra metadata associated with this event
:param str cname optional color for the arrow in the trace
"""
event = {
"name": event_name,
"ts": time_ns / 1000,
"args": metadata,
"ph": "i",
# These categories are needed in all chromium traces
"cat": "dynamo_timed",
"tid": 0,
"pid": 0,
"s": "p", # We use "process" level instant events so they all appear on the same row in the trace.
}
torch._logging.trace_structured(
"chromium_event",
payload_fn=lambda: event,
suppress_context=False,
expect_trace_id=True,
)
# Log an instant event with the same start and end time
log_chromium_event_internal(event, self.get_stack(), self.id_)
CHROMIUM_EVENT_LOG: Optional[ChromiumEventLogger] = None
def get_chromium_event_logger() -> ChromiumEventLogger:
global CHROMIUM_EVENT_LOG
if CHROMIUM_EVENT_LOG is None:
CHROMIUM_EVENT_LOG = ChromiumEventLogger()
return CHROMIUM_EVENT_LOG
@dataclasses.dataclass
class CleanupHook:
"""Remove a global variable when hook is called"""
scope: Dict[str, Any]
name: str
def __call__(self, *args):
# Make sure we're not shutting down
if CleanupManager is not None:
CleanupManager.count -= 1
del self.scope[self.name]
@staticmethod
def create(scope, name, val):
assert name not in scope
CleanupManager.count += 1
scope[name] = val
return CleanupHook(scope, name)
class CleanupManager(ExactWeakKeyDictionary):
count = 0
instance: ClassVar[CleanupManager]
def _remove_id(self, idx):
for hook in self.values[idx]:
hook()
super()._remove_id(idx)
CleanupManager.instance = CleanupManager()
def clone_tensor(x):
"""Clone the tensor and its gradient"""
y = x.clone().requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
y.grad = x.grad.clone()
return y
def clone_input(x, *, dtype=None):
"""copy while preserving strides"""
# TODO: this is questionable
if is_fake(x):
# this func fails on fake tensors in __torch_dispatch__
return x
def torch_clone(x):
y = torch.clone(x)
if x.is_leaf:
y.requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
y.grad = clone_input(x.grad, dtype=dtype)
if hasattr(x, "_dynamo_dynamic_indices"):
y._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() # type: ignore[attr-defined]
return y
with torch.no_grad():
if x.device.type == "xla":
# Access data_ptr() for a xla tensor will cause crash
return torch_clone(x)
# Handle sparse storage (no stride).
if x.layout is torch.sparse_coo:
return torch.sparse_coo_tensor(
torch_clone(x._indices()),
torch_clone(x._values()),
x.shape,
is_coalesced=x.is_coalesced(),
)
elif is_sparse_compressed(x):
if x.layout in {torch.sparse_csr, torch.sparse_bsr}:
compressed_indices = x.crow_indices()
plain_indices = x.col_indices()
else:
compressed_indices = x.ccol_indices()
plain_indices = x.row_indices()
return torch.sparse_compressed_tensor(
torch_clone(compressed_indices),
torch_clone(plain_indices),
torch_clone(x.values()),
x.shape,
layout=x.layout,
)
needed_size = sum(
(shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
)
if x.is_quantized:
result = torch.empty_quantized((needed_size + 32,), x)
else:
result = torch.empty(
needed_size + 32, dtype=dtype or x.dtype, device=x.device
)
cache_line_offset = (
(x.data_ptr() - result.data_ptr()) % 32
) // x.element_size()
result.as_strided_(x.size(), x.stride(), cache_line_offset)
try:
result.copy_(x.clone())
if x.is_leaf:
result.requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
result.grad = clone_input(x.grad, dtype=dtype)
except RuntimeError:
# RuntimeError: unsupported operation: more than one element of the written-to
# tensor refers to a single memory location. Please clone() the tensor before
# performing the operation.
return torch_clone(x)
if hasattr(x, "_dynamo_dynamic_indices"):
result._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() # type: ignore[attr-defined]
return result
def clone_inputs(example_inputs):
res: Union[Dict[Any, Any], List[Any]]
if type(example_inputs) is dict:
res = dict(example_inputs)
for key, value in res.items():
if isinstance(value, tuple):
res[key] = clone_inputs(value)
else:
assert isinstance(value, torch.Tensor), type(value)
res[key] = clone_input(value)
return res
res = list(example_inputs)
for i in range(len(res)):
if isinstance(res[i], torch.Tensor):
res[i] = clone_input(res[i])
return res
def skip_frame_if_in_functorch_mode(val: torch.Tensor):
try:
val.data_ptr() # will throw for functorch tensors
except RuntimeError as e:
from .exc import SkipFrame
# This will be GradTrackingTensor/BatchedTensor/etc
functorch_subclass_name = re.sub(r"\(.*", "", repr(val))
raise SkipFrame(
f"torch.compile cannot be run in context: {functorch_subclass_name}"
) from e
@contextmanager
def preserve_rng_state():
disable_functorch = torch._C._DisableFuncTorch
disable_current_modes = torch.utils._python_dispatch._disable_current_modes
with disable_current_modes(), disable_functorch():
rng_state = torch.clone(torch.random.get_rng_state())
skip_frame_if_in_functorch_mode(rng_state)
if torch.cuda.is_available():
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
try:
yield
finally:
with torch.utils._python_dispatch._disable_current_modes():
torch.random.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state) # type: ignore[possibly-undefined]
def is_jit_model(model0):
return isinstance(
model0,
(
torch.jit._trace.TopLevelTracedModule,
torch.jit._script.RecursiveScriptModule,
torch.jit.ScriptFunction,
torch.jit.ScriptModule,
),
)
def torchscript(model, example_inputs, verbose=False):
if is_jit_model(model):
# already done?
return model
try:
return torch.jit.trace(model, example_inputs)
except Exception:
try:
return torch.jit.script(model)
except Exception:
if verbose:
log.exception("jit error")
else:
log.error("Both torch.jit.trace and torch.jit.script failed")
return None
def getfile(obj):
try:
return inspect.getfile(obj)
except (TypeError, OSError):
return None
def is_namedtuple(obj):
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
return is_namedtuple_cls(type(obj))
def is_namedtuple_cls(cls):
"""Test if an object is a namedtuple or a (torch.return_types|torch.autograd.forward_ad).* quasi-namedtuple"""
try:
if issubclass(cls, tuple):
bases = getattr(cls, "__bases__", []) or [None]
module = getattr(cls, "__module__", None)
return module in ("torch.return_types", "torch.autograd.forward_ad") or (
bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
)
except TypeError:
pass
return False
@functools.lru_cache(1)
def namedtuple_fields(cls):
"""Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
if cls is slice:
return ["start", "stop", "step"]
assert issubclass(cls, tuple)
if hasattr(cls, "_fields"):
# normal namedtuples
return cls._fields
@dataclasses.dataclass
class Marker:
index: int
# frustrating ones e.g. torch.return_types.max
assert cls.__module__ == "torch.return_types"
obj = cls(map(Marker, range(cls.n_fields)))
fields: List[Optional[str]] = [None] * cls.n_fields
for name in dir(obj):
if name[0] != "_" and isinstance(getattr(obj, name), Marker):
fields[getattr(obj, name).index] = name
return fields
def checkpoint_params(gm):
with torch.no_grad():
rng_state = torch.clone(torch.random.get_rng_state())
if torch.cuda.is_available():
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
saved_state = []
for param in itertools.chain(gm.parameters(), gm.buffers()):
saved_state.append((param, param._version, torch.clone(param)))
def restore():
with torch.no_grad():
torch.random.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
for param, version, original_value in saved_state:
if param._version != version:
param.copy_(original_value)
return restore
def timed(model, example_inputs, times=1):
if torch.cuda.is_available():
synchronize = torch.cuda.synchronize
else:
synchronize = nothing
synchronize()
gc.collect()
torch.manual_seed(1337)
t0 = time.perf_counter()
for _ in range(times):
result = model(*example_inputs)
synchronize()
t1 = time.perf_counter()
return result, t1 - t0 # type: ignore[possibly-undefined]
def check_is_cuda(gm, example_inputs):
return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))
@lru_cache(32)
def rot_n_helper(n):
assert n > 1
vars = [f"v{i}" for i in range(n)]
rotated = reversed(vars[-1:] + vars[:-1])
fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
fn.__name__ = f"rot_{n}_helper"
return fn
common_constant_types: Set[type] = {
int,
float,
complex,
bool,
str,
bytes,
type(None),
Ellipsis.__class__,
types.CodeType,
torch.device,
torch.dtype,
torch.memory_format,
torch.layout,
}
if has_triton_package():
import triton
common_constant_types.add(triton.language.dtype)
"""
Difference between is_safe_constant and common_constant_types.
