| # mypy: allow-untyped-defs |
| """Adds docstrings to functions defined in the torch._C module.""" |
| |
| import re |
| from typing import Dict |
| |
| import torch._C |
| from torch._C import _add_docstr as add_docstr |
| |
| |
| def parse_kwargs(desc): |
| r"""Map a description of args to a dictionary of {argname: description}. |
| |
| Input: |
| (' weight (Tensor): a weight tensor\n' + |
| ' Some optional description') |
| Output: { |
| 'weight': \ |
| 'weight (Tensor): a weight tensor\n Some optional description' |
| } |
| """ |
| # Split on exactly 4 spaces after a newline |
| regx = re.compile(r"\n\s{4}(?!\s)") |
| kwargs = [section.strip() for section in regx.split(desc)] |
| kwargs = [section for section in kwargs if len(section) > 0] |
| return {desc.split(" ")[0]: desc for desc in kwargs} |
| |
| |
| def merge_dicts(*dicts): |
| """Merge dictionaries into a single dictionary.""" |
| return {x: d[x] for d in dicts for x in d} |
| |
| |
| common_args = parse_kwargs( |
| """ |
| input (Tensor): the input tensor. |
| generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling |
| out (Tensor, optional): the output tensor. |
| memory_format (:class:`torch.memory_format`, optional): the desired memory format of |
| returned tensor. Default: ``torch.preserve_format``. |
| """ |
| ) |
| |
| reduceops_common_args = merge_dicts( |
| common_args, |
| parse_kwargs( |
| """ |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| If specified, the input tensor is casted to :attr:`dtype` before the operation |
| is performed. This is useful for preventing data type overflows. Default: None. |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not. |
| """ |
| ), |
| ) |
| |
| multi_dim_common = merge_dicts( |
| reduceops_common_args, |
| parse_kwargs( |
| """ |
| dim (int or tuple of ints): the dimension or dimensions to reduce. |
| """ |
| ), |
| { |
| "keepdim_details": """ |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the |
| output tensor having 1 (or ``len(dim)``) fewer dimension(s). |
| """ |
| }, |
| { |
| "opt_dim": """ |
| dim (int or tuple of ints, optional): the dimension or dimensions to reduce. |
| If ``None``, all dimensions are reduced. |
| """ |
| }, |
| ) |
| |
| single_dim_common = merge_dicts( |
| reduceops_common_args, |
| parse_kwargs( |
| """ |
| dim (int): the dimension to reduce. |
| """ |
| ), |
| { |
| "keepdim_details": """If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensor having 1 fewer dimension than :attr:`input`.""" |
| }, |
| ) |
| |
| factory_common_args = merge_dicts( |
| common_args, |
| parse_kwargs( |
| """ |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). |
| layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. |
| Default: ``torch.strided``. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if ``None``, uses the current device for the default tensor type |
| (see :func:`torch.set_default_device`). :attr:`device` will be the CPU |
| for CPU tensor types and the current CUDA device for CUDA tensor types. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| pin_memory (bool, optional): If set, returned tensor would be allocated in |
| the pinned memory. Works only for CPU tensors. Default: ``False``. |
| memory_format (:class:`torch.memory_format`, optional): the desired memory format of |
| returned Tensor. Default: ``torch.contiguous_format``. |
| check_invariants (bool, optional): If sparse tensor invariants are checked. |
| Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, |
| initially False. |
| """ |
| ), |
| { |
| "sparse_factory_device_note": """\ |
| .. note:: |
| |
| If the ``device`` argument is not specified the device of the given |
| :attr:`values` and indices tensor(s) must match. If, however, the |
| argument is specified the input Tensors will be converted to the |
| given device and in turn determine the device of the constructed |
| sparse tensor.""" |
| }, |
| ) |
| |
| factory_like_common_args = parse_kwargs( |
| """ |
| input (Tensor): the size of :attr:`input` will determine size of the output tensor. |
| layout (:class:`torch.layout`, optional): the desired layout of returned tensor. |
| Default: if ``None``, defaults to the layout of :attr:`input`. |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. |
| Default: if ``None``, defaults to the dtype of :attr:`input`. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if ``None``, defaults to the device of :attr:`input`. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| pin_memory (bool, optional): If set, returned tensor would be allocated in |
| the pinned memory. Works only for CPU tensors. Default: ``False``. |
| memory_format (:class:`torch.memory_format`, optional): the desired memory format of |
| returned Tensor. Default: ``torch.preserve_format``. |
| """ |
| ) |
| |
| factory_data_common_args = parse_kwargs( |
| """ |
| data (array_like): Initial data for the tensor. Can be a list, tuple, |
| NumPy ``ndarray``, scalar, and other types. |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if ``None``, infers data type from :attr:`data`. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if ``None``, uses the current device for the default tensor type |
| (see :func:`torch.set_default_device`). :attr:`device` will be the CPU |
| for CPU tensor types and the current CUDA device for CUDA tensor types. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| pin_memory (bool, optional): If set, returned tensor would be allocated in |
| the pinned memory. Works only for CPU tensors. Default: ``False``. |
| """ |
| ) |
| |
| tf32_notes = { |
| "tf32_note": """This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.""" |
| } |
| |
| rocm_fp16_notes = { |
| "rocm_fp16_note": """On certain ROCm devices, when using float16 inputs this module will use \ |
| :ref:`different precision<fp16_on_mi200>` for backward.""" |
| } |
| |
| reproducibility_notes: Dict[str, str] = { |
| "forward_reproducibility_note": """This operation may behave nondeterministically when given tensors on \ |
| a CUDA device. See :doc:`/notes/randomness` for more information.""", |
| "backward_reproducibility_note": """This operation may produce nondeterministic gradients when given tensors on \ |
| a CUDA device. See :doc:`/notes/randomness` for more information.""", |
| "cudnn_reproducibility_note": """In some circumstances when given tensors on a CUDA device \ |
| and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is \ |
| undesirable, you can try to make the operation deterministic (potentially at \ |
| a performance cost) by setting ``torch.backends.cudnn.deterministic = True``. \ |
| See :doc:`/notes/randomness` for more information.""", |
| } |
| |
| sparse_support_notes = { |
| "sparse_beta_warning": """ |
| .. warning:: |
| Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, |
| or may not have autograd support. If you notice missing functionality please |
| open a feature request.""", |
| } |
| |
| add_docstr( |
| torch.abs, |
| r""" |
| abs(input, *, out=None) -> Tensor |
| |
| Computes the absolute value of each element in :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = |\text{input}_{i}| |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.abs(torch.tensor([-1, -2, 3])) |
| tensor([ 1, 2, 3]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.absolute, |
| r""" |
| absolute(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.abs` |
| """, |
| ) |
| |
| add_docstr( |
| torch.acos, |
| r""" |
| acos(input, *, out=None) -> Tensor |
| |
| Computes the inverse cosine of each element in :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cos^{-1}(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.3348, -0.5889, 0.2005, -0.1584]) |
| >>> torch.acos(a) |
| tensor([ 1.2294, 2.2004, 1.3690, 1.7298]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arccos, |
| r""" |
| arccos(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.acos`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.acosh, |
| r""" |
| acosh(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the inverse hyperbolic cosine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cosh^{-1}(\text{input}_{i}) |
| |
| Note: |
| The domain of the inverse hyperbolic cosine is `[1, inf)` and values outside this range |
| will be mapped to ``NaN``, except for `+ INF` for which the output is mapped to `+ INF`. |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4).uniform_(1, 2) |
| >>> a |
| tensor([ 1.3192, 1.9915, 1.9674, 1.7151 ]) |
| >>> torch.acosh(a) |
| tensor([ 0.7791, 1.3120, 1.2979, 1.1341 ]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arccosh, |
| r""" |
| arccosh(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.acosh`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.index_add, |
| r""" |
| index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor |
| |
| See :meth:`~Tensor.index_add_` for function description. |
| """, |
| ) |
| |
| add_docstr( |
| torch.index_copy, |
| r""" |
| index_copy(input, dim, index, source, *, out=None) -> Tensor |
| |
| See :meth:`~Tensor.index_add_` for function description. |
| """, |
| ) |
| |
| add_docstr( |
| torch.index_reduce, |
| r""" |
| index_reduce(input, dim, index, source, reduce, *, include_self=True, out=None) -> Tensor |
| |
| See :meth:`~Tensor.index_reduce_` for function description. |
| """, |
| ) |
| |
| add_docstr( |
| torch.add, |
| r""" |
| add(input, other, *, alpha=1, out=None) -> Tensor |
| |
| Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. |
| |
| .. math:: |
| \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i |
| """ |
| + r""" |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs. |
| |
| Args: |
| {input} |
| other (Tensor or Number): the tensor or number to add to :attr:`input`. |
| |
| Keyword arguments: |
| alpha (Number): the multiplier for :attr:`other`. |
| {out} |
| |
| Examples:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) |
| >>> torch.add(a, 20) |
| tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) |
| |
| >>> b = torch.randn(4) |
| >>> b |
| tensor([-0.9732, -0.3497, 0.6245, 0.4022]) |
| >>> c = torch.randn(4, 1) |
| >>> c |
| tensor([[ 0.3743], |
| [-1.7724], |
| [-0.5811], |
| [-0.8017]]) |
| >>> torch.add(b, c, alpha=10) |
| tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], |
| [-18.6971, -18.0736, -17.0994, -17.3216], |
| [ -6.7845, -6.1610, -5.1868, -5.4090], |
| [ -8.9902, -8.3667, -7.3925, -7.6147]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.addbmm, |
| r""" |
| addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored |
| in :attr:`batch1` and :attr:`batch2`, |
| with a reduced add step (all matrix multiplications get accumulated |
| along the first dimension). |
| :attr:`input` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the |
| same number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, :attr:`input` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor |
| and :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| .. math:: |
| out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) |
| |
| If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in |
| it will not be propagated. |
| """ |
| + r""" |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` |
| must be real numbers, otherwise they should be integers. |
| |
| {tf32_note} |
| |
| {rocm_fp16_note} |
| |
| Args: |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
| input (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) |
| {out} |
| |
| Example:: |
| |
| >>> M = torch.randn(3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.addbmm(M, batch1, batch2) |
| tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], |
| [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], |
| [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) |
| """.format(**common_args, **tf32_notes, **rocm_fp16_notes), |
| ) |
| |
| add_docstr( |
| torch.addcdiv, |
| r""" |
| addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor |
| |
| Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, |
| multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. |
| |
| .. warning:: |
| Integer division with addcdiv is no longer supported, and in a future |
| release addcdiv will perform a true division of tensor1 and tensor2. |
| The historic addcdiv behavior can be implemented as |
| (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) |
| for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. |
| The future addcdiv behavior is just the latter implementation: |
| (input + value * tensor1 / tensor2), for all dtypes. |
| |
| .. math:: |
| \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} |
| """ |
| + r""" |
| |
| The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be |
| a real number, otherwise an integer. |
| |
| Args: |
| input (Tensor): the tensor to be added |
| tensor1 (Tensor): the numerator tensor |
| tensor2 (Tensor): the denominator tensor |
| |
| Keyword args: |
| value (Number, optional): multiplier for :math:`\text{{tensor1}} / \text{{tensor2}}` |
| {out} |
| |
| Example:: |
| |
| >>> t = torch.randn(1, 3) |
| >>> t1 = torch.randn(3, 1) |
| >>> t2 = torch.randn(1, 3) |
| >>> torch.addcdiv(t, t1, t2, value=0.1) |
| tensor([[-0.2312, -3.6496, 0.1312], |
| [-1.0428, 3.4292, -0.1030], |
| [-0.5369, -0.9829, 0.0430]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.addcmul, |
| r""" |
| addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor |
| |
| Performs the element-wise multiplication of :attr:`tensor1` |
| by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` |
| and adds it to :attr:`input`. |
| |
| .. math:: |
| \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i |
| """ |
| + r""" |
| The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be |
| a real number, otherwise an integer. |
| |
| Args: |
| input (Tensor): the tensor to be added |
| tensor1 (Tensor): the tensor to be multiplied |
| tensor2 (Tensor): the tensor to be multiplied |
| |
| Keyword args: |
| value (Number, optional): multiplier for :math:`tensor1 .* tensor2` |
| {out} |
| |
| Example:: |
| |
| >>> t = torch.randn(1, 3) |
| >>> t1 = torch.randn(3, 1) |
| >>> t2 = torch.randn(1, 3) |
| >>> torch.addcmul(t, t1, t2, value=0.1) |
| tensor([[-0.8635, -0.6391, 1.6174], |
| [-0.7617, -0.5879, 1.7388], |
| [-0.8353, -0.6249, 1.6511]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.addmm, |
| r""" |
| addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| The matrix :attr:`input` is added to the final result. |
| |
| If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a |
| :math:`(m \times p)` tensor, then :attr:`input` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor |
| and :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between |
