| # mypy: ignore-errors |
| |
| from __future__ import annotations |
| |
| import functools |
| import math |
| from typing import Sequence |
| |
| import torch |
| |
| from . import _dtypes_impl, _util |
| from ._normalizations import ArrayLike, KeepDims, normalizer |
| |
| |
| class LinAlgError(Exception): |
| pass |
| |
| |
| def _atleast_float_1(a): |
| if not (a.dtype.is_floating_point or a.dtype.is_complex): |
| a = a.to(_dtypes_impl.default_dtypes().float_dtype) |
| return a |
| |
| |
| def _atleast_float_2(a, b): |
| dtyp = _dtypes_impl.result_type_impl(a, b) |
| if not (dtyp.is_floating_point or dtyp.is_complex): |
| dtyp = _dtypes_impl.default_dtypes().float_dtype |
| |
| a = _util.cast_if_needed(a, dtyp) |
| b = _util.cast_if_needed(b, dtyp) |
| return a, b |
| |
| |
| def linalg_errors(func): |
| @functools.wraps(func) |
| def wrapped(*args, **kwds): |
| try: |
| return func(*args, **kwds) |
| except torch._C._LinAlgError as e: |
| raise LinAlgError(*e.args) # noqa: B904 |
| |
| return wrapped |
| |
| |
| # ### Matrix and vector products ### |
| |
| |
| @normalizer |
| @linalg_errors |
| def matrix_power(a: ArrayLike, n): |
| a = _atleast_float_1(a) |
| return torch.linalg.matrix_power(a, n) |
| |
| |
| @normalizer |
| @linalg_errors |
| def multi_dot(inputs: Sequence[ArrayLike], *, out=None): |
| return torch.linalg.multi_dot(inputs) |
| |
| |
| # ### Solving equations and inverting matrices ### |
| |
| |
| @normalizer |
| @linalg_errors |
| def solve(a: ArrayLike, b: ArrayLike): |
| a, b = _atleast_float_2(a, b) |
| return torch.linalg.solve(a, b) |
| |
| |
| @normalizer |
| @linalg_errors |
| def lstsq(a: ArrayLike, b: ArrayLike, rcond=None): |
| a, b = _atleast_float_2(a, b) |
| # NumPy is using gelsd: https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/umath_linalg.cpp#L3991 |
| # on CUDA, only `gels` is available though, so use it instead |
| driver = "gels" if a.is_cuda or b.is_cuda else "gelsd" |
| return torch.linalg.lstsq(a, b, rcond=rcond, driver=driver) |
| |
| |
| @normalizer |
| @linalg_errors |
| def inv(a: ArrayLike): |
| a = _atleast_float_1(a) |
| result = torch.linalg.inv(a) |
| return result |
| |
| |
| @normalizer |
| @linalg_errors |
| def pinv(a: ArrayLike, rcond=1e-15, hermitian=False): |
| a = _atleast_float_1(a) |
| return torch.linalg.pinv(a, rtol=rcond, hermitian=hermitian) |
| |
| |
| @normalizer |
| @linalg_errors |
| def tensorsolve(a: ArrayLike, b: ArrayLike, axes=None): |
| a, b = _atleast_float_2(a, b) |
| return torch.linalg.tensorsolve(a, b, dims=axes) |
| |
| |
| @normalizer |
| @linalg_errors |
| def tensorinv(a: ArrayLike, ind=2): |
| a = _atleast_float_1(a) |
| return torch.linalg.tensorinv(a, ind=ind) |
| |
| |
| # ### Norms and other numbers ### |
| |
| |
| @normalizer |
| @linalg_errors |
| def det(a: ArrayLike): |
| a = _atleast_float_1(a) |
| return torch.linalg.det(a) |
| |
| |
| @normalizer |
| @linalg_errors |
| def slogdet(a: ArrayLike): |
| a = _atleast_float_1(a) |
| return torch.linalg.slogdet(a) |