* common_constant_types: Constants would be wrapped by VariableBuilder.wrap_literal
as ConstantVariable.
* is_safe_constant: Constants can be loaded by LOAD_CONST bytecode.
"""
def is_safe_constant(v):
if istype(v, (tuple, frozenset)):
return all(map(is_safe_constant, v))
return isinstance(v, (enum.Enum, type, torch.Size)) or istype(
v,
common_constant_types | {slice},
)
def specialize_symnode(arg):
from .variables import ConstantVariable, SymNodeVariable
# Guard and specialize
if isinstance(arg, SymNodeVariable):
return ConstantVariable.create(arg.evaluate_expr())
return arg
def guard_if_dyn(arg):
from .variables import ConstantVariable
arg = specialize_symnode(arg)
if isinstance(arg, ConstantVariable):
return arg.as_python_constant()
return arg
def check_constant_args(args, kwargs):
return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))
def check_unspec_python_args(args, kwargs):
from .variables.constant import ConstantVariable
from .variables.tensor import UnspecializedPythonVariable
unspec_count = 0
for x in itertools.chain(args, kwargs.values()):
if isinstance(x, UnspecializedPythonVariable):
unspec_count += 1
elif not isinstance(x, ConstantVariable):
return False
return unspec_count > 0
def check_unspec_or_constant_args(args, kwargs):
# A fused version of:
# return check_constant_args(args, kwargs) or check_unspec_python_args(args, kwargs)
from .variables.tensor import UnspecializedPythonVariable
for x in itertools.chain(args, kwargs.values()):
if not (x.is_python_constant() or isinstance(x, UnspecializedPythonVariable)):
return False
return True
def check_numpy_ndarray_args(args, kwargs):
from .variables.tensor import NumpyNdarrayVariable
return any(
isinstance(x, NumpyNdarrayVariable)
for x in itertools.chain(args, kwargs.values())
)
dict_keys: Type[KeysView[Any]] = type({}.keys())
dict_values: Type[ValuesView[Any]] = type({}.values())
odict_values: Type[ValuesView[Any]] = type(collections.OrderedDict().values())
tuple_iterator: Type[Iterator[Any]] = type(iter(()))
tuple_iterator_len = tuple_iterator.__length_hint__ # type: ignore[attr-defined]
object_new = object.__new__
def nn_module_new(cls):
obj = object_new(cls)
torch.nn.Module.__init__(obj)
return obj
def product(it):
return functools.reduce(operator.mul, it, 1)
def tuple_iterator_getitem(it, index):
_, (obj,), start = it.__reduce__()
return obj[start + index]
iter_next = next
def to_subclass(t, cls):
return t.as_subclass(cls)
def dict_keys_getitem(d, n):
return next(itertools.islice(iter(d), n, n + 1))
def enum_repr(value, local):
# enum class can override __str__ method. Use __class__ and name attribute
# to extract the class name and key name.
name = value.__class__.__name__
val = value.name
scope = "L" if local else "G"
local_name = f'{scope}["{name}"].{val}'
return local_name
def set_example_value(node, example_value):
# NB: example_value is a bit of a misnomer, because this is always a fake
# tensor of some sort. Furthermore, these example values serve as the
# runtime state of Dynamo tracing, which means if metadata mutation
# occurs, the example_value gets directly updated (so you can't rely on
# this to accurately reflect what the state of the value was at the time
# the program was traced).
node.meta["example_value"] = example_value
shape_env = TracingContext.get().fake_mode.shape_env
if symbol_to_path := torch.fx.experimental.symbolic_shapes.compute_unbacked_bindings(
shape_env, example_value
):
node.meta["unbacked_bindings"] = symbol_to_path
def _get_fake_tensor(vt):
fake_tensor = vt.as_proxy().node.meta.get("example_value")
if not is_fake(fake_tensor):
from .exc import unimplemented
unimplemented("Cannot check Tensor object identity without its fake value")
return fake_tensor
def iter_contains(items, search, tx, check_tensor_identity=False):
from .variables import (
BuiltinVariable,
ConstantVariable,
TensorVariable,
VariableTracker,
)
if search.is_python_constant():
found_const = any(
x.is_python_constant()
and x.as_python_constant() == search.as_python_constant()
for x in items
)
return ConstantVariable.create(found_const)
must_check_tensor_id = False
if check_tensor_identity and isinstance(search, TensorVariable):
must_check_tensor_id = True
# Match of Tensor means match of FakeTensor
search = _get_fake_tensor(search)
found: Optional[VariableTracker] = None
for x in items:
if must_check_tensor_id:
if isinstance(x, TensorVariable):
if search is _get_fake_tensor(x): # Object equivalence
return ConstantVariable.create(True)
else:
check = BuiltinVariable(operator.eq).call_function(tx, [x, search], {})
if found is None:
found = check
else:
found = BuiltinVariable(operator.or_).call_function(
tx, [check, found], {}
)
if found is None:
found = ConstantVariable.create(False)
return found
def key_is_id(k):
"""Returns whether it indexes dictionaries using its id"""
return isinstance(k, (torch.Tensor, torch.nn.Module, MethodWrapperType))
def key_to_id(value):
return [id(k) if key_is_id(k) else k for k in value.keys()]
def const_repr(x, *, local) -> str:
from .trace_rules import is_builtin_callable
if isinstance(x, (list, tuple)):
elems_repr = ",".join(const_repr(s, local=local) for s in x)
if isinstance(x, list):
return f"[{elems_repr}]"
else:
assert isinstance(x, tuple)
if len(x) == 1:
return f"({elems_repr},)"
else:
return f"({elems_repr})"
elif isinstance(x, enum.Enum):
# To workaround repr(Enum) returning invalid global reference before python 3.11
# by calling enum_repr and removing quotes to render enum in guard code.
return enum_repr(x, local=local).replace("'", "")
elif is_builtin_callable(x):
return x.__name__
elif isinstance(x, type):
def fullname(o):
klass = o.__class__
module = klass.__module__
if module == "builtins":
return klass.__qualname__ # avoid outputs like 'builtins.str'
return module + "." + klass.__qualname__
return fullname(x)
else:
return f"{x!r}"
def dict_keys_repr(const_keys, *, local) -> str:
keys_str = ",".join(const_repr(s, local=local) for s in const_keys)
return "[" + keys_str + "]"
GLOBAL_KEY_PREFIX = "__dict_key"
from torch._subclasses import UnsupportedFakeTensorException # noqa: F401
def get_safe_global_name(tx, root, obj):
# The global_mangled_class_name should be different for different
# invocations of torch.compile. Otherwise, we can run into a situation
# where multiple torch.compile invocations re-use the same global name,
# but the global's lifetime is tied to the first invocation (and
# may be deleted when the first torch.compile invocation is deleted)
# We mangle it based off of the output_graph's id.
return f"{root}_{id(obj)}_c{tx.output.compile_id}"
def wrap_fake_exception(fn):
try:
return fn()
except UnsupportedFakeTensorException as e:
from .exc import unimplemented
msg = f"Unsupported: {e.reason} with fake tensor propagation."