| :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. |
| |
| .. math:: |
| \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) |
| |
| If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in |
| it will not be propagated. |
| """ |
| + r""" |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`. If |
| :attr:`input` is sparse the result will have the same layout and if :attr:`out` |
| is provided it must have the same layout as :attr:`input`. |
| |
| {sparse_beta_warning} |
| |
| {tf32_note} |
| |
| {rocm_fp16_note} |
| |
| Args: |
| input (Tensor): matrix to be added |
| mat1 (Tensor): the first matrix to be matrix multiplied |
| mat2 (Tensor): the second matrix to be matrix multiplied |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
| {out} |
| |
| Example:: |
| |
| >>> M = torch.randn(2, 3) |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.addmm(M, mat1, mat2) |
| tensor([[-4.8716, 1.4671, -1.3746], |
| [ 0.7573, -3.9555, -2.8681]]) |
| """.format(**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes), |
| ) |
| |
| add_docstr( |
| torch.adjoint, |
| r""" |
| adjoint(Tensor) -> Tensor |
| Returns a view of the tensor conjugated and with the last two dimensions transposed. |
| |
| ``x.adjoint()`` is equivalent to ``x.transpose(-2, -1).conj()`` for complex tensors and |
| to ``x.transpose(-2, -1)`` for real tensors. |
| |
| Example:: |
| >>> x = torch.arange(4, dtype=torch.float) |
| >>> A = torch.complex(x, x).reshape(2, 2) |
| >>> A |
| tensor([[0.+0.j, 1.+1.j], |
| [2.+2.j, 3.+3.j]]) |
| >>> A.adjoint() |
| tensor([[0.-0.j, 2.-2.j], |
| [1.-1.j, 3.-3.j]]) |
| >>> (A.adjoint() == A.mH).all() |
| tensor(True) |
| """, |
| ) |
| |
| add_docstr( |
| torch.sspaddmm, |
| r""" |
| sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor |
| |
| Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor |
| :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. |
| |
| Note: This function is equivalent to :func:`torch.addmm`, except |
| :attr:`input` and :attr:`mat1` are sparse. |
| |
| Args: |
| input (Tensor): a sparse matrix to be added |
| mat1 (Tensor): a sparse matrix to be matrix multiplied |
| mat2 (Tensor): a dense matrix to be matrix multiplied |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
| {out} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.smm, |
| r""" |
| smm(input, mat) -> Tensor |
| |
| Performs a matrix multiplication of the sparse matrix :attr:`input` |
| with the dense matrix :attr:`mat`. |
| |
| Args: |
| input (Tensor): a sparse matrix to be matrix multiplied |
| mat (Tensor): a dense matrix to be matrix multiplied |
| """, |
| ) |
| |
| add_docstr( |
| torch.addmv, |
| r""" |
| addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and |
| the vector :attr:`vec`. |
| The vector :attr:`input` is added to the final result. |
| |
| If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of |
| size `m`, then :attr:`input` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and |
| :attr:`out` will be 1-D tensor of size `n`. |
| |
| :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between |
| :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. |
| |
| .. math:: |
| \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) |
| |
| If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in |
| it will not be propagated. |
| """ |
| + r""" |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| input (Tensor): vector to be added |
| mat (Tensor): matrix to be matrix multiplied |
| vec (Tensor): vector to be matrix multiplied |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) |
| {out} |
| |
| Example:: |
| |
| >>> M = torch.randn(2) |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.addmv(M, mat, vec) |
| tensor([-0.3768, -5.5565]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.addr, |
| r""" |
| addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor |
| |
| Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` |
| and adds it to the matrix :attr:`input`. |
| |
| Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the |
| outer product between :attr:`vec1` and :attr:`vec2` and the added matrix |
| :attr:`input` respectively. |
| |
| .. math:: |
| \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) |
| |
| If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in |
| it will not be propagated. |
| """ |
| + r""" |
| If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector |
| of size `m`, then :attr:`input` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a matrix of size |
| :math:`(n \times m)` and :attr:`out` will be a matrix of size |
| :math:`(n \times m)`. |
| |
| Args: |
| input (Tensor): matrix to be added |
| vec1 (Tensor): the first vector of the outer product |
| vec2 (Tensor): the second vector of the outer product |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`\text{{vec1}} \otimes \text{{vec2}}` (:math:`\alpha`) |
| {out} |
| |
| Example:: |
| |
| >>> vec1 = torch.arange(1., 4.) |
| >>> vec2 = torch.arange(1., 3.) |
| >>> M = torch.zeros(3, 2) |
| >>> torch.addr(M, vec1, vec2) |
| tensor([[ 1., 2.], |
| [ 2., 4.], |
| [ 3., 6.]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.allclose, |
| r""" |
| allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool |
| |
| This function checks if :attr:`input` and :attr:`other` satisfy the condition: |
| |
| .. math:: |
| \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert |
| """ |
| + r""" |
| elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to |
| `numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_ |
| |
| Args: |
| input (Tensor): first tensor to compare |
| other (Tensor): second tensor to compare |
| atol (float, optional): absolute tolerance. Default: 1e-08 |
| rtol (float, optional): relative tolerance. Default: 1e-05 |
| equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False`` |
| |
| Example:: |
| |
| >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) |
| False |
| >>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09])) |
| True |
| >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')])) |
| False |
| >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True) |
| True |
| """, |
| ) |
| |
| add_docstr( |
| torch.all, |
| r""" |
| all(input) -> Tensor |
| |
| Tests if all elements in :attr:`input` evaluate to `True`. |
| |
| .. note:: This function matches the behaviour of NumPy in returning |
| output of dtype `bool` for all supported dtypes except `uint8`. |
| For `uint8` the dtype of output is `uint8` itself. |
| |
| Example:: |
| |
| >>> a = torch.rand(1, 2).bool() |
| >>> a |
| tensor([[False, True]], dtype=torch.bool) |
| >>> torch.all(a) |
| tensor(False, dtype=torch.bool) |
| >>> a = torch.arange(0, 3) |
| >>> a |
| tensor([0, 1, 2]) |
| >>> torch.all(a) |
| tensor(False) |
| |
| .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor |
| :noindex: |
| |
| For each row of :attr:`input` in the given dimension :attr:`dim`, |
| returns `True` if all elements in the row evaluate to `True` and `False` otherwise. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.rand(4, 2).bool() |
| >>> a |
| tensor([[True, True], |
| [True, False], |
| [True, True], |
| [True, True]], dtype=torch.bool) |
| >>> torch.all(a, dim=1) |
| tensor([ True, False, True, True], dtype=torch.bool) |
| >>> torch.all(a, dim=0) |
| tensor([ True, False], dtype=torch.bool) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.any, |
| r""" |
| any(input) -> Tensor |
| |
| Tests if any element in :attr:`input` evaluates to `True`. |
| |
| .. note:: This function matches the behaviour of NumPy in returning |
| output of dtype `bool` for all supported dtypes except `uint8`. |
| For `uint8` the dtype of output is `uint8` itself. |
| |
| Example:: |
| |
| >>> a = torch.rand(1, 2).bool() |
| >>> a |
| tensor([[False, True]], dtype=torch.bool) |
| >>> torch.any(a) |
| tensor(True, dtype=torch.bool) |
| >>> a = torch.arange(0, 3) |
| >>> a |
| tensor([0, 1, 2]) |
| >>> torch.any(a) |
| tensor(True) |
| |
| .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor |
| :noindex: |
| |
| For each row of :attr:`input` in the given dimension :attr:`dim`, |
| returns `True` if any element in the row evaluate to `True` and `False` otherwise. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) < 0 |
| >>> a |
| tensor([[ True, True], |
| [False, True], |
| [ True, True], |
| [False, False]]) |
| >>> torch.any(a, 1) |
| tensor([ True, True, True, False]) |
| >>> torch.any(a, 0) |
| tensor([True, True]) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.angle, |
| r""" |
| angle(input, *, out=None) -> Tensor |
| |
| Computes the element-wise angle (in radians) of the given :attr:`input` tensor. |
| |
| .. math:: |
| \text{out}_{i} = angle(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| .. note:: Starting in PyTorch 1.8, angle returns pi for negative real numbers, |
| zero for non-negative real numbers, and propagates NaNs. Previously |
| the function would return zero for all real numbers and not propagate |
| floating-point NaNs. |
| |
| Example:: |
| |
| >>> torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159 |
| tensor([ 135., 135, -45]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.as_strided, |
| r""" |
| as_strided(input, size, stride, storage_offset=None) -> Tensor |
| |
| Create a view of an existing `torch.Tensor` :attr:`input` with specified |
| :attr:`size`, :attr:`stride` and :attr:`storage_offset`. |
| |
| .. warning:: |
| Prefer using other view functions, like :meth:`torch.Tensor.expand`, |
| to setting a view's strides manually with `as_strided`, as this |
| function's behavior depends on the implementation of a tensor's storage. |
| The constructed view of the storage must only refer to elements within |
| the storage or a runtime error will be thrown, and if the view is |
| "overlapped" (with multiple indices referring to the same element in |
| memory) its behavior is undefined. |
| |
| Args: |
| {input} |
| size (tuple or ints): the shape of the output tensor |
| stride (tuple or ints): the stride of the output tensor |
| storage_offset (int, optional): the offset in the underlying storage of the output tensor. |
| If ``None``, the storage_offset of the output tensor will match the input tensor. |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 3) |
| >>> x |
| tensor([[ 0.9039, 0.6291, 1.0795], |
| [ 0.1586, 2.1939, -0.4900], |
| [-0.1909, -0.7503, 1.9355]]) |
| >>> t = torch.as_strided(x, (2, 2), (1, 2)) |
| >>> t |
| tensor([[0.9039, 1.0795], |
| [0.6291, 0.1586]]) |
| >>> t = torch.as_strided(x, (2, 2), (1, 2), 1) |
| tensor([[0.6291, 0.1586], |
| [1.0795, 2.1939]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.as_tensor, |
| r""" |
| as_tensor(data, dtype=None, device=None) -> Tensor |
| |
| Converts :attr:`data` into a tensor, sharing data and preserving autograd |
| history if possible. |
| |
| If :attr:`data` is already a tensor with the requested dtype and device |
| then :attr:`data` itself is returned, but if :attr:`data` is a |
| tensor with a different dtype or device then it's copied as if using |
| `data.to(dtype=dtype, device=device)`. |
| |
| If :attr:`data` is a NumPy array (an ndarray) with the same dtype and device then a |
| tensor is constructed using :func:`torch.from_numpy`. |
| |
| If :attr:`data` is a CuPy array, the returned tensor will be located on the same device as the CuPy array unless |
| specifically overwritten by :attr:`device` or a default device. |
| |
| .. seealso:: |
| |
| :func:`torch.tensor` never shares its data and creates a new "leaf tensor" (see :doc:`/notes/autograd`). |
| |
| |
| Args: |
| {data} |
| {dtype} |
| device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor |
| then the device of data is used. If None and data is not a tensor then |
| the result tensor is constructed on the current device. |
| |
| |
| Example:: |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.as_tensor(a) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.as_tensor(a, device=torch.device('cuda')) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([1, 2, 3]) |
| """.format(**factory_data_common_args), |
| ) |
| |
| add_docstr( |
| torch.asin, |
| r""" |
| asin(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the arcsine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sin^{-1}(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.5962, 1.4985, -0.4396, 1.4525]) |
| >>> torch.asin(a) |
| tensor([-0.6387, nan, -0.4552, nan]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arcsin, |
| r""" |
| arcsin(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.asin`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.asinh, |
| r""" |
| asinh(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the inverse hyperbolic sine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sinh^{-1}(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.1606, -1.4267, -1.0899, -1.0250 ]) |
| >>> torch.asinh(a) |
| tensor([ 0.1599, -1.1534, -0.9435, -0.8990 ]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arcsinh, |
| r""" |
| arcsinh(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.asinh`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.atan, |
| r""" |
| atan(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the arctangent of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tan^{-1}(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.2341, 0.2539, -0.6256, -0.6448]) |
| >>> torch.atan(a) |
| tensor([ 0.2299, 0.2487, -0.5591, -0.5727]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arctan, |
| r""" |
| arctan(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.atan`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.atan2, |
| r""" |
| atan2(input, other, *, out=None) -> Tensor |
| |
| Element-wise arctangent of :math:`\text{{input}}_{{i}} / \text{{other}}_{{i}}` |
| with consideration of the quadrant. Returns a new tensor with the signed angles |
| in radians between vector :math:`(\text{{other}}_{{i}}, \text{{input}}_{{i}})` |
| and vector :math:`(1, 0)`. (Note that :math:`\text{{other}}_{{i}}`, the second |
| parameter, is the x-coordinate, while :math:`\text{{input}}_{{i}}`, the first |
| parameter, is the y-coordinate.) |
| |
| The shapes of ``input`` and ``other`` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the first input tensor |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.9041, 0.0196, -0.3108, -2.4423]) |
| >>> torch.atan2(a, torch.randn(4)) |
| tensor([ 0.9833, 0.0811, -1.9743, -1.4151]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arctan2, |
| r""" |
| arctan2(input, other, *, out=None) -> Tensor |
| Alias for :func:`torch.atan2`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.atanh, |
| r""" |