| |
| |
| @normalizer |
| @linalg_errors |
| def cond(x: ArrayLike, p=None): |
| x = _atleast_float_1(x) |
| |
| # check if empty |
| # cf: https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/linalg.py#L1744 |
| if x.numel() == 0 and math.prod(x.shape[-2:]) == 0: |
| raise LinAlgError("cond is not defined on empty arrays") |
| |
| result = torch.linalg.cond(x, p=p) |
| |
| # Convert nans to infs (numpy does it in a data-dependent way, depending on |
| # whether the input array has nans or not) |
| # XXX: NumPy does this: https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/linalg.py#L1744 |
| return torch.where(torch.isnan(result), float("inf"), result) |
| |
| |
| @normalizer |
| @linalg_errors |
| def matrix_rank(a: ArrayLike, tol=None, hermitian=False): |
| a = _atleast_float_1(a) |
| |
| if a.ndim < 2: |
| return int((a != 0).any()) |
| |
| if tol is None: |
| # follow https://github.com/numpy/numpy/blob/v1.24.0/numpy/linalg/linalg.py#L1885 |
| atol = 0 |
| rtol = max(a.shape[-2:]) * torch.finfo(a.dtype).eps |
| else: |
| atol, rtol = tol, 0 |
| return torch.linalg.matrix_rank(a, atol=atol, rtol=rtol, hermitian=hermitian) |
| |
| |
| @normalizer |
| @linalg_errors |
| def norm(x: ArrayLike, ord=None, axis=None, keepdims: KeepDims = False): |
| x = _atleast_float_1(x) |
| return torch.linalg.norm(x, ord=ord, dim=axis) |
| |
| |
| # ### Decompositions ### |
| |
| |
| @normalizer |
| @linalg_errors |
| def cholesky(a: ArrayLike): |
| a = _atleast_float_1(a) |
| return torch.linalg.cholesky(a) |
| |
| |
| @normalizer |
| @linalg_errors |
| def qr(a: ArrayLike, mode="reduced"): |
| a = _atleast_float_1(a) |
| result = torch.linalg.qr(a, mode=mode) |
| if mode == "r": |
| # match NumPy |
| result = result.R |
| return result |
| |
| |
| @normalizer |
| @linalg_errors |
| def svd(a: ArrayLike, full_matrices=True, compute_uv=True, hermitian=False): |
| a = _atleast_float_1(a) |
| if not compute_uv: |
| return torch.linalg.svdvals(a) |
| |
| # NB: ignore the hermitian= argument (no pytorch equivalent) |
| result = torch.linalg.svd(a, full_matrices=full_matrices) |
| return result |
| |
| |
| # ### Eigenvalues and eigenvectors ### |
| |
| |
| @normalizer |
| @linalg_errors |
| def eig(a: ArrayLike): |
| a = _atleast_float_1(a) |
| w, vt = torch.linalg.eig(a) |
| |
| if not a.is_complex() and w.is_complex() and (w.imag == 0).all(): |
| w = w.real |
| vt = vt.real |
| return w, vt |
| |
| |
| @normalizer |
| @linalg_errors |
| def eigh(a: ArrayLike, UPLO="L"): |
| a = _atleast_float_1(a) |
| return torch.linalg.eigh(a, UPLO=UPLO) |
| |
| |
| @normalizer |
| @linalg_errors |
| def eigvals(a: ArrayLike): |
| a = _atleast_float_1(a) |
| result = torch.linalg.eigvals(a) |
| if not a.is_complex() and result.is_complex() and (result.imag == 0).all(): |
| result = result.real |
| return result |
| |
| |
| @normalizer |
| @linalg_errors |
| def eigvalsh(a: ArrayLike, UPLO="L"): |
| a = _atleast_float_1(a) |
| return torch.linalg.eigvalsh(a, UPLO=UPLO) |