log.warning(msg)
unimplemented(msg, from_exc=e)
def deepcopy_to_fake_tensor(obj, fake_mode):
with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
return wrap_fake_exception(lambda: copy.deepcopy(obj))
def rmse(ref, res):
"""
Calculate root mean squared error
"""
return torch.sqrt(torch.mean(torch.square(ref - res)))
def same(
ref,
res,
fp64_ref=None,
cos_similarity=False,
tol=1e-4,
equal_nan=False,
exact_dtype=True,
relax_numpy_equality=False,
ignore_non_fp=False,
log_error=log.error,
use_larger_multiplier_for_smaller_tensor=False,
):
"""Check correctness to see if ref and res match"""
if fp64_ref is None:
fp64_ref = ref
if isinstance(
ref, (list, tuple, collections.deque, torch.nn.ParameterList, torch.Size)
):
assert isinstance(
res, (list, tuple, collections.deque)
), f"type mismatch {type(ref)} {type(res)}"
if len(ref) != len(res):
log_error("Length mismatch")
return False
return len(ref) == len(res) and all(
same(
ai,
bi,
fp64_refi,
cos_similarity,
tol,
equal_nan,
exact_dtype,
relax_numpy_equality,
ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
)
elif type(ref).__name__ == "QuestionAnsweringModelOutput":
# This skips checking accuracy for start_logits/end_logits.
# Tentatively, start_logits/end_logits appear to be very prone to
# inaccuracies and is somewhat subsumed by checking the loss.
return same(
ref.loss,
res.loss,
fp64_ref.loss,
cos_similarity,
tol,
equal_nan,
exact_dtype,
relax_numpy_equality,
ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
elif isinstance(ref, dict):
assert isinstance(res, dict)
assert set(ref.keys()) == set(
res.keys()
), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
for k in sorted(ref.keys()):
if not (
same(
ref[k],
res[k],
fp64_ref[k],
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
relax_numpy_equality=relax_numpy_equality,
ignore_non_fp=ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
):
log_error("Accuracy failed for key name %s", k)
return False
return True
elif isinstance(ref, set):
assert isinstance(res, set)
assert set(ref) == set(res), f"elements mismatch {set(ref)} == {set(res)}"
return True
elif isinstance(ref, (torch.Tensor, float)):
assert not isinstance(ref, torch._subclasses.FakeTensor)
assert not isinstance(res, torch._subclasses.FakeTensor)
def to_tensor(t):
return t if isinstance(t, torch.Tensor) else torch.tensor(t)
ref, res, fp64_ref = (to_tensor(val) for val in (ref, res, fp64_ref))
if ref.is_sparse:
assert res.is_sparse
ref = ref.to_dense()
res = res.to_dense()
assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
if exact_dtype:
if ref.dtype != res.dtype:
log_error("dtype mismatch %s, %s", ref.dtype, res.dtype)
return False
if ref.dtype == torch.bool:
if ignore_non_fp:
return True
# triton stores bool as int8, so add this for more accurate checking
r = torch.allclose(
ref.to(dtype=torch.uint8),
res.to(dtype=torch.uint8),
atol=tol,
rtol=tol,
equal_nan=equal_nan,
)
if not r:
log_error("Accuracy failed: uint8 tensor did not match")
return r
if cos_similarity:
ref = ref.flatten().to(torch.float32)
res = res.flatten().to(torch.float32)
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
# early exit that handles zero/nan better
# cosine_similarity(zeros(10), zeros(10), dim=0) is 0
return True
score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
if score < 0.99:
log.warning("Similarity score=%s", score.cpu().detach().item())
return score >= 0.99
else:
if not exact_dtype:
ref = ref.to(res.dtype)
# First try usual allclose
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
return True
# Check error from fp64 version
if fp64_ref.dtype == torch.float64:
# Fix a corner case that res and fp64_ref does not contains NaN and match (with loose tolerance)
# while the ref contains NaN. In this case, RMSE should not match any ways.
# But res is 'BETTER' than ref so we count it pass.
#
# This happens for Super_SloMo when loop ordering after fusion is enabled:
# https://gist.github.com/shunting314/11f235c70f7db0d52718d26f4a701cab
loose_tol = 1e-2 * 4
if (
not fp64_ref.isnan().any()
and not res.isnan().any()
and ref.isnan().any()
and torch.allclose(
fp64_ref.to(dtype=res.dtype),
res,
atol=loose_tol,
rtol=loose_tol,
equal_nan=equal_nan,
)
):
return True
ref_error = rmse(fp64_ref, ref).item()
# ref unable to produce this with stable numerics in this precision, ignore
if math.isnan(ref_error):
log.warning(
"Found nan in reference. Consider running in higher precision."
)
res_error = rmse(fp64_ref, res).item()
# In the case of using AMP (Automatic Mixed Precision), certain models have
# failed the benchmark's correctness check. However, the end-to-end model's
# accuracy when comparing AMP with FP32 is within a difference of less than 0.1%.
# Thus, it's possible that the correctness check failures for these models are
# false alarms. We use multiplier of 3 instead of 2 to avoid these false alarms.
multiplier = (
3.0 if res.dtype in (torch.float16, torch.bfloat16) else 2.0
)
if use_larger_multiplier_for_smaller_tensor and (
fp64_ref.numel() <= 10 and tol >= 4 * 1e-2
):
multiplier = 10.0
elif use_larger_multiplier_for_smaller_tensor and (
fp64_ref.numel() <= 500 and tol >= 4 * 1e-2
):
multiplier = 5.0
elif (
fp64_ref.numel() < 1000
or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1)
# large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE
or tol >= 2 * 1e-2
):
# In the presence of noise, noise might dominate our error
# metric for smaller tensors.
# Similary, for 1x1 kernels, there seems to be high noise with amp.
multiplier = 3.0
passes_test = res_error <= (multiplier * ref_error + tol / 10.0)
if (
not passes_test
and equal_nan
and math.isnan(ref_error)
and math.isnan(res_error)