| atanh(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the inverse hyperbolic tangent of the elements of :attr:`input`. |
| |
| Note: |
| The domain of the inverse hyperbolic tangent is `(-1, 1)` and values outside this range |
| will be mapped to ``NaN``, except for the values `1` and `-1` for which the output is |
| mapped to `+/-INF` respectively. |
| |
| .. math:: |
| \text{out}_{i} = \tanh^{-1}(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4).uniform_(-1, 1) |
| >>> a |
| tensor([ -0.9385, 0.2968, -0.8591, -0.1871 ]) |
| >>> torch.atanh(a) |
| tensor([ -1.7253, 0.3060, -1.2899, -0.1893 ]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.arctanh, |
| r""" |
| arctanh(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.atanh`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.asarray, |
| r""" |
| asarray(obj, *, dtype=None, device=None, copy=None, requires_grad=False) -> Tensor |
| |
| Converts :attr:`obj` to a tensor. |
| |
| :attr:`obj` can be one of: |
| |
| 1. a tensor |
| 2. a NumPy array or a NumPy scalar |
| 3. a DLPack capsule |
| 4. an object that implements Python's buffer protocol |
| 5. a scalar |
| 6. a sequence of scalars |
| |
| When :attr:`obj` is a tensor, NumPy array, or DLPack capsule the returned tensor will, |
| by default, not require a gradient, have the same datatype as :attr:`obj`, be on the |
| same device, and share memory with it. These properties can be controlled with the |
| :attr:`dtype`, :attr:`device`, :attr:`copy`, and :attr:`requires_grad` keyword arguments. |
| If the returned tensor is of a different datatype, on a different device, or a copy is |
| requested then it will not share its memory with :attr:`obj`. If :attr:`requires_grad` |
| is ``True`` then the returned tensor will require a gradient, and if :attr:`obj` is |
| also a tensor with an autograd history then the returned tensor will have the same history. |
| |
| When :attr:`obj` is not a tensor, NumPy array, or DLPack capsule but implements Python's |
| buffer protocol then the buffer is interpreted as an array of bytes grouped according to |
| the size of the datatype passed to the :attr:`dtype` keyword argument. (If no datatype is |
| passed then the default floating point datatype is used, instead.) The returned tensor |
| will have the specified datatype (or default floating point datatype if none is specified) |
| and, by default, be on the CPU device and share memory with the buffer. |
| |
| When :attr:`obj` is a NumPy scalar, the returned tensor will be a 0-dimensional tensor on |
| the CPU and that doesn't share its memory (i.e. ``copy=True``). By default datatype will |
| be the PyTorch datatype corresponding to the NumPy's scalar's datatype. |
| |
| When :attr:`obj` is none of the above but a scalar, or a sequence of scalars then the |
| returned tensor will, by default, infer its datatype from the scalar values, be on the |
| current default device, and not share its memory. |
| |
| .. seealso:: |
| |
| :func:`torch.tensor` creates a tensor that always copies the data from the input object. |
| :func:`torch.from_numpy` creates a tensor that always shares memory from NumPy arrays. |
| :func:`torch.frombuffer` creates a tensor that always shares memory from objects that |
| implement the buffer protocol. |
| :func:`torch.from_dlpack` creates a tensor that always shares memory from |
| DLPack capsules. |
| |
| Args: |
| obj (object): a tensor, NumPy array, DLPack Capsule, object that implements Python's |
| buffer protocol, scalar, or sequence of scalars. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the datatype of the returned tensor. |
| Default: ``None``, which causes the datatype of the returned tensor to be |
| inferred from :attr:`obj`. |
| copy (bool, optional): controls whether the returned tensor shares memory with :attr:`obj`. |
| Default: ``None``, which causes the returned tensor to share memory with :attr:`obj` |
| whenever possible. If ``True`` then the returned tensor does not share its memory. |
| If ``False`` then the returned tensor shares its memory with :attr:`obj` and an |
| error is thrown if it cannot. |
| device (:class:`torch.device`, optional): the device of the returned tensor. |
| Default: ``None``, which causes the device of :attr:`obj` to be used. Or, if |
| :attr:`obj` is a Python sequence, the current default device will be used. |
| requires_grad (bool, optional): whether the returned tensor requires grad. |
| Default: ``False``, which causes the returned tensor not to require a gradient. |
| If ``True``, then the returned tensor will require a gradient, and if :attr:`obj` |
| is also a tensor with an autograd history then the returned tensor will have |
| the same history. |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 2, 3]) |
| >>> # Shares memory with tensor 'a' |
| >>> b = torch.asarray(a) |
| >>> a.data_ptr() == b.data_ptr() |
| True |
| >>> # Forces memory copy |
| >>> c = torch.asarray(a, copy=True) |
| >>> a.data_ptr() == c.data_ptr() |
| False |
| |
| >>> a = torch.tensor([1., 2., 3.], requires_grad=True) |
| >>> b = a + 2 |
| >>> b |
| tensor([3., 4., 5.], grad_fn=<AddBackward0>) |
| >>> # Shares memory with tensor 'b', with no grad |
| >>> c = torch.asarray(b) |
| >>> c |
| tensor([3., 4., 5.]) |
| >>> # Shares memory with tensor 'b', retaining autograd history |
| >>> d = torch.asarray(b, requires_grad=True) |
| >>> d |
| tensor([3., 4., 5.], grad_fn=<AddBackward0>) |
| |
| >>> array = numpy.array([1, 2, 3]) |
| >>> # Shares memory with array 'array' |
| >>> t1 = torch.asarray(array) |
| >>> array.__array_interface__['data'][0] == t1.data_ptr() |
| True |
| >>> # Copies memory due to dtype mismatch |
| >>> t2 = torch.asarray(array, dtype=torch.float32) |
| >>> array.__array_interface__['data'][0] == t2.data_ptr() |
| False |
| |
| >>> scalar = numpy.float64(0.5) |
| >>> torch.asarray(scalar) |
| tensor(0.5000, dtype=torch.float64) |
| """, |
| ) |
| |
| add_docstr( |
| torch.baddbmm, |
| r""" |
| baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices in :attr:`batch1` |
| and :attr:`batch2`. |
| :attr:`input` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same |
| number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, then :attr:`input` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a |
| :math:`(b \times n \times p)` tensor and :attr:`out` will be a |
| :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the |
| same as the scaling factors used in :meth:`torch.addbmm`. |
| |
| .. math:: |
| \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) |
| |
| If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in |
| it will not be propagated. |
| """ |
| + r""" |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| {tf32_note} |
| |
| {rocm_fp16_note} |
| |
| Args: |
| input (Tensor): the tensor to be added |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| |
| Keyword args: |
| beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
| alpha (Number, optional): multiplier for :math:`\text{{batch1}} \mathbin{{@}} \text{{batch2}}` (:math:`\alpha`) |
| {out} |
| |
| Example:: |
| |
| >>> M = torch.randn(10, 3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.baddbmm(M, batch1, batch2).size() |
| torch.Size([10, 3, 5]) |
| """.format(**common_args, **tf32_notes, **rocm_fp16_notes), |
| ) |
| |
| add_docstr( |
| torch.bernoulli, |
| r""" |
| bernoulli(input, *, generator=None, out=None) -> Tensor |
| |
| Draws binary random numbers (0 or 1) from a Bernoulli distribution. |
| |
| The :attr:`input` tensor should be a tensor containing probabilities |
| to be used for drawing the binary random number. |
| Hence, all values in :attr:`input` have to be in the range: |
| :math:`0 \leq \text{input}_i \leq 1`. |
| |
| The :math:`\text{i}^{th}` element of the output tensor will draw a |
| value :math:`1` according to the :math:`\text{i}^{th}` probability value given |
| in :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) |
| """ |
| + r""" |
| The returned :attr:`out` tensor only has values 0 or 1 and is of the same |
| shape as :attr:`input`. |
| |
| :attr:`out` can have integral ``dtype``, but :attr:`input` must have floating |
| point ``dtype``. |
| |
| Args: |
| input (Tensor): the input tensor of probability values for the Bernoulli distribution |
| |
| Keyword args: |
| {generator} |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] |
| >>> a |
| tensor([[ 0.1737, 0.0950, 0.3609], |
| [ 0.7148, 0.0289, 0.2676], |
| [ 0.9456, 0.8937, 0.7202]]) |
| >>> torch.bernoulli(a) |
| tensor([[ 1., 0., 0.], |
| [ 0., 0., 0.], |
| [ 1., 1., 1.]]) |
| |
| >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 |
| >>> torch.bernoulli(a) |
| tensor([[ 1., 1., 1.], |
| [ 1., 1., 1.], |
| [ 1., 1., 1.]]) |
| >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 |
| >>> torch.bernoulli(a) |
| tensor([[ 0., 0., 0.], |
| [ 0., 0., 0.], |
| [ 0., 0., 0.]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.bincount, |
| r""" |
| bincount(input, weights=None, minlength=0) -> Tensor |
| |
| Count the frequency of each value in an array of non-negative ints. |
| |
| The number of bins (size 1) is one larger than the largest value in |
| :attr:`input` unless :attr:`input` is empty, in which case the result is a |
| tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least |
| :attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size |
| :attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``, |
| ``out[n] += weights[i]`` if :attr:`weights` is specified else |
| ``out[n] += 1``. |
| |
| Note: |
| {backward_reproducibility_note} |
| |
| Arguments: |
| input (Tensor): 1-d int tensor |
| weights (Tensor): optional, weight for each value in the input tensor. |
| Should be of same size as input tensor. |
| minlength (int): optional, minimum number of bins. Should be non-negative. |
| |
| Returns: |
| output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if |
| :attr:`input` is non-empty, else ``Size(0)`` |
| |
| Example:: |
| |
| >>> input = torch.randint(0, 8, (5,), dtype=torch.int64) |
| >>> weights = torch.linspace(0, 1, steps=5) |
| >>> input, weights |
| (tensor([4, 3, 6, 3, 4]), |
| tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) |
| |
| >>> torch.bincount(input) |
| tensor([0, 0, 0, 2, 2, 0, 1]) |
| |
| >>> input.bincount(weights) |
| tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000]) |
| """.format(**reproducibility_notes), |
| ) |
| |
| add_docstr( |
| torch.bitwise_not, |
| r""" |
| bitwise_not(input, *, out=None) -> Tensor |
| |
| Computes the bitwise NOT of the given input tensor. The input tensor must be of |
| integral or Boolean types. For bool tensors, it computes the logical NOT. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8)) |
| tensor([ 0, 1, -4], dtype=torch.int8) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.bmm, |
| r""" |
| bmm(input, mat2, *, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored in :attr:`input` |
| and :attr:`mat2`. |
| |
| :attr:`input` and :attr:`mat2` must be 3-D tensors each containing |
| the same number of matrices. |
| |
| If :attr:`input` is a :math:`(b \times n \times m)` tensor, :attr:`mat2` is a |
| :math:`(b \times m \times p)` tensor, :attr:`out` will be a |
| :math:`(b \times n \times p)` tensor. |
| |
| .. math:: |
| \text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i |
| """ |
| + r""" |
| {tf32_note} |
| |
| {rocm_fp16_note} |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| For broadcasting matrix products, see :func:`torch.matmul`. |
| |
| Args: |
| input (Tensor): the first batch of matrices to be multiplied |
| mat2 (Tensor): the second batch of matrices to be multiplied |
| |
| Keyword Args: |
| {out} |
| |
| Example:: |
| |
| >>> input = torch.randn(10, 3, 4) |
| >>> mat2 = torch.randn(10, 4, 5) |
| >>> res = torch.bmm(input, mat2) |
| >>> res.size() |
| torch.Size([10, 3, 5]) |
| """.format(**common_args, **tf32_notes, **rocm_fp16_notes), |
| ) |
| |
| add_docstr( |
| torch.bitwise_and, |
| r""" |
| bitwise_and(input, other, *, out=None) -> Tensor |
| |
| Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of |
| integral or Boolean types. For bool tensors, it computes the logical AND. |
| |
| Args: |
| input: the first input tensor |
| other: the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) |
| tensor([1, 0, 3], dtype=torch.int8) |
| >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) |
| tensor([ False, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.bitwise_or, |
| r""" |
| bitwise_or(input, other, *, out=None) -> Tensor |
| |
| Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of |
| integral or Boolean types. For bool tensors, it computes the logical OR. |
| |
| Args: |
| input: the first input tensor |
| other: the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) |
| tensor([-1, -2, 3], dtype=torch.int8) |
| >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) |
| tensor([ True, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.bitwise_xor, |
| r""" |
| bitwise_xor(input, other, *, out=None) -> Tensor |
| |
| Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of |
| integral or Boolean types. For bool tensors, it computes the logical XOR. |
| |
| Args: |
| input: the first input tensor |
| other: the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) |
| tensor([-2, -2, 0], dtype=torch.int8) |
| >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) |
| tensor([ True, False, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.bitwise_left_shift, |
| r""" |
| bitwise_left_shift(input, other, *, out=None) -> Tensor |
| |
| Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. |
| The input tensor must be of integral type. This operator supports |
| :ref:`broadcasting to a common shape <broadcasting-semantics>` and |
| :ref:`type promotion <type-promotion-doc>`. |
| |
| The operation applied is: |
| |
| .. math:: |
| \text{{out}}_i = \text{{input}}_i << \text{{other}}_i |
| |
| Args: |
| input (Tensor or Scalar): the first input tensor |
| other (Tensor or Scalar): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) |
| tensor([-2, -2, 24], dtype=torch.int8) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.bitwise_right_shift, |
| r""" |
| bitwise_right_shift(input, other, *, out=None) -> Tensor |
| |
| Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. |
| The input tensor must be of integral type. This operator supports |
| :ref:`broadcasting to a common shape <broadcasting-semantics>` and |
| :ref:`type promotion <type-promotion-doc>`. |
| In any case, if the value of the right operand is negative or is greater |
| or equal to the number of bits in the promoted left operand, the behavior is undefined. |
| |
| The operation applied is: |
| |
| .. math:: |