# Some unit test for the accuracy minifier relies on
# returning false in this case.
and not inductor_config.cpp.inject_relu_bug_TESTING_ONLY
):
passes_test = True
if not passes_test:
log_error(
"RMSE (res-fp64): %.5f, (ref-fp64): %.5f and shape=%s. res.dtype: %s, multiplier: %f, tol: %f"
", use_larger_multiplier_for_smaller_tensor: %d",
res_error,
ref_error,
res.size(),
res.dtype,
multiplier,
tol,
use_larger_multiplier_for_smaller_tensor,
)
return passes_test
if ignore_non_fp:
return True
log_error("Accuracy failed: allclose not within tol=%s", tol)
return False
elif isinstance(ref, (str, int, type(None), bool, torch.device)):
if ignore_non_fp:
return True
r = ref == res
if not r:
log_error("Accuracy failed (%s): %s != %s", type(ref), ref, res)
return r
elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
if relax_numpy_equality and not (
is_numpy_int_type(res) or is_numpy_float_type(res)
):
ref = ref.item()
r = (type(ref) is type(res)) and (ref == res)
if not r:
log_error("Accuracy failed (numpy): %s != %s", ref, res)
return r
elif is_numpy_ndarray(ref):
return (type(ref) is type(res)) and same(
torch.as_tensor(ref),
torch.as_tensor(res),
fp64_ref,
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
relax_numpy_equality=relax_numpy_equality,
ignore_non_fp=ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
elif type(ref).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
"LongformerMaskedLMOutput",
"Instances",
"SquashedNormal",
"Boxes",
"Normal",
"TanhTransform",
"Foo",
"Variable",
):
assert type(ref) is type(res)
return all(
same(
getattr(ref, key),
getattr(res, key),
getattr(fp64_ref, key),
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
relax_numpy_equality=relax_numpy_equality,
ignore_non_fp=ignore_non_fp,
log_error=log_error,
use_larger_multiplier_for_smaller_tensor=use_larger_multiplier_for_smaller_tensor,
)
for key in ref.__dict__.keys()
)
else:
raise RuntimeError(f"unsupported type: {type(ref).__name__}")
def format_func_info(code):
short_filename = code.co_filename.split("/")[-1]
return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"
@contextlib.contextmanager
def disable_cache_limit():
prior = config.cache_size_limit
config.cache_size_limit = sys.maxsize
prior_acc_limit = config.accumulated_cache_size_limit
config.accumulated_cache_size_limit = sys.maxsize
try:
yield
finally:
config.cache_size_limit = prior
config.accumulated_cache_size_limit = prior_acc_limit
# map from transformed code back to original user code
orig_code_map = ExactWeakKeyDictionary()
# keep a record of code_obj -> list of guard failure reasons for logging
guard_failures: DefaultDict[Any, List[Any]] = collections.defaultdict(list)
# Keep a record of graph break reasons for logging
graph_break_reasons: List[torch._dynamo.output_graph.GraphCompileReason] = []
# keep record of compiled code, if we are in "error if recompile"
# to track code that dynamo has compiled previously
seen_code_map = ExactWeakKeyDictionary()
# return same dir unless user changes config between calls
@functools.lru_cache(None)
def _get_debug_dir(root_dir):
dir_name = (
"run_"
+ datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
# use pid to avoid conflicts among ranks
+ "-pid_"
+ str(os.getpid())
)
return os.path.join(root_dir, dir_name)
def get_debug_dir():
debug_root = config.debug_dir_root
return _get_debug_dir(debug_root)
def extract_fake_example_value(node, required=True):
if "example_value" in node.meta and is_fake(node.meta["example_value"]):
return node.meta["example_value"]
elif required:
from torch._dynamo.exc import unimplemented
unimplemented("`FakeTensor` example value was required but not available")
else:
return None
def ensure_graph_fake(e, tx):
assert maybe_get_fake_mode(e) is tx.fake_mode
return e
def get_fake_values_from_nodes(tx, nodes, allow_non_graph_fake):
def visit(n: torch.fx.Node):
if n.op == "call_function" and "example_value" not in n.meta:
# fake tensor validity is checked inside get_fake_value using
# ensure_graph_fake
return get_fake_value(n, tx, allow_non_graph_fake)
out = n.meta["example_value"]
if not allow_non_graph_fake and isinstance(out, torch.Tensor):
return ensure_graph_fake(out, tx)
return out
return torch.fx.node.map_arg(nodes, visit)
def get_fake_value(node, tx, allow_non_graph_fake=False):
"""
Run the computation represented by `node` using fake tensors and return the result.
allow_non_graph_fake: whether to allow the return result to be:
1. non-fake or 2. fake that is not created by this instance of Dynamo.
If `True`, you must be prepared to deal with such return values, ideally
by further wrapping them as this graph's fakes.
"""
from torch.utils._sympy.value_ranges import ValueRangeError
from .exc import (
TorchRuntimeError,
unimplemented,
Unsupported,
UserError,
UserErrorType,
)
op = node.op
# FX Node should always return the same fake value
if "example_value" in node.meta and is_fake(node.meta["example_value"]):
return node.meta["example_value"]
args, kwargs = get_fake_values_from_nodes(
tx, (node.args, node.kwargs), allow_non_graph_fake
)
nnmodule = None
if op == "call_method" and len(args) > 0 and isinstance(args[0], torch.nn.Module):
# If the first argument is nn.Module, should copy to fake mode.
args = (deepcopy_to_fake_tensor(args[0], tx.fake_mode),) + tuple(args[1:])
if op == "call_module":
nnmodule = tx.output.nn_modules[node.target]
if is_lazy_module(nnmodule) and hasattr(nnmodule, "_initialize_hook"):
# In the case of a lazy module, we want to run
# the pre-hooks which initialize it.
# Afterwards, lazy module deletes its pre-hooks
# to avoid treating it as lazy on subsequent recompile.
nnmodule._infer_parameters(nnmodule, args)
# no matter it's lazy module or not, we should copy to fake mode.
nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)
try:
with tx.fake_mode, enable_python_dispatcher():
ret_val = wrap_fake_exception(
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
)
except Unsupported:
raise
except RuntimeError as e:
cause: BaseException = e
if e.__cause__ is not None:
cause = e.__cause__
if isinstance(
cause, torch._subclasses.fake_tensor.DataDependentOutputException
):
unimplemented(
f"data dependent operator: {cause.func}; "
"to enable, set torch._dynamo.config.capture_scalar_outputs = True"
)
elif isinstance(
cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
):
if not torch._dynamo.config.capture_dynamic_output_shape_ops:
unimplemented(
f"dynamic shape operator: {cause.func}; "
"to enable, set torch._dynamo.config.capture_dynamic_output_shape_ops = True"
)
else:
unimplemented(
f"dynamic shape operator: {cause.func}; "
"Operator does not have a meta kernel that supports dynamic output shapes, "
"please report an issue to PyTorch"
)
elif isinstance(
cause, torch._subclasses.fake_tensor.UnsupportedOperatorException
):
op = cause.func
import_suggestion = ""
if isinstance(op, torch._ops.OpOverload):
maybe_pystub = torch._C._dispatch_pystub(
op._schema.name, op._schema.overload_name
)
if maybe_pystub is not None:
module, ctx = maybe_pystub
import_suggestion = (
f"It's possible that the support was implemented in "
f"module `{module}` and you may need to `import {module}`"
f"({ctx}), otherwise "
)
unimplemented(
f"unsupported operator: {cause.func} ({import_suggestion}see "
"https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit#heading=h.64r4npvq0w0"
" for how to fix)"
)
elif isinstance(
cause, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
):
raise UserError( # noqa: B904
UserErrorType.CONSTRAINT_VIOLATION,
str(cause),
case_name="constrain_as_size_example",
)
elif isinstance(cause, ValueRangeError):
raise UserError(UserErrorType.CONSTRAINT_VIOLATION, e.args[0]) from e
elif isinstance(cause, TypeError) and "argument" in str(cause):
unimplemented(f"TypeError {node.target}: {cause}")
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
if not allow_non_graph_fake:
_ = pytree.tree_map_only(
torch.Tensor, functools.partial(ensure_graph_fake, tx=tx), ret_val
)
return ret_val
_current_node = threading.local()
def get_current_node():
return getattr(_current_node, "value", None)
@contextmanager
def set_current_node(node):
old = get_current_node()
_current_node.value = node
try:
yield
finally:
_current_node.value = old
def run_node(tracer, node, args, kwargs, nnmodule):
"""
Runs a given node, with the given args and kwargs.
Behavior is dictated by a node's op.
run_node is useful for extracting real values out of nodes.
See get_real_value for more info on common usage.
Note: The tracer arg is only used for 'get_attr' ops
Note: The nnmodule arg is only used for 'call_module' ops
Nodes that are not call_function, call_method, call_module, or get_attr will
raise an AssertionError.
"""
op = node.op
with set_current_node(node):
def make_error_message(e):
return f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n" + str(e)
try:
if op == "call_function":
return node.target(*args, **kwargs)
elif op == "call_method":
return getattr(args[0], node.target)(*args[1:], **kwargs)
elif op == "call_module":
assert nnmodule is not None
return nnmodule(*args, **kwargs)
elif op == "get_attr":
return tracer.output_graph.get_submodule(node.target)
elif op == "placeholder":
assert "example_value" in node.meta
return node.meta["example_value"]
except (NotImplementedError, UnsupportedFakeTensorException) as e:
# NB: mimic how wrap_fake_exception does it
from .exc import unimplemented
unimplemented(make_error_message(e), from_exc=e)
except Exception as e:
raise RuntimeError(make_error_message(e)).with_traceback(
e.__traceback__
) from e
raise AssertionError(op)
def get_real_value(node, tracer):
"""
Run the actual computation represented by `node` and return the result.
This will execute any dependent nodes in the graph as well.
"""
from .exc import TorchRuntimeError
cache = tracer.real_value_cache
if node in cache:
return cache[node]
op = node.op
args, kwargs = torch.fx.node.map_arg( # type: ignore[misc]
(node.args, node.kwargs),
lambda n: get_real_value(n, tracer),
)
if op == "placeholder" and "grapharg" in node.meta:
return node.meta["grapharg"].example
if op == "call_module":
nn_module = tracer.output_graph.nn_modules[node.target]
if not is_lazy_module(nn_module):
nn_module = copy.deepcopy(nn_module)
else:
# In the case of a lazy module, we want to run
# the pre-hooks which initialize it
nn_module(*args, **kwargs)
else:
nn_module = None
try:
real_value = run_node(tracer, node, args, kwargs, nn_module)
cache[node] = real_value
except RuntimeError as e:
raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None
return real_value
def assert_no_fake_params_or_buffers(gm):
from torch._subclasses.fake_tensor import FakeTensorConfig, is_fake
def stack_or_hint(t):
if FakeTensorConfig.debug:
import traceback
return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}"
else:
return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors."
for name, buffer in gm.named_buffers():
assert not is_fake(
buffer
), f"Unexpected fake buffer {name} {stack_or_hint(buffer)}"
for name, param in gm.named_parameters():
assert not is_fake(
param
), f"Unexpected fake param {name} {stack_or_hint(param)}"
def fqn(obj: Any):
"""
Returns the fully qualified name of the object.
"""
return f"{obj.__module__}.{obj.__qualname__}"
def ifdynstaticdefault(count1, count2):
if torch._dynamo.config.assume_static_by_default:
return count1
else:
return count2
def import_submodule(mod: types.ModuleType):
"""
Ensure all the files in a given submodule are imported
"""
for filename in sorted(os.listdir(os.path.dirname(cast(str, mod.__file__)))):
if filename.endswith(".py") and filename[0] != "_":
importlib.import_module(f"{mod.__name__}.{filename[:-3]}")
def object_has_getattribute(value: Any):
return class_has_getattribute(type(value))
def class_has_getattribute(cls: type):
try:
if isinstance(
inspect.getattr_static(cls, "__getattribute__"),
types.FunctionType,
):
return True
except AttributeError:
pass
return False
def get_custom_getattr(value: Any, ignore_nn_module_getattr: bool = False):
try:
getattr_fn = inspect.getattr_static(type(value), "__getattr__")
except AttributeError:
getattr_fn = None
if ignore_nn_module_getattr and getattr_fn is torch.nn.Module.__getattr__:
# ignore this case of getattr
getattr_fn = None
return getattr_fn
class TensorStaticReason(enum.Enum):
PARAMETER = 2
NOT_TENSOR = 4
NN_MODULE_PROPERTY = 5
def tensor_static_reason_to_message(reason: TensorStaticReason):
if reason == TensorStaticReason.PARAMETER:
return "mark_dynamic on parameter, parameters are always static today."
if reason == TensorStaticReason.NOT_TENSOR:
return "mark_dynamic on a non tensor, how did this happen?"
if reason == TensorStaticReason.NN_MODULE_PROPERTY:
return "tensor is static because it is nn module associated."
raise AssertionError(f"Illegal reason {reason}")
def tensor_always_has_static_shape(
tensor: Union[torch.Tensor, Any],
is_tensor: bool,
tensor_source: Source,
) -> Tuple[bool, Optional[TensorStaticReason]]:
"""
Given a tensor, source, and is_tensor flag, determine if a shape should be static.
Args:
tensor - the real tensor to evaluate, parameters force a static shape.
is_tensor - internal dynamo check, essentially "is_tensor": target_cls is TensorVariable,
tensors not in a TensorVariable for whatever reason are forced static.
Returns a tuple, where the first element is the bool of whether or not this tensor should have a static shape.
The second element is a TensorStaticReason, useful for passing to tensor_static_reason_to_message if needed.
"""
from .source import is_from_unspecialized_param_buffer_source
if (
tensor_source.guard_source().is_specialized_nn_module()
or tensor_source.guard_source().is_unspecialized_builtin_nn_module()
) and config.force_nn_module_property_static_shapes:
return True, TensorStaticReason.NN_MODULE_PROPERTY
if (
type(tensor) is torch.nn.Parameter
or is_from_unspecialized_param_buffer_source(tensor_source)
) and config.force_parameter_static_shapes:
return True, TensorStaticReason.PARAMETER
if not is_tensor:
return True, TensorStaticReason.NOT_TENSOR
return False, None
def lazy_format_graph_tabular(fn_name, gm):
def inner():
try:
from tabulate import tabulate # TODO: Check that this is installed
except ImportError:
return (
"Tabulate module missing, please install tabulate to log the graph in tabular format, logging code instead:\n"
+ str(lazy_format_graph_code(fn_name, gm))
)
node_specs = [
[n.op, n.name, n.target, n.args, n.kwargs] for n in gm.graph.nodes
]
graph_str = tabulate(
node_specs, headers=["opcode", "name", "target", "args", "kwargs"]
)
return _format_graph_code(fn_name, gm.forward.__code__.co_filename, graph_str)
return LazyString(inner)
def format_bytecode(prefix, name, filename, line_no, code):
return f"{prefix} {name} {filename} line {line_no} \n{dis.Bytecode(code).dis()}\n"
forward_hook_names = ["_forward_pre_hooks", "_forward_hooks"]
backward_hook_names = ["_backward_pre_hooks", "_backward_hooks"]
state_dict_hook_names = [
"_state_dict_pre_hooks",
"_state_dict_hooks",
"_load_state_dict_pre_hooks",
"_load_state_dict_post_hooks",
]
all_hook_names = forward_hook_names + backward_hook_names + state_dict_hook_names
def nn_module_has_global_hooks():
# This is limited to backward hooks for now because NNModuleVariable
# supports fwd hooks underneath.
return len(torch.nn.modules.module._global_backward_hooks) or len(
torch.nn.modules.module._global_backward_pre_hooks
)
def nn_module_get_all_hooks(
mod,
check_forward_hooks=False,
check_backward_hooks=False,
check_state_dict_hooks=False,
):
"""
Sometimes its useful to differentiate between types of hooks such as forward/backward/pre
hooks executed during module.__call__, and state_dict hooks which are executed separately.
"""
hook_dicts_to_check = []
check_all_hooks = (
not check_forward_hooks
and not check_backward_hooks
and not check_state_dict_hooks
)
if check_forward_hooks or check_all_hooks:
hook_dicts_to_check.extend(forward_hook_names)
if check_backward_hooks or check_all_hooks:
hook_dicts_to_check.extend(backward_hook_names)
if check_state_dict_hooks:
hook_dicts_to_check.extend(state_dict_hook_names)
all_hooks = []
for hook_dict_name in hook_dicts_to_check:
hooks = getattr(mod, hook_dict_name, [])
for hook_name in hooks:
hook = hooks[hook_name]
all_hooks.append(hook)
return all_hooks
def nnmodule_has_hooks(
mod,
check_forward_hooks=False,
check_backward_hooks=False,
check_state_dict_hooks=False,
):
"""
Helper function to check if a module has any hooks attached to it.