| \text{{out}}_i = \text{{input}}_i >> \text{{other}}_i |
| |
| Args: |
| input (Tensor or Scalar): the first input tensor |
| other (Tensor or Scalar): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) |
| tensor([-1, -7, 3], dtype=torch.int8) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.broadcast_to, |
| r""" |
| broadcast_to(input, shape) -> Tensor |
| |
| Broadcasts :attr:`input` to the shape :attr:`\shape`. |
| Equivalent to calling ``input.expand(shape)``. See :meth:`~Tensor.expand` for details. |
| |
| Args: |
| {input} |
| shape (list, tuple, or :class:`torch.Size`): the new shape. |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3]) |
| >>> torch.broadcast_to(x, (3, 3)) |
| tensor([[1, 2, 3], |
| [1, 2, 3], |
| [1, 2, 3]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.stack, |
| r""" |
| stack(tensors, dim=0, *, out=None) -> Tensor |
| |
| Concatenates a sequence of tensors along a new dimension. |
| |
| All tensors need to be of the same size. |
| |
| .. seealso:: |
| |
| :func:`torch.cat` concatenates the given sequence along an existing dimension. |
| |
| Arguments: |
| tensors (sequence of Tensors): sequence of tensors to concatenate |
| dim (int, optional): dimension to insert. Has to be between 0 and the number |
| of dimensions of concatenated tensors (inclusive). Default: 0 |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 0.3367, 0.1288, 0.2345], |
| [ 0.2303, -1.1229, -0.1863]]) |
| >>> torch.stack((x, x)) # same as torch.stack((x, x), dim=0) |
| tensor([[[ 0.3367, 0.1288, 0.2345], |
| [ 0.2303, -1.1229, -0.1863]], |
| |
| [[ 0.3367, 0.1288, 0.2345], |
| [ 0.2303, -1.1229, -0.1863]]]) |
| >>> torch.stack((x, x)).size() |
| torch.Size([2, 2, 3]) |
| >>> torch.stack((x, x), dim=1) |
| tensor([[[ 0.3367, 0.1288, 0.2345], |
| [ 0.3367, 0.1288, 0.2345]], |
| |
| [[ 0.2303, -1.1229, -0.1863], |
| [ 0.2303, -1.1229, -0.1863]]]) |
| >>> torch.stack((x, x), dim=2) |
| tensor([[[ 0.3367, 0.3367], |
| [ 0.1288, 0.1288], |
| [ 0.2345, 0.2345]], |
| |
| [[ 0.2303, 0.2303], |
| [-1.1229, -1.1229], |
| [-0.1863, -0.1863]]]) |
| >>> torch.stack((x, x), dim=-1) |
| tensor([[[ 0.3367, 0.3367], |
| [ 0.1288, 0.1288], |
| [ 0.2345, 0.2345]], |
| |
| [[ 0.2303, 0.2303], |
| [-1.1229, -1.1229], |
| [-0.1863, -0.1863]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.hstack, |
| r""" |
| hstack(tensors, *, out=None) -> Tensor |
| |
| Stack tensors in sequence horizontally (column wise). |
| |
| This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors. |
| |
| Args: |
| tensors (sequence of Tensors): sequence of tensors to concatenate |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 2, 3]) |
| >>> b = torch.tensor([4, 5, 6]) |
| >>> torch.hstack((a,b)) |
| tensor([1, 2, 3, 4, 5, 6]) |
| >>> a = torch.tensor([[1],[2],[3]]) |
| >>> b = torch.tensor([[4],[5],[6]]) |
| >>> torch.hstack((a,b)) |
| tensor([[1, 4], |
| [2, 5], |
| [3, 6]]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.vstack, |
| r""" |
| vstack(tensors, *, out=None) -> Tensor |
| |
| Stack tensors in sequence vertically (row wise). |
| |
| This is equivalent to concatenation along the first axis after all 1-D tensors have been reshaped by :func:`torch.atleast_2d`. |
| |
| Args: |
| tensors (sequence of Tensors): sequence of tensors to concatenate |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 2, 3]) |
| >>> b = torch.tensor([4, 5, 6]) |
| >>> torch.vstack((a,b)) |
| tensor([[1, 2, 3], |
| [4, 5, 6]]) |
| >>> a = torch.tensor([[1],[2],[3]]) |
| >>> b = torch.tensor([[4],[5],[6]]) |
| >>> torch.vstack((a,b)) |
| tensor([[1], |
| [2], |
| [3], |
| [4], |
| [5], |
| [6]]) |
| |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.dstack, |
| r""" |
| dstack(tensors, *, out=None) -> Tensor |
| |
| Stack tensors in sequence depthwise (along third axis). |
| |
| This is equivalent to concatenation along the third axis after 1-D and 2-D tensors have been reshaped by :func:`torch.atleast_3d`. |
| |
| Args: |
| tensors (sequence of Tensors): sequence of tensors to concatenate |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 2, 3]) |
| >>> b = torch.tensor([4, 5, 6]) |
| >>> torch.dstack((a,b)) |
| tensor([[[1, 4], |
| [2, 5], |
| [3, 6]]]) |
| >>> a = torch.tensor([[1],[2],[3]]) |
| >>> b = torch.tensor([[4],[5],[6]]) |
| >>> torch.dstack((a,b)) |
| tensor([[[1, 4]], |
| [[2, 5]], |
| [[3, 6]]]) |
| |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.tensor_split, |
| r""" |
| tensor_split(input, indices_or_sections, dim=0) -> List of Tensors |
| |
| Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, |
| along dimension :attr:`dim` according to the indices or number of sections specified |
| by :attr:`indices_or_sections`. This function is based on NumPy's |
| :func:`numpy.array_split`. |
| |
| Args: |
| input (Tensor): the tensor to split |
| indices_or_sections (Tensor, int or list or tuple of ints): |
| If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor |
| with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. |
| If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each |
| section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` |
| is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` |
| sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will |
| have size :code:`int(input.size(dim) / n)`. |
| |
| If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long |
| tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices |
| in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` |
| would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. |
| |
| If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional |
| long tensor on the CPU. |
| |
| dim (int, optional): dimension along which to split the tensor. Default: ``0`` |
| |
| Example:: |
| |
| >>> x = torch.arange(8) |
| >>> torch.tensor_split(x, 3) |
| (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) |
| |
| >>> x = torch.arange(7) |
| >>> torch.tensor_split(x, 3) |
| (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) |
| >>> torch.tensor_split(x, (1, 6)) |
| (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) |
| |
| >>> x = torch.arange(14).reshape(2, 7) |
| >>> x |
| tensor([[ 0, 1, 2, 3, 4, 5, 6], |
| [ 7, 8, 9, 10, 11, 12, 13]]) |
| >>> torch.tensor_split(x, 3, dim=1) |
| (tensor([[0, 1, 2], |
| [7, 8, 9]]), |
| tensor([[ 3, 4], |
| [10, 11]]), |
| tensor([[ 5, 6], |
| [12, 13]])) |
| >>> torch.tensor_split(x, (1, 6), dim=1) |
| (tensor([[0], |
| [7]]), |
| tensor([[ 1, 2, 3, 4, 5], |
| [ 8, 9, 10, 11, 12]]), |
| tensor([[ 6], |
| [13]])) |
| """, |
| ) |
| |
| add_docstr( |
| torch.chunk, |
| r""" |
| chunk(input, chunks, dim=0) -> List of Tensors |
| |
| Attempts to split a tensor into the specified number of chunks. Each chunk is a view of |
| the input tensor. |
| |
| |
| .. note:: |
| |
| This function may return fewer than the specified number of chunks! |
| |
| .. seealso:: |
| |
| :func:`torch.tensor_split` a function that always returns exactly the specified number of chunks |
| |
| If the tensor size along the given dimension :attr:`dim` is divisible by :attr:`chunks`, |
| all returned chunks will be the same size. |
| If the tensor size along the given dimension :attr:`dim` is not divisible by :attr:`chunks`, |
| all returned chunks will be the same size, except the last one. |
| If such division is not possible, this function may return fewer |
| than the specified number of chunks. |
| |
| Arguments: |
| input (Tensor): the tensor to split |
| chunks (int): number of chunks to return |
| dim (int): dimension along which to split the tensor |
| |
| Example: |
| >>> torch.arange(11).chunk(6) |
| (tensor([0, 1]), |
| tensor([2, 3]), |
| tensor([4, 5]), |
| tensor([6, 7]), |
| tensor([8, 9]), |
| tensor([10])) |
| >>> torch.arange(12).chunk(6) |
| (tensor([0, 1]), |
| tensor([2, 3]), |
| tensor([4, 5]), |
| tensor([6, 7]), |
| tensor([8, 9]), |
| tensor([10, 11])) |
| >>> torch.arange(13).chunk(6) |
| (tensor([0, 1, 2]), |
| tensor([3, 4, 5]), |
| tensor([6, 7, 8]), |
| tensor([ 9, 10, 11]), |
| tensor([12])) |
| """, |
| ) |
| |
| add_docstr( |
| torch.unsafe_chunk, |
| r""" |
| unsafe_chunk(input, chunks, dim=0) -> List of Tensors |
| |
| Works like :func:`torch.chunk` but without enforcing the autograd restrictions |
| on inplace modification of the outputs. |
| |
| .. warning:: |
| This function is safe to use as long as only the input, or only the outputs |
| are modified inplace after calling this function. It is user's |
| responsibility to ensure that is the case. If both the input and one or more |
| of the outputs are modified inplace, gradients computed by autograd will be |
| silently incorrect. |
| """, |
| ) |
| |
| add_docstr( |
| torch.unsafe_split, |
| r""" |
| unsafe_split(tensor, split_size_or_sections, dim=0) -> List of Tensors |
| |
| Works like :func:`torch.split` but without enforcing the autograd restrictions |
| on inplace modification of the outputs. |
| |
| .. warning:: |
| This function is safe to use as long as only the input, or only the outputs |
| are modified inplace after calling this function. It is user's |
| responsibility to ensure that is the case. If both the input and one or more |
| of the outputs are modified inplace, gradients computed by autograd will be |
| silently incorrect. |
| """, |
| ) |
| |
| add_docstr( |
| torch.hsplit, |
| r""" |
| hsplit(input, indices_or_sections) -> List of Tensors |
| |
| Splits :attr:`input`, a tensor with one or more dimensions, into multiple tensors |
| horizontally according to :attr:`indices_or_sections`. Each split is a view of |
| :attr:`input`. |
| |
| If :attr:`input` is one dimensional this is equivalent to calling |
| torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is |
| zero), and if :attr:`input` has two or more dimensions it's equivalent to calling |
| torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1), |
| except that if :attr:`indices_or_sections` is an integer it must evenly divide |
| the split dimension or a runtime error will be thrown. |
| |
| This function is based on NumPy's :func:`numpy.hsplit`. |
| |
| Args: |
| input (Tensor): tensor to split. |
| indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. |
| |
| Example:: |
| >>> t = torch.arange(16.0).reshape(4,4) |
| >>> t |
| tensor([[ 0., 1., 2., 3.], |
| [ 4., 5., 6., 7.], |
| [ 8., 9., 10., 11.], |
| [12., 13., 14., 15.]]) |
| >>> torch.hsplit(t, 2) |
| (tensor([[ 0., 1.], |
| [ 4., 5.], |
| [ 8., 9.], |
| [12., 13.]]), |
| tensor([[ 2., 3.], |
| [ 6., 7.], |
| [10., 11.], |
| [14., 15.]])) |
| >>> torch.hsplit(t, [3, 6]) |
| (tensor([[ 0., 1., 2.], |
| [ 4., 5., 6.], |
| [ 8., 9., 10.], |
| [12., 13., 14.]]), |
| tensor([[ 3.], |
| [ 7.], |
| [11.], |
| [15.]]), |
| tensor([], size=(4, 0))) |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.vsplit, |
| r""" |
| vsplit(input, indices_or_sections) -> List of Tensors |
| |
| Splits :attr:`input`, a tensor with two or more dimensions, into multiple tensors |
| vertically according to :attr:`indices_or_sections`. Each split is a view of |
| :attr:`input`. |
| |
| This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) |
| (the split dimension is 0), except that if :attr:`indices_or_sections` is an integer |
| it must evenly divide the split dimension or a runtime error will be thrown. |
| |
| This function is based on NumPy's :func:`numpy.vsplit`. |
| |
| Args: |
| input (Tensor): tensor to split. |
| indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. |
| |
| Example:: |
| >>> t = torch.arange(16.0).reshape(4,4) |
| >>> t |
| tensor([[ 0., 1., 2., 3.], |
| [ 4., 5., 6., 7.], |
| [ 8., 9., 10., 11.], |
| [12., 13., 14., 15.]]) |
| >>> torch.vsplit(t, 2) |
| (tensor([[0., 1., 2., 3.], |
| [4., 5., 6., 7.]]), |
| tensor([[ 8., 9., 10., 11.], |
| [12., 13., 14., 15.]])) |
| >>> torch.vsplit(t, [3, 6]) |
| (tensor([[ 0., 1., 2., 3.], |
| [ 4., 5., 6., 7.], |
| [ 8., 9., 10., 11.]]), |
| tensor([[12., 13., 14., 15.]]), |
| tensor([], size=(0, 4))) |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.dsplit, |
| r""" |
| dsplit(input, indices_or_sections) -> List of Tensors |
| |
| Splits :attr:`input`, a tensor with three or more dimensions, into multiple tensors |
| depthwise according to :attr:`indices_or_sections`. Each split is a view of |
| :attr:`input`. |
| |
| This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2) |
| (the split dimension is 2), except that if :attr:`indices_or_sections` is an integer |
| it must evenly divide the split dimension or a runtime error will be thrown. |
| |
| This function is based on NumPy's :func:`numpy.dsplit`. |
| |
| Args: |
| input (Tensor): tensor to split. |
| indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. |
| |
| Example:: |
| >>> t = torch.arange(16.0).reshape(2, 2, 4) |
| >>> t |
| tensor([[[ 0., 1., 2., 3.], |
| [ 4., 5., 6., 7.]], |
| [[ 8., 9., 10., 11.], |
| [12., 13., 14., 15.]]]) |
| >>> torch.dsplit(t, 2) |
| (tensor([[[ 0., 1.], |
| [ 4., 5.]], |
| [[ 8., 9.], |
| [12., 13.]]]), |
| tensor([[[ 2., 3.], |
| [ 6., 7.]], |
| [[10., 11.], |
| [14., 15.]]])) |
| |
| >>> torch.dsplit(t, [3, 6]) |
| (tensor([[[ 0., 1., 2.], |
| [ 4., 5., 6.]], |
| [[ 8., 9., 10.], |
| [12., 13., 14.]]]), |
| tensor([[[ 3.], |
| [ 7.]], |
| [[11.], |
| [15.]]]), |
| tensor([], size=(2, 2, 0))) |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.can_cast, |
| r""" |
| can_cast(from_, to) -> bool |
| |
| Determines if a type conversion is allowed under PyTorch casting rules |
| described in the type promotion :ref:`documentation <type-promotion-doc>`. |
| |
| Args: |
| from\_ (dtype): The original :class:`torch.dtype`. |
| to (dtype): The target :class:`torch.dtype`. |
| |
| Example:: |
| |
| >>> torch.can_cast(torch.double, torch.float) |
| True |
| >>> torch.can_cast(torch.float, torch.int) |
| False |
| """, |
| ) |
| |
| add_docstr( |
| torch.corrcoef, |
| r""" |
| corrcoef(input) -> Tensor |
| |
| Estimates the Pearson product-moment correlation coefficient matrix of the variables given by the :attr:`input` matrix, |
| where rows are the variables and columns are the observations. |
| |
| .. note:: |
| |
| The correlation coefficient matrix R is computed using the covariance matrix C as given by |
| :math:`R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }` |
| |
| .. note:: |
| |
| Due to floating point rounding, the resulting array may not be Hermitian and its diagonal elements may not be 1. |
| The real and imaginary values are clipped to the interval [-1, 1] in an attempt to improve this situation. |
| |
| Args: |
| input (Tensor): A 2D matrix containing multiple variables and observations, or a |
| Scalar or 1D vector representing a single variable. |
| |
| Returns: |
| (Tensor) The correlation coefficient matrix of the variables. |