"""
hooks = nn_module_get_all_hooks(
mod,
check_forward_hooks=check_forward_hooks,
check_backward_hooks=check_backward_hooks,
check_state_dict_hooks=check_state_dict_hooks,
)
return bool(hooks)
def to_numpy_helper(value):
"""Convert tensor and tnp.ndarray to numpy.ndarray."""
if is_fake(value):
return value
if isinstance(value, tnp.ndarray):
return to_numpy_helper(value.tensor)
elif isinstance(value, torch.Tensor):
return value.numpy(force=True)
elif isinstance(value, (tuple, list)):
return type(value)(to_numpy_helper(obj) for obj in value)
else:
return value
def numpy_to_tensor(value):
"""Convert tnp.ndarray to tensor, leave other types intact. If a list/tuple, loop through it to convert."""
assert np is not None
if isinstance(value, np.ndarray):
return torch.as_tensor(value)
if isinstance(value, tnp.ndarray):
return value.tensor
elif isinstance(value, (tuple, list)):
return type(value)(numpy_to_tensor(obj) for obj in value)
else:
return value
class numpy_to_tensor_wrapper:
def __init__(self, f):
self.f = f
self.__name__ = "wrapped_" + self.f.__name__
def __repr__(self):
return f"<Wrapped function <original {self.f.__name__}>>"
def __call__(self, *args, **kwargs):
out = self.f(*args, **kwargs)
return numpy_to_tensor(out)
def numpy_attr_wrapper(obj, name):
if isinstance(obj, tnp.ndarray):
out = getattr(obj, name)
return numpy_to_tensor(out)
elif isinstance(obj, torch.Tensor):
out = getattr(tnp.ndarray(obj), name)
return numpy_to_tensor(out)
class numpy_method_wrapper:
"""Convert obj from torch.Tensor to tnp.ndarray and call method. Then convert result back to torch.Tensor."""
def __init__(self, method: str):
self.method = method
self.__name__ = "wrapped_" + self.method
def __repr__(self):
return f"<Wrapped method <original {self.method}>>"
def __call__(self, *args, **kwargs):
obj = args[0]
if isinstance(obj, torch.Tensor):
obj = tnp.ndarray(obj)
method_callable = getattr(obj, self.method)
out = method_callable(*args[1:], **kwargs)
return numpy_to_tensor(out)
class numpy_operator_wrapper:
"""Implements dunder methods for tnp.ndarray via functions from the operator library"""
def __init__(self, op: Callable[..., Any]):
self.op = op
self.__name__ = f"wrapped_{op.__name__}"
def __repr__(self):
return f"<Wrapped operator <original {self.__name__}>>"
def __call__(self, *args, **kwargs):
assert not kwargs
args = (
tnp.ndarray(arg) if isinstance(arg, torch.Tensor) else arg for arg in args
)
out = self.op(*args)
return numpy_to_tensor(out)
def defake(x):
if not isinstance(x, FakeTensor):
return x
size: torch._prims_common.ShapeType
stride: torch._prims_common.StrideType
if x._has_symbolic_sizes_strides:
size = []
for s in x.size():
if isinstance(s, torch.SymInt):
size.append(s.node.shape_env.size_hint(s.node.expr))
else:
size.append(s)
stride = []
for s in x.stride():
if isinstance(s, torch.SymInt):
stride.append(s.node.shape_env.size_hint(s.node.expr))
else:
stride.append(s)
else:
size = x.size()
stride = x.stride()
y = torch.empty_strided(
size,
stride,
dtype=x.dtype,
device=x.device,
requires_grad=x.requires_grad,
)
y.zero_()
return y
def is_utils_checkpoint(obj):
# Lazy import to avoid circular dependencies
import torch.utils.checkpoint
return obj is torch.utils.checkpoint.checkpoint
def build_checkpoint_variable(**options):
import torch._higher_order_ops.wrap as higher_order_ops
from .variables.higher_order_ops import TorchHigherOrderOperatorVariable
# TODO - This is a temporary situation where we have two versions of
# checkpointing implementation. We will converge on one and remove the other.
activation_checkpoint_op: torch._ops.HigherOrderOperator = (
higher_order_ops.tag_activation_checkpoint
)
if torch._functorch.config.functionalize_rng_ops:
activation_checkpoint_op = higher_order_ops.wrap_activation_checkpoint
return TorchHigherOrderOperatorVariable.make(
activation_checkpoint_op,
**options,
)
def is_compile_supported(device_type):
from .eval_frame import is_dynamo_supported
compile_supported = is_dynamo_supported()
if device_type == "cpu":
pass
elif device_type == "cuda" and compile_supported:
compile_supported = has_triton()
else:
compile_supported = False
return compile_supported
# The following 3.11 source code functions are adapted from
# https://github.com/python/cpython/blob/v3.11.4/Lib/traceback.py
# in order to output source code corresponding to bytecode in 3.11+.
# We need our own versions since we want to support multiline expressions.
def _fix_offset(str: str, offset: int) -> int:
"""
Convert byte offset `offset` of `str` into character offset.
Byte offset is used for 3.11+ instruction column data.
Takes things like unicode characters into consideration.
Unchanged from CPython implementation.
"""
as_utf8 = str.encode("utf-8")
return len(as_utf8[:offset].decode("utf-8", errors="replace"))
@dataclasses.dataclass
class _Anchors:
# inclusive
left_end_lineno: int
left_end_offset: int
right_start_lineno: int
# exclusive
right_start_offset: int
def _extract_anchors_from_expr(segment: str) -> Optional[_Anchors]:
"""
Given source code `segment` corresponding to a bytecode
instruction, determine:
- for binary ops, the location of the binary op
- for indexing, the location of the brackets.
`segment` is expected to be a valid Python expression
"""
assert sys.version_info >= (3, 11)
import ast
try:
# Without brackets, `segment` is parsed as a statement.
# We expect an expression, so wrap `segment` in
# brackets to handle multi-line expressions.
tree = ast.parse("(\n" + segment + "\n)")
except SyntaxError:
return None
if len(tree.body) != 1:
return None
lines = segment.split("\n")
# get character index given byte offset
def normalize(lineno, offset):
return _fix_offset(lines[lineno], offset)
# Gets the next valid character index in `lines`, if
# the current location is not valid. Handles empty lines.
def next_valid_char(lineno, col):
while lineno < len(lines) and col >= len(lines[lineno]):
col = 0
lineno += 1
assert lineno < len(lines) and col < len(lines[lineno])
return lineno, col
# Get the next valid character index in `lines`.
def increment(lineno, col):
col += 1
lineno, col = next_valid_char(lineno, col)
assert lineno < len(lines) and col < len(lines[lineno])
return lineno, col
# Get the next valid character at least on the next line
def nextline(lineno, col):
col = 0
lineno += 1
lineno, col = next_valid_char(lineno, col)
assert lineno < len(lines) and col < len(lines[lineno])
return lineno, col
statement = tree.body[0]
if isinstance(statement, ast.Expr):
expr = statement.value
if isinstance(expr, ast.BinOp):
# ast gives locations for BinOp subexpressions, e.g.
# ( left_expr ) + ( right_expr )
# left^^^^^ right^^^^^
# -2 since end_lineno is 1-indexed and because we added an extra
# bracket to `segment` when calling ast.parse
cur_lineno = cast(int, expr.left.end_lineno) - 2
cur_col = normalize(cur_lineno, expr.left.end_col_offset)
cur_lineno, cur_col = next_valid_char(cur_lineno, cur_col)
# Heuristic to find the operator character.
# The original CPython implementation did not look for ), \, or #,
# leading to incorrect anchor location, e.g.
# (x) + (y)
# ~~^~~~~~~
while (ch := lines[cur_lineno][cur_col]).isspace() or ch in ")\\#":
if ch in "\\#":
cur_lineno, cur_col = nextline(cur_lineno, cur_col)
else:
cur_lineno, cur_col = increment(cur_lineno, cur_col)
# binary op is 1 or 2 characters long, on the same line
right_col = cur_col + 1
if (
right_col < len(lines[cur_lineno])
and not (ch := lines[cur_lineno][right_col]).isspace()
and ch not in "\\#"
):
right_col += 1
# right_col can be invalid since it is exclusive
return _Anchors(cur_lineno, cur_col, cur_lineno, right_col)
elif isinstance(expr, ast.Subscript):
# ast gives locations for value and slice subexpressions, e.g.
# ( value_expr ) [ slice_expr ]
# value^^^^^ slice^^^^^
# subscript^^^^^^^^^^^^^^^^^^^^
# find left bracket (first '[' after value)
left_lineno = cast(int, expr.value.end_lineno) - 2
left_col = normalize(left_lineno, expr.value.end_col_offset)
left_lineno, left_col = next_valid_char(left_lineno, left_col)
while lines[left_lineno][left_col] != "[":
left_lineno, left_col = increment(left_lineno, left_col)
# find right bracket (final character of expression)
right_lineno = cast(int, expr.end_lineno) - 2
right_col = normalize(right_lineno, expr.end_col_offset)
return _Anchors(left_lineno, left_col, right_lineno, right_col)
elif isinstance(expr, ast.Call):
# ( func_expr ) (args, kwargs)
# func^^^^^
# call^^^^^^^^^^^^^^^^^^^^^^^^
# find left bracket (first '(' after func)
left_lineno = cast(int, expr.func.end_lineno) - 2
left_col = normalize(left_lineno, expr.func.end_col_offset)
left_lineno, left_col = next_valid_char(left_lineno, left_col)
while lines[left_lineno][left_col] != "(":
left_lineno, left_col = increment(left_lineno, left_col)
# find right bracket (final character of expression)
right_lineno = cast(int, expr.end_lineno) - 2
right_col = normalize(right_lineno, expr.end_col_offset)
return _Anchors(left_lineno, left_col, right_lineno, right_col)
return None
def get_instruction_source_311(code: types.CodeType, inst: dis.Instruction) -> str:
"""
Python 3.11+ only. Returns lines of source code (from code object `code`)
corresponding to `inst`'s location data, and underlines relevant code to `inst`.
Example: CALL on `g`:
f(g(
^^
h(x)))
^^^^^
We need our own implementation since `format_frame_summary` in
Python's `traceback` module doesn't handle multi-line expressions
(and their anchor extraction code is not completely correct).
"""
assert inst.positions is not None
if inst.positions.lineno is None:
return ""
# The rstrip + "\n" pattern is used throughout this function to handle
# linecache.getline errors. Error lines are treated as empty strings "", but we want
# to treat them as blank lines "\n".
first_line = linecache.getline(code.co_filename, inst.positions.lineno).rstrip()
if inst.positions.end_lineno is None:
return first_line
if inst.positions.col_offset is None or inst.positions.end_col_offset is None:
return first_line
# character index of the start of the instruction
start_offset = _fix_offset(first_line, inst.positions.col_offset)
# character index of the end of the instruction
# compute later since end may be a different line
end_offset = None
# expression corresponding to the instruction so we can get anchors
segment = ""
# underline markers to be printed - start with `~` marker and replace with `^` later
markers = []
# Compute segment and initial markers
if inst.positions.end_lineno == inst.positions.lineno:
end_offset = _fix_offset(first_line, inst.positions.end_col_offset)
segment = first_line[start_offset:end_offset]
markers.append(" " * start_offset + "~" * (end_offset - start_offset))
else:
segment = first_line[start_offset:] + "\n"
markers.append(" " * start_offset + "~" * (len(first_line) - start_offset))
last_line = linecache.getline(
code.co_filename, inst.positions.end_lineno
).rstrip()
end_offset = _fix_offset(last_line, inst.positions.end_col_offset)
for lineno in range(inst.positions.lineno + 1, inst.positions.end_lineno):
line = linecache.getline(code.co_filename, lineno).rstrip()
segment += line + "\n"
# don't underline leading spaces
num_spaces = len(line) - len(line.lstrip())
markers.append(" " * num_spaces + "~" * (len(line) - num_spaces))
segment += last_line[:end_offset]
num_spaces = len(last_line) - len(last_line.lstrip())
markers.append(" " * num_spaces + "~" * (end_offset - num_spaces))
anchors: Optional[_Anchors] = None
try:
anchors = _extract_anchors_from_expr(segment)
except AssertionError:
pass
# replace `~` markers with `^` where necessary
if anchors is None:
markers = [marker.replace("~", "^") for marker in markers]
else:
# make markers mutable
mutable_markers: List[List[str]] = [list(marker) for marker in markers]
# anchor positions do not take start_offset into account
if anchors.left_end_lineno == 0:
anchors.left_end_offset += start_offset
if anchors.right_start_lineno == 0:
anchors.right_start_offset += start_offset
# Turn `~`` markers between anchors to `^`
for lineno in range(len(markers)):
for col in range(len(mutable_markers[lineno])):
if lineno < anchors.left_end_lineno:
continue
if lineno == anchors.left_end_lineno and col < anchors.left_end_offset:
continue
if (
lineno == anchors.right_start_lineno
and col >= anchors.right_start_offset
):
continue
if lineno > anchors.right_start_lineno:
continue
if mutable_markers[lineno][col] == "~":
mutable_markers[lineno][col] = "^"
# make markers into strings again
markers = ["".join(marker) for marker in mutable_markers]
result = ""
for i in range(len(markers)):
result += (
linecache.getline(code.co_filename, inst.positions.lineno + i).rstrip()
+ "\n"
)
result += markers[i] + "\n"
return result
def get_static_address_type(t):
if isinstance(t, torch.Tensor):
return getattr(t, "_dynamo_static_input_type", None)
return None
def is_rng_state_getter_or_setter(value):
getters = (
# The following two functions are not identical, so don't remove anyone!
torch._C.Generator.get_state,
torch.default_generator.get_state,
torch.get_rng_state,
torch.cuda.get_rng_state,
)
setters = (
torch._C.Generator.set_state,
torch.default_generator.set_state,
torch.set_rng_state,
torch.cuda.set_rng_state,
)
return value in (*setters, *getters)
def is_tensor_base_attr_getter(value):
return (
isinstance(value, types.MethodWrapperType)
and value.__name__ == "__get__"
and value.__self__.__objclass__ is torch._C._TensorBase # type: ignore[attr-defined]
)
def is_torch_function_object(value):
return hasattr(value, "__torch_function__")
def has_torch_function(vt: torch._dynamo.variables.base.VariableTracker) -> bool:
from torch._dynamo.variables import LazyVariableTracker, UserDefinedObjectVariable
from torch._dynamo.variables.torch_function import TensorWithTFOverrideVariable
if isinstance(vt, TensorWithTFOverrideVariable):
return True
if isinstance(vt, LazyVariableTracker):
LazyVariableTracker.realize(vt)
return isinstance(vt, UserDefinedObjectVariable) and hasattr(
vt.value, "__torch_function__"
)
# see note [Tensor Fakification and Symbol Caching]
def to_fake_tensor(t, fake_mode):
symbolic_context = None
source = None
if tracing_context := torch._guards.TracingContext.try_get():
if t in tracing_context.tensor_to_context:
symbolic_context = tracing_context.tensor_to_context[t]
source = symbolic_context.tensor_source
return fake_mode.from_tensor(
t, static_shapes=False, symbolic_context=symbolic_context, source=source
)
# NB: this works for both classes and instances
def is_frozen_dataclass(value):
return (
not object_has_getattribute(value)
and not class_has_getattribute(value)
and is_dataclass(value)
and value.__dataclass_params__.frozen
)
def get_first_attr(obj, *attrs):
"""
Return the first available attribute or throw an exception if none is present.