| |
| .. seealso:: |
| |
| :func:`torch.cov` covariance matrix. |
| |
| Example:: |
| |
| >>> x = torch.tensor([[0, 1, 2], [2, 1, 0]]) |
| >>> torch.corrcoef(x) |
| tensor([[ 1., -1.], |
| [-1., 1.]]) |
| >>> x = torch.randn(2, 4) |
| >>> x |
| tensor([[-0.2678, -0.0908, -0.3766, 0.2780], |
| [-0.5812, 0.1535, 0.2387, 0.2350]]) |
| >>> torch.corrcoef(x) |
| tensor([[1.0000, 0.3582], |
| [0.3582, 1.0000]]) |
| >>> torch.corrcoef(x[0]) |
| tensor(1.) |
| """, |
| ) |
| |
| add_docstr( |
| torch.cov, |
| r""" |
| cov(input, *, correction=1, fweights=None, aweights=None) -> Tensor |
| |
| Estimates the covariance matrix of the variables given by the :attr:`input` matrix, where rows are |
| the variables and columns are the observations. |
| |
| A covariance matrix is a square matrix giving the covariance of each pair of variables. The diagonal contains |
| the variance of each variable (covariance of a variable with itself). By definition, if :attr:`input` represents |
| a single variable (Scalar or 1D) then its variance is returned. |
| |
| The sample covariance of the variables :math:`x` and :math:`y` is given by: |
| |
| .. math:: |
| \text{cov}(x,y) = \frac{\sum^{N}_{i = 1}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\max(0,~N~-~\delta N)} |
| |
| where :math:`\bar{x}` and :math:`\bar{y}` are the simple means of the :math:`x` and :math:`y` respectively, and |
| :math:`\delta N` is the :attr:`correction`. |
| |
| If :attr:`fweights` and/or :attr:`aweights` are provided, the weighted covariance |
| is calculated, which is given by: |
| |
| .. math:: |
| \text{cov}_w(x,y) = \frac{\sum^{N}_{i = 1}w_i(x_{i} - \mu_x^*)(y_{i} - \mu_y^*)} |
| {\max(0,~\sum^{N}_{i = 1}w_i~-~\frac{\sum^{N}_{i = 1}w_ia_i}{\sum^{N}_{i = 1}w_i}~\delta N)} |
| |
| where :math:`w` denotes :attr:`fweights` or :attr:`aweights` (``f`` and ``a`` for brevity) based on whichever is |
| provided, or :math:`w = f \times a` if both are provided, and |
| :math:`\mu_x^* = \frac{\sum^{N}_{i = 1}w_ix_{i} }{\sum^{N}_{i = 1}w_i}` is the weighted mean of the variable. If not |
| provided, ``f`` and/or ``a`` can be seen as a :math:`\mathbb{1}` vector of appropriate size. |
| |
| Args: |
| input (Tensor): A 2D matrix containing multiple variables and observations, or a |
| Scalar or 1D vector representing a single variable. |
| |
| Keyword Args: |
| correction (int, optional): difference between the sample size and sample degrees of freedom. |
| Defaults to Bessel's correction, ``correction = 1`` which returns the unbiased estimate, |
| even if both :attr:`fweights` and :attr:`aweights` are specified. ``correction = 0`` |
| will return the simple average. Defaults to ``1``. |
| fweights (tensor, optional): A Scalar or 1D tensor of observation vector frequencies representing the number of |
| times each observation should be repeated. Its numel must equal the number of columns of :attr:`input`. |
| Must have integral dtype. Ignored if ``None``. Defaults to ``None``. |
| aweights (tensor, optional): A Scalar or 1D array of observation vector weights. |
| These relative weights are typically large for observations considered "important" and smaller for |
| observations considered less "important". Its numel must equal the number of columns of :attr:`input`. |
| Must have floating point dtype. Ignored if ``None``. Defaults to ``None``. |
| |
| Returns: |
| (Tensor) The covariance matrix of the variables. |
| |
| .. seealso:: |
| |
| :func:`torch.corrcoef` normalized covariance matrix. |
| |
| Example:: |
| >>> x = torch.tensor([[0, 2], [1, 1], [2, 0]]).T |
| >>> x |
| tensor([[0, 1, 2], |
| [2, 1, 0]]) |
| >>> torch.cov(x) |
| tensor([[ 1., -1.], |
| [-1., 1.]]) |
| >>> torch.cov(x, correction=0) |
| tensor([[ 0.6667, -0.6667], |
| [-0.6667, 0.6667]]) |
| >>> fw = torch.randint(1, 10, (3,)) |
| >>> fw |
| tensor([1, 6, 9]) |
| >>> aw = torch.rand(3) |
| >>> aw |
| tensor([0.4282, 0.0255, 0.4144]) |
| >>> torch.cov(x, fweights=fw, aweights=aw) |
| tensor([[ 0.4169, -0.4169], |
| [-0.4169, 0.4169]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.cat, |
| r""" |
| cat(tensors, dim=0, *, out=None) -> Tensor |
| |
| Concatenates the given sequence of :attr:`seq` tensors in the given dimension. |
| All tensors must either have the same shape (except in the concatenating |
| dimension) or be a 1-D empty tensor with size ``(0,)``. |
| |
| :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` |
| and :func:`torch.chunk`. |
| |
| :func:`torch.cat` can be best understood via examples. |
| |
| .. seealso:: |
| |
| :func:`torch.stack` concatenates the given sequence along a new dimension. |
| |
| Args: |
| tensors (sequence of Tensors): any python sequence of tensors of the same type. |
| Non-empty tensors provided must have the same shape, except in the |
| cat dimension. |
| dim (int, optional): the dimension over which the tensors are concatenated |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497]]) |
| >>> torch.cat((x, x, x), 0) |
| tensor([[ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497], |
| [ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497], |
| [ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497]]) |
| >>> torch.cat((x, x, x), 1) |
| tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, |
| -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, |
| -0.5790, 0.1497]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.concat, |
| r""" |
| concat(tensors, dim=0, *, out=None) -> Tensor |
| |
| Alias of :func:`torch.cat`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.concatenate, |
| r""" |
| concatenate(tensors, axis=0, out=None) -> Tensor |
| |
| Alias of :func:`torch.cat`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.ceil, |
| r""" |
| ceil(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the ceil of the elements of :attr:`input`, |
| the smallest integer greater than or equal to each element. |
| |
| For integer inputs, follows the array-api convention of returning a |
| copy of the input tensor. |
| |
| .. math:: |
| \text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.6341, -1.4208, -1.0900, 0.5826]) |
| >>> torch.ceil(a) |
| tensor([-0., -1., -1., 1.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.real, |
| r""" |
| real(input) -> Tensor |
| |
| Returns a new tensor containing real values of the :attr:`self` tensor. |
| The returned tensor and :attr:`self` share the same underlying storage. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x=torch.randn(4, dtype=torch.cfloat) |
| >>> x |
| tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) |
| >>> x.real |
| tensor([ 0.3100, -0.5445, -1.6492, -0.0638]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.imag, |
| r""" |
| imag(input) -> Tensor |
| |
| Returns a new tensor containing imaginary values of the :attr:`self` tensor. |
| The returned tensor and :attr:`self` share the same underlying storage. |
| |
| .. warning:: |
| :func:`imag` is only supported for tensors with complex dtypes. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x=torch.randn(4, dtype=torch.cfloat) |
| >>> x |
| tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) |
| >>> x.imag |
| tensor([ 0.3553, -0.7896, -0.0633, -0.8119]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.view_as_real, |
| r""" |
| view_as_real(input) -> Tensor |
| |
| Returns a view of :attr:`input` as a real tensor. For an input complex tensor of |
| :attr:`size` :math:`m1, m2, \dots, mi`, this function returns a new |
| real tensor of size :math:`m1, m2, \dots, mi, 2`, where the last dimension of size 2 |
| represents the real and imaginary components of complex numbers. |
| |
| .. warning:: |
| :func:`view_as_real` is only supported for tensors with ``complex dtypes``. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x=torch.randn(4, dtype=torch.cfloat) |
| >>> x |
| tensor([(0.4737-0.3839j), (-0.2098-0.6699j), (0.3470-0.9451j), (-0.5174-1.3136j)]) |
| >>> torch.view_as_real(x) |
| tensor([[ 0.4737, -0.3839], |
| [-0.2098, -0.6699], |
| [ 0.3470, -0.9451], |
| [-0.5174, -1.3136]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.view_as_complex, |
| r""" |
| view_as_complex(input) -> Tensor |
| |
| Returns a view of :attr:`input` as a complex tensor. For an input complex |
| tensor of :attr:`size` :math:`m1, m2, \dots, mi, 2`, this function returns a |
| new complex tensor of :attr:`size` :math:`m1, m2, \dots, mi` where the last |
| dimension of the input tensor is expected to represent the real and imaginary |
| components of complex numbers. |
| |
| .. warning:: |
| :func:`view_as_complex` is only supported for tensors with |
| :class:`torch.dtype` ``torch.float64`` and ``torch.float32``. The input is |
| expected to have the last dimension of :attr:`size` 2. In addition, the |
| tensor must have a `stride` of 1 for its last dimension. The strides of all |
| other dimensions must be even numbers. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x=torch.randn(4, 2) |
| >>> x |
| tensor([[ 1.6116, -0.5772], |
| [-1.4606, -0.9120], |
| [ 0.0786, -1.7497], |
| [-0.6561, -1.6623]]) |
| >>> torch.view_as_complex(x) |
| tensor([(1.6116-0.5772j), (-1.4606-0.9120j), (0.0786-1.7497j), (-0.6561-1.6623j)]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.reciprocal, |
| r""" |
| reciprocal(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the reciprocal of the elements of :attr:`input` |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{\text{input}_{i}} |
| |
| .. note:: |
| Unlike NumPy's reciprocal, torch.reciprocal supports integral inputs. Integral |
| inputs to reciprocal are automatically :ref:`promoted <type-promotion-doc>` to |
| the default scalar type. |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.4595, -2.1219, -1.4314, 0.7298]) |
| >>> torch.reciprocal(a) |
| tensor([-2.1763, -0.4713, -0.6986, 1.3702]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.cholesky, |
| r""" |
| cholesky(input, upper=False, *, out=None) -> Tensor |
| |
| Computes the Cholesky decomposition of a symmetric positive-definite |
| matrix :math:`A` or for batches of symmetric positive-definite matrices. |
| |
| If :attr:`upper` is ``True``, the returned matrix ``U`` is upper-triangular, and |
| the decomposition has the form: |
| |
| .. math:: |
| |
| A = U^TU |
| |
| If :attr:`upper` is ``False``, the returned matrix ``L`` is lower-triangular, and |
| the decomposition has the form: |
| |
| .. math:: |
| |
| A = LL^T |
| |
| If :attr:`upper` is ``True``, and :math:`A` is a batch of symmetric positive-definite |
| matrices, then the returned tensor will be composed of upper-triangular Cholesky factors |
| of each of the individual matrices. Similarly, when :attr:`upper` is ``False``, the returned |
| tensor will be composed of lower-triangular Cholesky factors of each of the individual |
| matrices. |
| |
| .. warning:: |
| |
| :func:`torch.cholesky` is deprecated in favor of :func:`torch.linalg.cholesky` |
| and will be removed in a future PyTorch release. |
| |
| ``L = torch.cholesky(A)`` should be replaced with |
| |
| .. code:: python |
| |
| L = torch.linalg.cholesky(A) |
| |
| ``U = torch.cholesky(A, upper=True)`` should be replaced with |
| |
| .. code:: python |
| |
| U = torch.linalg.cholesky(A).mH |
| |
| This transform will produce equivalent results for all valid (symmetric positive definite) inputs. |
| |
| Args: |
| input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)` where `*` is zero or more |
| batch dimensions consisting of symmetric positive-definite matrices. |
| upper (bool, optional): flag that indicates whether to return a |
| upper or lower triangular matrix. Default: ``False`` |
| |
| Keyword args: |
| out (Tensor, optional): the output matrix |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = a @ a.mT + 1e-3 # make symmetric positive-definite |
| >>> l = torch.cholesky(a) |
| >>> a |
| tensor([[ 2.4112, -0.7486, 1.4551], |
| [-0.7486, 1.3544, 0.1294], |
| [ 1.4551, 0.1294, 1.6724]]) |
| >>> l |
| tensor([[ 1.5528, 0.0000, 0.0000], |
| [-0.4821, 1.0592, 0.0000], |
| [ 0.9371, 0.5487, 0.7023]]) |
| >>> l @ l.mT |
| tensor([[ 2.4112, -0.7486, 1.4551], |
| [-0.7486, 1.3544, 0.1294], |
| [ 1.4551, 0.1294, 1.6724]]) |
| >>> a = torch.randn(3, 2, 2) # Example for batched input |
| >>> a = a @ a.mT + 1e-03 # make symmetric positive-definite |
| >>> l = torch.cholesky(a) |
| >>> z = l @ l.mT |
| >>> torch.dist(z, a) |
| tensor(2.3842e-07) |
| """, |
| ) |
| |
| add_docstr( |
| torch.cholesky_solve, |
| r""" |
| cholesky_solve(B, L, upper=False, *, out=None) -> Tensor |
| |
| Computes the solution of a system of linear equations with complex Hermitian |
| or real symmetric positive-definite lhs given its Cholesky decomposition. |
| |
| Let :math:`A` be a complex Hermitian or real symmetric positive-definite matrix, |
| and :math:`L` its Cholesky decomposition such that: |
| |
| .. math:: |
| |
| A = LL^{\text{H}} |
| |
| where :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, |
| and the transpose when :math:`L` is real-valued. |
| |
| Returns the solution :math:`X` of the following linear system: |
| |
| .. math:: |
| |
| AX = B |
| |
| Supports inputs of float, double, cfloat and cdouble dtypes. |
| Also supports batches of matrices, and if :math:`A` or :math:`B` is a batch of matrices |
| then the output has the same batch dimensions. |
| |
| Args: |
| B (Tensor): right-hand side tensor of shape `(*, n, k)` |
| where :math:`*` is zero or more batch dimensions |
| L (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions |
| consisting of lower or upper triangular Cholesky decompositions of |
| symmetric or Hermitian positive-definite matrices. |
| upper (bool, optional): flag that indicates whether :math:`L` is lower triangular |
| or upper triangular. Default: ``False``. |
| |
| Keyword args: |
| out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> A = A @ A.T + torch.eye(3) * 1e-3 # Creates a symmetric positive-definite matrix |
| >>> L = torch.linalg.cholesky(A) # Extract Cholesky decomposition |
| >>> B = torch.randn(3, 2) |
| >>> torch.cholesky_solve(B, L) |
| tensor([[ -8.1625, 19.6097], |
| [ -5.8398, 14.2387], |
| [ -4.3771, 10.4173]]) |
| >>> A.inverse() @ B |
| tensor([[ -8.1626, 19.6097], |
| [ -5.8398, 14.2387], |
| [ -4.3771, 10.4173]]) |
| |
| >>> A = torch.randn(3, 2, 2, dtype=torch.complex64) |
| >>> A = A @ A.mH + torch.eye(2) * 1e-3 # Batch of Hermitian positive-definite matrices |
| >>> L = torch.linalg.cholesky(A) |
| >>> B = torch.randn(2, 1, dtype=torch.complex64) |
| >>> X = torch.cholesky_solve(B, L) |
| >>> torch.dist(X, A.inverse() @ B) |
| tensor(1.6881e-5) |
| """, |
| ) |
| |
| add_docstr( |
| torch.cholesky_inverse, |
| r""" |
| cholesky_inverse(L, upper=False, *, out=None) -> Tensor |