"""
for attr in attrs:
if hasattr(obj, attr):
return getattr(obj, attr)
raise AssertionError(f"{obj} does not has any of the attributes: {attrs}")
@contextlib.contextmanager
def maybe_enable_compiled_autograd(should_enable, fullgraph=True, dynamic=True):
if not should_enable:
yield
else:
def compiler_fn(gm):
def inner_compiler(gm_, example_inputs_):
torch._dynamo.utils.counters["compiled_autograd"]["compiles"] += 1
return torch._inductor.compile(gm_, example_inputs_)
return torch.compile(
gm, backend=inner_compiler, fullgraph=fullgraph, dynamic=dynamic
)
with torch._dynamo.compiled_autograd.enable(compiler_fn) as ctx:
yield ctx
def invalid_removeable_handle():
# need a subclass so weakref works
class Invalid(dict): # type: ignore[type-arg]
pass
return RemovableHandle(Invalid())
# Returns a "proxy" (new object with the same class and dict) for (non-GraphModule) nn.Module's.
# Attribute changes to the original object/proxy will be reflected in the other.
# This is useful for cases where we want a keep-alive reference to a module without increasing
# its reference count.
def nn_module_proxy(mod):
if not isinstance(mod, torch.nn.Module):
return mod
if isinstance(mod, torch.fx.GraphModule):
# Dynamo-generated GM's shouldn't contain user-created GM's
return mod
proxy = mod.__class__.__new__(mod.__class__)
proxy.__dict__ = mod.__dict__
return proxy
class GmWrapper(torch.nn.Module):
def __init__(self, gm, unflatten_fn):
super().__init__()
self.gm = gm
self.unflatten_fn = unflatten_fn
def forward(self, *args):
args: List[Any] = list(args)
return self.gm(*self.unflatten_fn(args))
def flatten_graph_inputs(gm: torch.fx.GraphModule, inputs, compile_gm):
"""
Mutate inputs so that they are flat and wrap gm such that it
accepts those inputs. This is needed for graphs that take
bumpy inputs.
"""
inputs_idx_to_clear = [
i
for i, node in enumerate(gm.graph.nodes)
if node.op == "placeholder" and node.meta.get("steal_arg", False)
]
if torch._dynamo.compiled_autograd.in_compiled_autograd_region:
# fast path, avoid pytree overhead
# compiled autograd inputs are always a list of tensors, maybe followed by symints
assert inputs_idx_to_clear == [0]
assert isinstance(inputs[0], list)
boxed_inputs_count = len(inputs[0])
def flatten_fn(args):
return args[0] + list(args[1:])
def unflatten_fn(flat_args):
return (flat_args[:boxed_inputs_count], *flat_args[boxed_inputs_count:])
compiled_fn = compile_gm(GmWrapper(gm, unflatten_fn), flatten_fn(inputs))
else:
# slow path, don't know inputs structure
flat_inputs, spec = pytree.tree_flatten(inputs)
unflatten_fn = functools.partial(pytree.tree_unflatten, treespec=spec)
compiled_fn = compile_gm(GmWrapper(gm, unflatten_fn), flat_inputs)
# note this doesn't check the spec, assuming it is the same
flatten_fn = pytree.arg_tree_leaves
def wrapper(*args):
flat_args = flatten_fn(args)
# flat_args is a new list, so we need to clear references from the old list
for i in inputs_idx_to_clear:
args[i].clear()
# this call is boxed to avoid increasing refcount until we reach aot_module_simplified forward
return compiled_fn(flat_args)
return wrapper
def get_locals_to_steal(maybe_gm):
if not isinstance(maybe_gm, torch.fx.GraphModule) or not hasattr(maybe_gm, "meta"):
return []
return maybe_gm.meta.get("locals_to_steal", [])
def set_locals_to_steal(gm, locals_to_steal):
gm.meta["locals_to_steal"] = locals_to_steal
class Lit:
def __init__(self, s):
self.s = s
def __repr__(self):
return self.s
warn_once_cache: Set[str] = set()
def warn_once(msg, stacklevel=1):
# Dynamo causes all warnings.warn (in user code and in Dynamo code) to print all the time.
# https://github.com/pytorch/pytorch/issues/128427.
# warn_once is a workaround: if the msg has been warned on before, then we will not
# warn again.
# NB: it's totally ok to store a cache of all the strings: this is what warnings.warn does as well.
if msg in warn_once_cache:
return
warn_once_cache.add(msg)
warnings.warn(msg, stacklevel=stacklevel + 1)
def strip_color_from_string(text):
# This regular expression matches ANSI escape codes
ansi_escape = re.compile(r"\x1B[@-_][0-?]*[ -/]*[@-~]")
return ansi_escape.sub("", text)
@contextlib.contextmanager
def _disable_saved_tensors_hooks_during_tracing():
# See NOTE: [Deferring tensor pack/unpack hooks until runtime]
try:
prior = torch._C._autograd._saved_tensors_hooks_set_tracing(True)
yield
finally:
torch._C._autograd._saved_tensors_hooks_set_tracing(prior)
def is_parameter_freezing():
return torch._inductor.config.freezing and not torch.is_grad_enabled()
def get_torch_function_mode_stack(filter_ignored=True):
from .variables.torch_function import IGNORED_MODES
stack = [_get_function_stack_at(i) for i in range(_len_torch_function_stack())]
if filter_ignored:
stack = [mode for mode in stack if type(mode) not in IGNORED_MODES]
return stack
def get_torch_function_mode_stack_at(ind):
assert ind < _len_torch_function_stack() and ind >= 0
return torch._C._get_function_stack_at(ind)
def set_torch_function_mode_stack(stack):
for i in range(_len_torch_function_stack()):
_pop_torch_function_stack()
for mode in stack:
_push_on_torch_function_stack(mode)
def verify_guard_fn_signature(value):
fn = value.__metadata_guard__
sig = inspect.signature(fn)
if len(sig.parameters) != 2:
from .exc import InternalTorchDynamoError
raise InternalTorchDynamoError(
"Tensor subclass method __metadata_guard__ must take exactly two subclass metadata arguments"
)
if fn.__self__ != value.__class__:
from .exc import InternalTorchDynamoError
raise InternalTorchDynamoError(
"Tensor subclass method __metadata_guard__ must be a classmethod"
)
def does_not_override_dict_iter_methods(user_cls):
return (
user_cls.items in (dict.items, collections.OrderedDict.items)
and user_cls.values in (dict.values, collections.OrderedDict.values)
and user_cls.keys in (dict.keys, collections.OrderedDict.keys)
and user_cls.__iter__ in (dict.__iter__, collections.OrderedDict.__iter__)
)
# Helper function to extract relevant parts of a tensor's __dict__ to store in node meta.
# To avoid ref cycles, it's important that no tensors are present here, so leave those out.
def _extract_tensor_dict(t):
KEYS_TO_COPY = [
"_dynamo_static_input_type",
"tag",
]
tensor_dict = {
key: copy.copy(t.__dict__[key]) for key in KEYS_TO_COPY if key in t.__dict__
}
return tensor_dict
# This is useful for reconstructing within the Dynamo graph the non-graph-input objects
# whose lifetime is governed by the user.
# e.g. torch.cuda.Event is a prime example.
user_obj_id_to_weakref: Dict[int, weakref.ReferenceType[object]] = {}
def get_user_object_from_id(obj_id):
obj = user_obj_id_to_weakref[obj_id]()
assert obj is not None, "User object is no longer alive"
return obj
def store_user_object_weakref(obj):
obj_id = id(obj)
user_obj_id_to_weakref[obj_id] = weakref.ref(obj)
class CompileTimeInstructionCounter:
_counter: int = 0
_id: int = -1
_depth = 0
@classmethod
def start(cls) -> None:
cls._depth = cls._depth + 1
if cls._depth == 1:
cls._id = _instruction_counter.start()
@classmethod
def end(cls) -> None:
cls._depth = cls._depth - 1
if cls._depth == 0:
cls._counter += _instruction_counter.end(cls._id)
cls._id = -1
@classmethod
def clear(cls) -> None:
cls._counter = 0
@classmethod
def value(cls) -> int:
return cls._counter
@classmethod
@contextmanager
def record(cls):
try:
if config.record_compile_time_instruction_count:
cls.start()
yield
finally:
if config.record_compile_time_instruction_count:
cls.end()