| |
| Computes the inverse of a complex Hermitian or real symmetric |
| positive-definite matrix given its Cholesky decomposition. |
| |
| Let :math:`A` be a complex Hermitian or real symmetric positive-definite matrix, |
| and :math:`L` its Cholesky decomposition such that: |
| |
| .. math:: |
| |
| A = LL^{\text{H}} |
| |
| where :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, |
| and the transpose when :math:`L` is real-valued. |
| |
| Computes the inverse matrix :math:`A^{-1}`. |
| |
| Supports input of float, double, cfloat and cdouble dtypes. |
| Also supports batches of matrices, and if :math:`A` is a batch of matrices |
| then the output has the same batch dimensions. |
| |
| Args: |
| L (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions |
| consisting of lower or upper triangular Cholesky decompositions of |
| symmetric or Hermitian positive-definite matrices. |
| upper (bool, optional): flag that indicates whether :math:`L` is lower triangular |
| or upper triangular. Default: ``False`` |
| |
| Keyword args: |
| out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> A = A @ A.T + torch.eye(3) * 1e-3 # Creates a symmetric positive-definite matrix |
| >>> L = torch.linalg.cholesky(A) # Extract Cholesky decomposition |
| >>> torch.cholesky_inverse(L) |
| tensor([[ 1.9314, 1.2251, -0.0889], |
| [ 1.2251, 2.4439, 0.2122], |
| [-0.0889, 0.2122, 0.1412]]) |
| >>> A.inverse() |
| tensor([[ 1.9314, 1.2251, -0.0889], |
| [ 1.2251, 2.4439, 0.2122], |
| [-0.0889, 0.2122, 0.1412]]) |
| |
| >>> A = torch.randn(3, 2, 2, dtype=torch.complex64) |
| >>> A = A @ A.mH + torch.eye(2) * 1e-3 # Batch of Hermitian positive-definite matrices |
| >>> L = torch.linalg.cholesky(A) |
| >>> torch.dist(torch.inverse(A), torch.cholesky_inverse(L)) |
| tensor(5.6358e-7) |
| """, |
| ) |
| |
| add_docstr( |
| torch.clone, |
| r""" |
| clone(input, *, memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a copy of :attr:`input`. |
| |
| .. note:: |
| |
| This function is differentiable, so gradients will flow back from the |
| result of this operation to :attr:`input`. To create a tensor without an |
| autograd relationship to :attr:`input` see :meth:`~Tensor.detach`. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {memory_format} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.clamp, |
| r""" |
| clamp(input, min=None, max=None, *, out=None) -> Tensor |
| |
| Clamps all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]`. |
| Letting min_value and max_value be :attr:`min` and :attr:`max`, respectively, this returns: |
| |
| .. math:: |
| y_i = \min(\max(x_i, \text{min\_value}_i), \text{max\_value}_i) |
| |
| If :attr:`min` is ``None``, there is no lower bound. |
| Or, if :attr:`max` is ``None`` there is no upper bound. |
| """ |
| + r""" |
| |
| .. note:: |
| If :attr:`min` is greater than :attr:`max` :func:`torch.clamp(..., min, max) <torch.clamp>` |
| sets all elements in :attr:`input` to the value of :attr:`max`. |
| |
| Args: |
| {input} |
| min (Number or Tensor, optional): lower-bound of the range to be clamped to |
| max (Number or Tensor, optional): upper-bound of the range to be clamped to |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-1.7120, 0.1734, -0.0478, -0.0922]) |
| >>> torch.clamp(a, min=-0.5, max=0.5) |
| tensor([-0.5000, 0.1734, -0.0478, -0.0922]) |
| |
| >>> min = torch.linspace(-1, 1, steps=4) |
| >>> torch.clamp(a, min=min) |
| tensor([-1.0000, 0.1734, 0.3333, 1.0000]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.clip, |
| r""" |
| clip(input, min=None, max=None, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.clamp`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.column_stack, |
| r""" |
| column_stack(tensors, *, out=None) -> Tensor |
| |
| Creates a new tensor by horizontally stacking the tensors in :attr:`tensors`. |
| |
| Equivalent to ``torch.hstack(tensors)``, except each zero or one dimensional tensor ``t`` |
| in :attr:`tensors` is first reshaped into a ``(t.numel(), 1)`` column before being stacked horizontally. |
| |
| Args: |
| tensors (sequence of Tensors): sequence of tensors to concatenate |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 2, 3]) |
| >>> b = torch.tensor([4, 5, 6]) |
| >>> torch.column_stack((a, b)) |
| tensor([[1, 4], |
| [2, 5], |
| [3, 6]]) |
| >>> a = torch.arange(5) |
| >>> b = torch.arange(10).reshape(5, 2) |
| >>> torch.column_stack((a, b, b)) |
| tensor([[0, 0, 1, 0, 1], |
| [1, 2, 3, 2, 3], |
| [2, 4, 5, 4, 5], |
| [3, 6, 7, 6, 7], |
| [4, 8, 9, 8, 9]]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.complex, |
| r""" |
| complex(real, imag, *, out=None) -> Tensor |
| |
| Constructs a complex tensor with its real part equal to :attr:`real` and its |
| imaginary part equal to :attr:`imag`. |
| |
| Args: |
| real (Tensor): The real part of the complex tensor. Must be half, float or double. |
| imag (Tensor): The imaginary part of the complex tensor. Must be same dtype |
| as :attr:`real`. |
| |
| Keyword args: |
| out (Tensor): If the inputs are ``torch.float32``, must be |
| ``torch.complex64``. If the inputs are ``torch.float64``, must be |
| ``torch.complex128``. |
| |
| Example:: |
| |
| >>> real = torch.tensor([1, 2], dtype=torch.float32) |
| >>> imag = torch.tensor([3, 4], dtype=torch.float32) |
| >>> z = torch.complex(real, imag) |
| >>> z |
| tensor([(1.+3.j), (2.+4.j)]) |
| >>> z.dtype |
| torch.complex64 |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.polar, |
| r""" |
| polar(abs, angle, *, out=None) -> Tensor |
| |
| Constructs a complex tensor whose elements are Cartesian coordinates |
| corresponding to the polar coordinates with absolute value :attr:`abs` and angle |
| :attr:`angle`. |
| |
| .. math:: |
| \text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs} \cdot \sin(\text{angle}) \cdot j |
| |
| .. note:: |
| `torch.polar` is similar to |
| `std::polar <https://en.cppreference.com/w/cpp/numeric/complex/polar>`_ |
| and does not compute the polar decomposition |
| of a complex tensor like Python's `cmath.polar` and SciPy's `linalg.polar` do. |
| The behavior of this function is undefined if `abs` is negative or NaN, or if `angle` is |
| infinite. |
| |
| """ |
| + r""" |
| Args: |
| abs (Tensor): The absolute value the complex tensor. Must be float or double. |
| angle (Tensor): The angle of the complex tensor. Must be same dtype as |
| :attr:`abs`. |
| |
| Keyword args: |
| out (Tensor): If the inputs are ``torch.float32``, must be |
| ``torch.complex64``. If the inputs are ``torch.float64``, must be |
| ``torch.complex128``. |
| |
| Example:: |
| |
| >>> import numpy as np |
| >>> abs = torch.tensor([1, 2], dtype=torch.float64) |
| >>> angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64) |
| >>> z = torch.polar(abs, angle) |
| >>> z |
| tensor([(0.0000+1.0000j), (-1.4142-1.4142j)], dtype=torch.complex128) |
| """, |
| ) |
| |
| add_docstr( |
| torch.conj_physical, |
| r""" |
| conj_physical(input, *, out=None) -> Tensor |
| |
| Computes the element-wise conjugate of the given :attr:`input` tensor. |
| If :attr:`input` has a non-complex dtype, this function just returns :attr:`input`. |
| |
| .. note:: |
| This performs the conjugate operation regardless of the fact conjugate bit is set or not. |
| |
| .. warning:: In the future, :func:`torch.conj_physical` may return a non-writeable view for an :attr:`input` of |
| non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical` |
| when :attr:`input` is of non-complex dtype to be compatible with this change. |
| |
| .. math:: |
| \text{out}_{i} = conj(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.conj_physical(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])) |
| tensor([-1 - 1j, -2 - 2j, 3 + 3j]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.conj, |
| r""" |
| conj(input) -> Tensor |
| |
| Returns a view of :attr:`input` with a flipped conjugate bit. If :attr:`input` has a non-complex dtype, |
| this function just returns :attr:`input`. |
| |
| .. note:: |
| :func:`torch.conj` performs a lazy conjugation, but the actual conjugated tensor can be materialized |
| at any time using :func:`torch.resolve_conj`. |
| |
| .. warning:: In the future, :func:`torch.conj` may return a non-writeable view for an :attr:`input` of |
| non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical` |
| when :attr:`input` is of non-complex dtype to be compatible with this change. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) |
| >>> x.is_conj() |
| False |
| >>> y = torch.conj(x) |
| >>> y.is_conj() |
| True |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.resolve_conj, |
| r""" |
| resolve_conj(input) -> Tensor |
| |
| Returns a new tensor with materialized conjugation if :attr:`input`'s conjugate bit is set to `True`, |
| else returns :attr:`input`. The output tensor will always have its conjugate bit set to `False`. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) |
| >>> y = x.conj() |
| >>> y.is_conj() |
| True |
| >>> z = y.resolve_conj() |
| >>> z |
| tensor([-1 - 1j, -2 - 2j, 3 + 3j]) |
| >>> z.is_conj() |
| False |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.resolve_neg, |
| r""" |
| resolve_neg(input) -> Tensor |
| |
| Returns a new tensor with materialized negation if :attr:`input`'s negative bit is set to `True`, |
| else returns :attr:`input`. The output tensor will always have its negative bit set to `False`. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) |
| >>> y = x.conj() |
| >>> z = y.imag |
| >>> z.is_neg() |
| True |
| >>> out = z.resolve_neg() |
| >>> out |
| tensor([-1., -2., 3.]) |
| >>> out.is_neg() |
| False |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.copysign, |
| r""" |
| copysign(input, other, *, out=None) -> Tensor |
| |
| Create a new floating-point tensor with the magnitude of :attr:`input` and the sign of :attr:`other`, elementwise. |
| |
| .. math:: |
| \text{out}_{i} = \begin{cases} |
| -|\text{input}_{i}| & \text{if } \text{other}_{i} \leq -0.0 \\ |
| |\text{input}_{i}| & \text{if } \text{other}_{i} \geq 0.0 \\ |
| \end{cases} |
| """ |
| + r""" |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| and integer and float inputs. |
| |
| Args: |
| input (Tensor): magnitudes. |
| other (Tensor or Number): contains value(s) whose signbit(s) are |
| applied to the magnitudes in :attr:`input`. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([-1.2557, -0.0026, -0.5387, 0.4740, -0.9244]) |
| >>> torch.copysign(a, 1) |
| tensor([1.2557, 0.0026, 0.5387, 0.4740, 0.9244]) |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.7079, 0.2778, -1.0249, 0.5719], |
| [-0.0059, -0.2600, -0.4475, -1.3948], |
| [ 0.3667, -0.9567, -2.5757, -0.1751], |
| [ 0.2046, -0.0742, 0.2998, -0.1054]]) |
| >>> b = torch.randn(4) |
| tensor([ 0.2373, 0.3120, 0.3190, -1.1128]) |
| >>> torch.copysign(a, b) |
| tensor([[ 0.7079, 0.2778, 1.0249, -0.5719], |
| [ 0.0059, 0.2600, 0.4475, -1.3948], |
| [ 0.3667, 0.9567, 2.5757, -0.1751], |
| [ 0.2046, 0.0742, 0.2998, -0.1054]]) |
| >>> a = torch.tensor([1.]) |
| >>> b = torch.tensor([-0.]) |
| >>> torch.copysign(a, b) |
| tensor([-1.]) |
| |
| .. note:: |
| copysign handles signed zeros. If the other argument has a negative zero (-0), |
| the corresponding output value will be negative. |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.cos, |
| r""" |
| cos(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the cosine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cos(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 1.4309, 1.2706, -0.8562, 0.9796]) |
| >>> torch.cos(a) |
| tensor([ 0.1395, 0.2957, 0.6553, 0.5574]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.cosh, |
| r""" |
| cosh(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic cosine of the elements of |
| :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cosh(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.1632, 1.1835, -0.6979, -0.7325]) |
| >>> torch.cosh(a) |
| tensor([ 1.0133, 1.7860, 1.2536, 1.2805]) |
| |
| .. note:: |
| When :attr:`input` is on the CPU, the implementation of torch.cosh may use |
| the Sleef library, which rounds very large results to infinity or negative |
| infinity. See `here <https://sleef.org/purec.xhtml>`_ for details. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.cross, |
| r""" |
| cross(input, other, dim=None, *, out=None) -> Tensor |
| |
| |
| Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input` |
| and :attr:`other`. |
| |
| Supports input of float, double, cfloat and cdouble dtypes. Also supports batches |
| of vectors, for which it computes the product along the dimension :attr:`dim`. |
| In this case, the output has the same batch dimensions as the inputs. |
| |
| .. warning:: |
| If :attr:`dim` is not given, it defaults to the first dimension found |
| with the size 3. Note that this might be unexpected. |
| |
| This behavior is deprecated and will be changed to match that of :func:`torch.linalg.cross` |
| in a future release. |
| |
| .. seealso:: |
| :func:`torch.linalg.cross` which has dim=-1 as default. |
| |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| dim (int, optional): the dimension to take the cross-product in. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 3) |
| >>> a |
| tensor([[-0.3956, 1.1455, 1.6895], |
| [-0.5849, 1.3672, 0.3599], |
| [-1.1626, 0.7180, -0.0521], |
| [-0.1339, 0.9902, -2.0225]]) |
| >>> b = torch.randn(4, 3) |
| >>> b |
| tensor([[-0.0257, -1.4725, -1.2251], |
| [-1.1479, -0.7005, -1.9757], |
| [-1.3904, 0.3726, -1.1836], |
| [-0.9688, -0.7153, 0.2159]]) |
| >>> torch.cross(a, b, dim=1) |
| tensor([[ 1.0844, -0.5281, 0.6120], |
| [-2.4490, -1.5687, 1.9792], |
| [-0.8304, -1.3037, 0.5650], |
| [-1.2329, 1.9883, 1.0551]]) |
| >>> torch.cross(a, b) |
| tensor([[ 1.0844, -0.5281, 0.6120], |
| [-2.4490, -1.5687, 1.9792], |
| [-0.8304, -1.3037, 0.5650], |
| [-1.2329, 1.9883, 1.0551]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logcumsumexp, |
| r""" |
| logcumsumexp(input, dim, *, out=None) -> Tensor |
| Returns the logarithm of the cumulative summation of the exponentiation of |
| elements of :attr:`input` in the dimension :attr:`dim`. |
| |
| For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is |
| |
| .. math:: |
| \text{{logcumsumexp}}(x)_{{ij}} = \log \sum\limits_{{j=0}}^{{i}} \exp(x_{{ij}}) |
| |
| Args: |
| {input} |
| dim (int): the dimension to do the operation over |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> torch.logcumsumexp(a, dim=0) |
| tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811, |
| 1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475])) |
| """.format(**reduceops_common_args), |
| ) |
| |
| add_docstr( |
| torch.cummax, |
| r""" |
| cummax(input, dim, *, out=None) -> (Tensor, LongTensor) |
| Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of |
| elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index |
| location of each maximum value found in the dimension :attr:`dim`. |
| |
| .. math:: |
| y_i = max(x_1, x_2, x_3, \dots, x_i) |
| |
| Args: |
| {input} |
| dim (int): the dimension to do the operation over |
| |
| Keyword args: |
| out (tuple, optional): the result tuple of two output tensors (values, indices) |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284, |
| 1.9946, -0.8209]) |
| >>> torch.cummax(a, dim=0) |
| torch.return_types.cummax( |
| values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696, |
| 1.9946, 1.9946]), |
| indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8])) |
| """.format(**reduceops_common_args), |
| ) |
| |
| add_docstr( |
| torch.cummin, |
| r""" |
| cummin(input, dim, *, out=None) -> (Tensor, LongTensor) |
| Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of |
| elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index |
| location of each maximum value found in the dimension :attr:`dim`. |
| |
| .. math:: |
| y_i = min(x_1, x_2, x_3, \dots, x_i) |
| |
| Args: |
| {input} |
| dim (int): the dimension to do the operation over |
| |
| Keyword args: |
| out (tuple, optional): the result tuple of two output tensors (values, indices) |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762, |
| 0.9165, 1.6684]) |
| >>> torch.cummin(a, dim=0) |
| torch.return_types.cummin( |
| values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298, |
| -1.3298, -1.3298]), |
| indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4])) |
| """.format(**reduceops_common_args), |
| ) |
| |
| add_docstr( |
| torch.cumprod, |
| r""" |
| cumprod(input, dim, *, dtype=None, out=None) -> Tensor |
| |
| Returns the cumulative product of elements of :attr:`input` in the dimension |
| :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be |
| a vector of size N, with elements. |
| |
| .. math:: |
| y_i = x_1 \times x_2\times x_3\times \dots \times x_i |
| |
| Args: |
| {input} |
| dim (int): the dimension to do the operation over |
| |
| Keyword args: |
| {dtype} |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, |
| -0.2129, -0.4206, 0.1968]) |
| >>> torch.cumprod(a, dim=0) |
| tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, |
| 0.0014, -0.0006, -0.0001]) |
| |
| >>> a[5] = 0.0 |
| >>> torch.cumprod(a, dim=0) |
| tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, |
| 0.0000, -0.0000, -0.0000]) |
| """.format(**reduceops_common_args), |
| ) |
| |
| add_docstr( |
| torch.cumsum, |
| r""" |
| cumsum(input, dim, *, dtype=None, out=None) -> Tensor |
| |
| Returns the cumulative sum of elements of :attr:`input` in the dimension |
| :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be |
| a vector of size N, with elements. |
| |
| .. math:: |
| y_i = x_1 + x_2 + x_3 + \dots + x_i |
| |
| Args: |
| {input} |
| dim (int): the dimension to do the operation over |
| |
| Keyword args: |
| {dtype} |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randint(1, 20, (10,)) |
| >>> a |
| tensor([13, 7, 3, 10, 13, 3, 15, 10, 9, 10]) |
| >>> torch.cumsum(a, dim=0) |
| tensor([13, 20, 23, 33, 46, 49, 64, 74, 83, 93]) |
| """.format(**reduceops_common_args), |
| ) |
| |
| add_docstr( |
| torch.count_nonzero, |
| r""" |
| count_nonzero(input, dim=None) -> Tensor |
| |
| Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`. |
| If no dim is specified then all non-zeros in the tensor are counted. |
| |
| Args: |
| {input} |
| dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros. |
| |
| Example:: |
| |
| >>> x = torch.zeros(3,3) |
| >>> x[torch.randn(3,3) > 0.5] = 1 |
| >>> x |
| tensor([[0., 1., 1.], |
| [0., 0., 0.], |
| [0., 0., 1.]]) |
| >>> torch.count_nonzero(x) |
| tensor(3) |
| >>> torch.count_nonzero(x, dim=0) |
| tensor([0, 1, 2]) |
| """.format(**reduceops_common_args), |
| ) |
| |
| add_docstr( |
| torch.dequantize, |
| r""" |
| dequantize(tensor) -> Tensor |
| |
| Returns an fp32 Tensor by dequantizing a quantized Tensor |
| |
| Args: |
| tensor (Tensor): A quantized Tensor |
| |
| .. function:: dequantize(tensors) -> sequence of Tensors |
| :noindex: |
| |
| Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors |
| |
| Args: |
| tensors (sequence of Tensors): A list of quantized Tensors |
| """, |
| ) |
| |
| add_docstr( |
| torch.diag, |
| r""" |
| diag(input, diagonal=0, *, out=None) -> Tensor |
| |
| - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor |
| with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with |
| the diagonal elements of :attr:`input`. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider: |
| |
| - If :attr:`diagonal` = 0, it is the main diagonal. |
| - If :attr:`diagonal` > 0, it is above the main diagonal. |
| - If :attr:`diagonal` < 0, it is below the main diagonal. |
| |
| Args: |
| {input} |
| diagonal (int, optional): the diagonal to consider |
| |
| Keyword args: |
| {out} |
| |
| .. seealso:: |
| |
| :func:`torch.diagonal` always returns the diagonal of its input. |
| |
| :func:`torch.diagflat` always constructs a tensor with diagonal elements |
| specified by the input. |
| |
| Examples: |
| |
| Get the square matrix where the input vector is the diagonal:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| tensor([ 0.5950,-0.0872, 2.3298]) |
| >>> torch.diag(a) |
| tensor([[ 0.5950, 0.0000, 0.0000], |
| [ 0.0000,-0.0872, 0.0000], |
| [ 0.0000, 0.0000, 2.3298]]) |
| >>> torch.diag(a, 1) |
| tensor([[ 0.0000, 0.5950, 0.0000, 0.0000], |
| [ 0.0000, 0.0000,-0.0872, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 2.3298], |
| [ 0.0000, 0.0000, 0.0000, 0.0000]]) |
| |
| Get the k-th diagonal of a given matrix:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[-0.4264, 0.0255,-0.1064], |
| [ 0.8795,-0.2429, 0.1374], |
| [ 0.1029,-0.6482,-1.6300]]) |
| >>> torch.diag(a, 0) |
| tensor([-0.4264,-0.2429,-1.6300]) |
| >>> torch.diag(a, 1) |
| tensor([ 0.0255, 0.1374]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.diag_embed, |
| r""" |
| diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor |
| |
| Creates a tensor whose diagonals of certain 2D planes (specified by |
| :attr:`dim1` and :attr:`dim2`) are filled by :attr:`input`. |
| To facilitate creating batched diagonal matrices, the 2D planes formed by |
| the last two dimensions of the returned tensor are chosen by default. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| The size of the new matrix will be calculated to make the specified diagonal |
| of the size of the last input dimension. |
| Note that for :attr:`offset` other than :math:`0`, the order of :attr:`dim1` |
| and :attr:`dim2` matters. Exchanging them is equivalent to changing the |
| sign of :attr:`offset`. |
| |
| Applying :meth:`torch.diagonal` to the output of this function with |
| the same arguments yields a matrix identical to input. However, |
| :meth:`torch.diagonal` has different default dimensions, so those |
| need to be explicitly specified. |
| |
| Args: |
| {input} Must be at least 1-dimensional. |
| offset (int, optional): which diagonal to consider. Default: 0 |
| (main diagonal). |
| dim1 (int, optional): first dimension with respect to which to |
| take diagonal. Default: -2. |
| dim2 (int, optional): second dimension with respect to which to |
| take diagonal. Default: -1. |
| |
| Example:: |
| |
| >>> a = torch.randn(2, 3) |
| >>> torch.diag_embed(a) |
| tensor([[[ 1.5410, 0.0000, 0.0000], |
| [ 0.0000, -0.2934, 0.0000], |
| [ 0.0000, 0.0000, -2.1788]], |
| |
| [[ 0.5684, 0.0000, 0.0000], |
| [ 0.0000, -1.0845, 0.0000], |
| [ 0.0000, 0.0000, -1.3986]]]) |
| |
| >>> torch.diag_embed(a, offset=1, dim1=0, dim2=2) |
| tensor([[[ 0.0000, 1.5410, 0.0000, 0.0000], |
| [ 0.0000, 0.5684, 0.0000, 0.0000]], |
| |
| [[ 0.0000, 0.0000, -0.2934, 0.0000], |
| [ 0.0000, 0.0000, -1.0845, 0.0000]], |
| |
| [[ 0.0000, 0.0000, 0.0000, -2.1788], |
| [ 0.0000, 0.0000, 0.0000, -1.3986]], |
| |
| [[ 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.0000]]]) |
| """.format(**common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.diagflat, |
| r""" |
| diagflat(input, offset=0) -> Tensor |
| |
| - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor |
| with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a tensor with more than one dimension, then returns a |
| 2-D tensor with diagonal elements equal to a flattened :attr:`input`. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Args: |
| {input} |
| offset (int, optional): the diagonal to consider. Default: 0 (main |
| diagonal). |
| |
| Examples:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| tensor([-0.2956, -0.9068, 0.1695]) |
| >>> torch.diagflat(a) |
| tensor([[-0.2956, 0.0000, 0.0000], |
| [ 0.0000, -0.9068, 0.0000], |
| [ 0.0000, 0.0000, 0.1695]]) |
| >>> torch.diagflat(a, 1) |
| tensor([[ 0.0000, -0.2956, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, -0.9068, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.1695], |
| [ 0.0000, 0.0000, 0.0000, 0.0000]]) |
| |
| >>> a = torch.randn(2, 2) |
| >>> a |
| tensor([[ 0.2094, -0.3018], |
| [-0.1516, 1.9342]]) |
| >>> torch.diagflat(a) |
| tensor([[ 0.2094, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, -0.3018, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, -0.1516, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 1.9342]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.diagonal, |
| r""" |
| diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor |
| |
| Returns a partial view of :attr:`input` with the its diagonal elements |
| with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension |
| at the end of the shape. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Applying :meth:`torch.diag_embed` to the output of this function with |
| the same arguments yields a diagonal matrix with the diagonal entries |
| of the input. However, :meth:`torch.diag_embed` has different default |
| dimensions, so those need to be explicitly specified. |
| |
| Args: |
| {input} Must be at least 2-dimensional. |
| offset (int, optional): which diagonal to consider. Default: 0 |
| (main diagonal). |
| dim1 (int, optional): first dimension with respect to which to |
| take diagonal. Default: 0. |
| dim2 (int, optional): second dimension with respect to which to |
| take diagonal. Default: 1. |
| |
| .. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1. |
| |
| Examples:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[-1.0854, 1.1431, -0.1752], |
| [ 0.8536, -0.0905, 0.0360], |
| [ 0.6927, -0.3735, -0.4945]]) |
| |
| |
| >>> torch.diagonal(a, 0) |
| tensor([-1.0854, -0.0905, -0.4945]) |
| |
| |
| >>> torch.diagonal(a, 1) |
| tensor([ 1.1431, 0.0360]) |
| |
| |
| >>> x = torch.randn(2, 5, 4, 2) |
| >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) |
| tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], |
| [-1.1065, 1.0401, -0.2235, -0.7938]], |
| |
| [[-1.7325, -0.3081, 0.6166, 0.2335], |
| [ 1.0500, 0.7336, -0.3836, -1.1015]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.diagonal_scatter, |
| r""" |
| diagonal_scatter(input, src, offset=0, dim1=0, dim2=1) -> Tensor |
| |
| Embeds the values of the :attr:`src` tensor into :attr:`input` along |
| the diagonal elements of :attr:`input`, with respect to :attr:`dim1` |
| and :attr:`dim2`. |
| |
| This function returns a tensor with fresh storage; it does not |
| return a view. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Args: |
| {input} Must be at least 2-dimensional. |
| src (Tensor): the tensor to embed into :attr:`input`. |
| offset (int, optional): which diagonal to consider. Default: 0 |
| (main diagonal). |
| dim1 (int, optional): first dimension with respect to which to |
| take diagonal. Default: 0. |
| dim2 (int, optional): second dimension with respect to which to |
| take diagonal. Default: 1. |
| |
| .. note:: |
| |
| :attr:`src` must be of the proper size in order to be embedded |
| into :attr:`input`. Specifically, it should have the same shape as |
| ``torch.diagonal(input, offset, dim1, dim2)`` |
| |
| Examples:: |
| |
| >>> a = torch.zeros(3, 3) |
| >>> a |
| tensor([[0., 0., 0.], |
| [0., 0., 0.], |
| [0., 0., 0.]]) |
| |
| >>> torch.diagonal_scatter(a, torch.ones(3), 0) |
| tensor([[1., 0., 0.], |
| [0., 1., 0.], |
| [0., 0., 1.]]) |
| |
| >>> torch.diagonal_scatter(a, torch.ones(2), 1) |
| tensor([[0., 1., 0.], |
| [0., 0., 1.], |
| [0., 0., 0.]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.as_strided_scatter, |
| r""" |
| as_strided_scatter(input, src, size, stride, storage_offset=None) -> Tensor |
| |
| Embeds the values of the :attr:`src` tensor into :attr:`input` along |
| the elements corresponding to the result of calling |
| input.as_strided(size, stride, storage_offset). |
| |
| This function returns a tensor with fresh storage; it does not |
| return a view. |
| |
| Args: |
| {input} |
| size (tuple or ints): the shape of the output tensor |
| stride (tuple or ints): the stride of the output tensor |
| storage_offset (int, optional): the offset in the underlying storage of the output tensor |
| |
| .. note:: |
| |
| :attr:`src` must be of the proper size in order to be embedded |
| into :attr:`input`. Specifically, it should have the same shape as |
| `torch.as_strided(input, size, stride, storage_offset)` |
| |
| Example:: |
| |
| >>> a = torch.arange(4).reshape(2, 2) + 1 |
| >>> a |
| tensor([[1, 2], |
| [3, 4]]) |
| >>> b = torch.zeros(3, 3) |
| >>> b |
| tensor([[0., 0., 0.], |
| [0., 0., 0.], |
| [0., 0., 0.]]) |
| >>> torch.as_strided_scatter(b, a, (2, 2), (1, 2)) |
| tensor([[1., 3., 2.], |
| [4., 0., 0.], |
| [0., 0., 0.]]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.diff, |
| r""" |
| diff(input, n=1, dim=-1, prepend=None, append=None) -> Tensor |
| |
| Computes the n-th forward difference along the given dimension. |
| |
| The first-order differences are given by `out[i] = input[i + 1] - input[i]`. Higher-order |
| differences are calculated by using :func:`torch.diff` recursively. |
| |
| Args: |
| input (Tensor): the tensor to compute the differences on |
| n (int, optional): the number of times to recursively compute the difference |
| dim (int, optional): the dimension to compute the difference along. |
| Default is the last dimension. |
| prepend, append (Tensor, optional): values to prepend or append to |
| :attr:`input` along :attr:`dim` before computing the difference. |
| Their dimensions must be equivalent to that of input, and their shapes |
| must match input's shape except on :attr:`dim`. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 3, 2]) |
| >>> torch.diff(a) |
| tensor([ 2, -1]) |
| >>> b = torch.tensor([4, 5]) |
| >>> torch.diff(a, append=b) |
| tensor([ 2, -1, 2, 1]) |
| >>> c = torch.tensor([[1, 2, 3], [3, 4, 5]]) |
| >>> torch.diff(c, dim=0) |
| tensor([[2, 2, 2]]) |
| >>> torch.diff(c, dim=1) |
| tensor([[1, 1], |
| [1, 1]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.digamma, |
| r""" |
| digamma(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.digamma`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.dist, |
| r""" |
| dist(input, other, p=2) -> Tensor |
| |
| Returns the p-norm of (:attr:`input` - :attr:`other`) |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| {input} |
| other (Tensor): the Right-hand-side input tensor |
| p (float, optional): the norm to be computed |
| |
| Example:: |
| |
| >>> x = torch.randn(4) |
| >>> x |
| tensor([-1.5393, -0.8675, 0.5916, 1.6321]) |
| >>> y = torch.randn(4) |
| >>> y |
| tensor([ 0.0967, -1.0511, 0.6295, 0.8360]) |
| >>> torch.dist(x, y, 3.5) |
| tensor(1.6727) |
| >>> torch.dist(x, y, 3) |
| tensor(1.6973) |
| >>> torch.dist(x, y, 0) |
| tensor(4.) |
| >>> torch.dist(x, y, 1) |
| tensor(2.6537) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.div, |
| r""" |
| div(input, other, *, rounding_mode=None, out=None) -> Tensor |
| |
| Divides each element of the input ``input`` by the corresponding element of |
| :attr:`other`. |
| |
| .. math:: |
| \text{{out}}_i = \frac{{\text{{input}}_i}}{{\text{{other}}_i}} |
| |
| .. note:: |
| By default, this performs a "true" division like Python 3. |
| See the :attr:`rounding_mode` argument for floor division. |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs. |
| Always promotes integer types to the default scalar type. |
| |
| Args: |
| input (Tensor): the dividend |
| other (Tensor or Number): the divisor |
| |
| Keyword args: |
| rounding_mode (str, optional): Type of rounding applied to the result: |
| |
| * None - default behavior. Performs no rounding and, if both :attr:`input` and |
| :attr:`other` are integer types, promotes the inputs to the default scalar type. |
| Equivalent to true division in Python (the ``/`` operator) and NumPy's ``np.true_divide``. |
| * ``"trunc"`` - rounds the results of the division towards zero. |
| Equivalent to C-style integer division. |
| * ``"floor"`` - rounds the results of the division down. |
| Equivalent to floor division in Python (the ``//`` operator) and NumPy's ``np.floor_divide``. |
| |
| {out} |
| |
| Examples:: |
| |
| >>> x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) |
| >>> torch.div(x, 0.5) |
| tensor([ 0.7620, 2.5548, -0.5944, -0.7438, 0.9274]) |
| |
| >>> a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917], |
| ... [ 0.1815, -1.0111, 0.9805, -1.5923], |
| ... [ 0.1062, 1.4581, 0.7759, -1.2344], |
| ... [-0.1830, -0.0313, 1.1908, -1.4757]]) |
| >>> b = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308]) |
| >>> torch.div(a, b) |
| tensor([[-0.4620, -6.6051, 0.5676, 1.2639], |
| [ 0.2260, -3.4509, -1.2086, 6.8990], |
| [ 0.1322, 4.9764, -0.9564, 5.3484], |
| [-0.2278, -0.1068, -1.4678, 6.3938]]) |
| |
| >>> torch.div(a, b, rounding_mode='trunc') |
| tensor([[-0., -6., 0., 1.], |
| [ 0., -3., -1., 6.], |
| [ 0., 4., -0., 5.], |
| [-0., -0., -1., 6.]]) |
| |
| >>> torch.div(a, b, rounding_mode='floor') |
| tensor([[-1., -7., 0., 1.], |
| [ 0., -4., -2., 6.], |
| [ 0., 4., -1., 5.], |
| [-1., -1., -2., 6.]]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.divide, |
| r""" |
| divide(input, other, *, rounding_mode=None, out=None) -> Tensor |
| |
| Alias for :func:`torch.div`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.dot, |
| r""" |
| dot(input, tensor, *, out=None) -> Tensor |
| |
| Computes the dot product of two 1D tensors. |
| |
| .. note:: |
| |
| Unlike NumPy's dot, torch.dot intentionally only supports computing the dot product |
| of two 1D tensors with the same number of elements. |
| |
| Args: |
| input (Tensor): first tensor in the dot product, must be 1D. |
| tensor (Tensor): second tensor in the dot product, must be 1D. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1])) |
| tensor(7) |
| |
| >>> t1, t2 = torch.tensor([0, 1]), torch.tensor([2, 3]) |
| >>> torch.dot(t1, t2) |
| tensor(3) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.vdot, |
| r""" |
| vdot(input, other, *, out=None) -> Tensor |
| |
| Computes the dot product of two 1D vectors along a dimension. |
| |
| In symbols, this function computes |
| |
| .. math:: |
| |
| \sum_{i=1}^n \overline{x_i}y_i. |
| |
| where :math:`\overline{x_i}` denotes the conjugate for complex |
| vectors, and it is the identity for real vectors. |
| |
| .. note:: |
| |
| Unlike NumPy's vdot, torch.vdot intentionally only supports computing the dot product |
| of two 1D tensors with the same number of elements. |
| |
| .. seealso:: |
| |
| :func:`torch.linalg.vecdot` computes the dot product of two batches of vectors along a dimension. |
| |
| Args: |
| input (Tensor): first tensor in the dot product, must be 1D. Its conjugate is used if it's complex. |
| other (Tensor): second tensor in the dot product, must be 1D. |
| |
| Keyword args: |
| """ |
| + rf""" |
| .. note:: {common_args["out"]} |
| """ |
| + r""" |
| |
| Example:: |
| |
| >>> torch.vdot(torch.tensor([2, 3]), torch.tensor([2, 1])) |
| tensor(7) |
| >>> a = torch.tensor((1 +2j, 3 - 1j)) |
| >>> b = torch.tensor((2 +1j, 4 - 0j)) |
| >>> torch.vdot(a, b) |
| tensor([16.+1.j]) |
| >>> torch.vdot(b, a) |
| tensor([16.-1.j]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.eq, |
| r""" |
| eq(input, other, *, out=None) -> Tensor |
| |
| Computes element-wise equality |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere |
| |
| Example:: |
| |
| >>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ True, False], |
| [False, True]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.equal, |
| r""" |
| equal(input, other) -> bool |
| |
| ``True`` if two tensors have the same size and elements, ``False`` otherwise. |
| |
| Example:: |
| |
| >>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2])) |
| True |
| """, |
| ) |
| |
| add_docstr( |
| torch.erf, |
| r""" |
| erf(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.erf`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.erfc, |
| r""" |
| erfc(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.erfc`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.erfinv, |
| r""" |
| erfinv(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.erfinv`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.exp, |
| r""" |
| exp(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the exponential of the elements |
| of the input tensor :attr:`input`. |
| |
| .. math:: |
| y_{i} = e^{x_{i}} |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.exp(torch.tensor([0, math.log(2.)])) |
| tensor([ 1., 2.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.exp2, |
| r""" |
| exp2(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.exp2`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.expm1, |
| r""" |
| expm1(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.expm1`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.eye, |
| r""" |
| eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. |
| |
| Args: |
| n (int): the number of rows |
| m (int, optional): the number of columns with default being :attr:`n` |
| |
| Keyword arguments: |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere |
| |
| Example:: |
| |
| >>> torch.eye(3) |
| tensor([[ 1., 0., 0.], |
| [ 0., 1., 0.], |
| [ 0., 0., 1.]]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.floor, |
| r""" |
| floor(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the floor of the elements of :attr:`input`, |
| the largest integer less than or equal to each element. |
| |
| For integer inputs, follows the array-api convention of returning a |
| copy of the input tensor. |
| |
| .. math:: |
| \text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.8166, 1.5308, -0.2530, -0.2091]) |
| >>> torch.floor(a) |
| tensor([-1., 1., -1., -1.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.floor_divide, |
| r""" |
| floor_divide(input, other, *, out=None) -> Tensor |
| |
| .. note:: |
| |
| Before PyTorch 1.13 :func:`torch.floor_divide` incorrectly performed |
| truncation division. To restore the previous behavior use |
| :func:`torch.div` with ``rounding_mode='trunc'``. |
| |
| Computes :attr:`input` divided by :attr:`other`, elementwise, and floors |
| the result. |
| |
| .. math:: |
| \text{{out}}_i = \text{floor} \left( \frac{{\text{{input}}_i}}{{\text{{other}}_i}} \right) |
| |
| """ |
| + r""" |
| |
| Supports broadcasting to a common shape, type promotion, and integer and float inputs. |
| |
| Args: |
| input (Tensor or Number): the dividend |
| other (Tensor or Number): the divisor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([4.0, 3.0]) |
| >>> b = torch.tensor([2.0, 2.0]) |
| >>> torch.floor_divide(a, b) |
| tensor([2.0, 1.0]) |
| >>> torch.floor_divide(a, 1.4) |
| tensor([2.0, 2.0]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.fmod, |
| r""" |
| fmod(input, other, *, out=None) -> Tensor |
| |
| Applies C++'s `std::fmod <https://en.cppreference.com/w/cpp/numeric/math/fmod>`_ entrywise. |
| The result has the same sign as the dividend :attr:`input` and its absolute value |
| is less than that of :attr:`other`. |
| |
| This function may be defined in terms of :func:`torch.div` as |
| |
| .. code:: python |
| |
| torch.fmod(a, b) == a - a.div(b, rounding_mode="trunc") * b |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer and float inputs. |
| |
| .. note:: |
| |
| When the divisor is zero, returns ``NaN`` for floating point dtypes |
| on both CPU and GPU; raises ``RuntimeError`` for integer division by |
| zero on CPU; Integer division by zero on GPU may return any value. |
| |
| .. note:: |
| |
| Complex inputs are not supported. In some cases, it is not mathematically |
| possible to satisfy the definition of a modulo operation with complex numbers. |
| |
| .. seealso:: |
| |
| :func:`torch.remainder` which implements Python's modulus operator. |
| This one is defined using division rounding down the result. |
| |
| Args: |
| input (Tensor): the dividend |
| other (Tensor or Scalar): the divisor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) |
| tensor([-1., -0., -1., 1., 0., 1.]) |
| >>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), -1.5) |
| tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.frac, |
| r""" |
| frac(input, *, out=None) -> Tensor |
| |
| Computes the fractional portion of each element in :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \text{input}_{i} - \left\lfloor |\text{input}_{i}| \right\rfloor * \operatorname{sgn}(\text{input}_{i}) |
| |
| Example:: |
| |
| >>> torch.frac(torch.tensor([1, 2.5, -3.2])) |
| tensor([ 0.0000, 0.5000, -0.2000]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.frexp, |
| r""" |
| frexp(input, *, out=None) -> (Tensor mantissa, Tensor exponent) |
| |
| Decomposes :attr:`input` into mantissa and exponent tensors |
| such that :math:`\text{input} = \text{mantissa} \times 2^{\text{exponent}}`. |
| |
| The range of mantissa is the open interval (-1, 1). |
| |
| Supports float inputs. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| |
| Keyword args: |
| out (tuple, optional): the output tensors |
| |
| Example:: |
| |
| >>> x = torch.arange(9.) |
| >>> mantissa, exponent = torch.frexp(x) |
| >>> mantissa |
| tensor([0.0000, 0.5000, 0.5000, 0.7500, 0.5000, 0.6250, 0.7500, 0.8750, 0.5000]) |
| >>> exponent |
| tensor([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=torch.int32) |
| >>> torch.ldexp(mantissa, exponent) |
| tensor([0., 1., 2., 3., 4., 5., 6., 7., 8.]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.from_numpy, |
| r""" |
| from_numpy(ndarray) -> Tensor |
| |
| Creates a :class:`Tensor` from a :class:`numpy.ndarray`. |
| |
| The returned tensor and :attr:`ndarray` share the same memory. Modifications to |
| the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned |
| tensor is not resizable. |
| |
| It currently accepts :attr:`ndarray` with dtypes of ``numpy.float64``, |
| ``numpy.float32``, ``numpy.float16``, ``numpy.complex64``, ``numpy.complex128``, |
| ``numpy.int64``, ``numpy.int32``, ``numpy.int16``, ``numpy.int8``, ``numpy.uint8``, |
| and ``bool``. |
| |
| .. warning:: |
| Writing to a tensor created from a read-only NumPy array is not supported and will result in undefined behavior. |
| |
| Example:: |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.from_numpy(a) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.frombuffer, |
| r""" |
| frombuffer(buffer, *, dtype, count=-1, offset=0, requires_grad=False) -> Tensor |
| |
| Creates a 1-dimensional :class:`Tensor` from an object that implements |
| the Python buffer protocol. |
| |
| Skips the first :attr:`offset` bytes in the buffer, and interprets the rest of |
| the raw bytes as a 1-dimensional tensor of type :attr:`dtype` with :attr:`count` |
| elements. |
| |
| Note that either of the following must be true: |
| |
| 1. :attr:`count` is a positive non-zero number, and the total number of bytes |
| in the buffer is more than :attr:`offset` plus :attr:`count` times the size |
| (in bytes) of :attr:`dtype`. |
| |
| 2. :attr:`count` is negative, and the length (number of bytes) of the buffer |
| subtracted by the :attr:`offset` is a multiple of the size (in bytes) of |
| :attr:`dtype`. |
| |
| The returned tensor and buffer share the same memory. Modifications to |
| the tensor will be reflected in the buffer and vice versa. The returned |
| tensor is not resizable. |
| |
| .. note:: |
| This function increments the reference count for the object that |
| owns the shared memory. Therefore, such memory will not be deallocated |
| before the returned tensor goes out of scope. |
| |
| .. warning:: |
| This function's behavior is undefined when passed an object implementing |
| the buffer protocol whose data is not on the CPU. Doing so is likely to |
| cause a segmentation fault. |
| |
| .. warning:: |
| This function does not try to infer the :attr:`dtype` (hence, it is not |
| optional). Passing a different :attr:`dtype` than its source may result |
| in unexpected behavior. |
| |
| Args: |
| buffer (object): a Python object that exposes the buffer interface. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`): the desired data type of returned tensor. |
| count (int, optional): the number of desired elements to be read. |
| If negative, all the elements (until the end of the buffer) will be |
| read. Default: -1. |
| offset (int, optional): the number of bytes to skip at the start of |
| the buffer. Default: 0. |
| {requires_grad} |
| |
| Example:: |
| |
| >>> import array |
| >>> a = array.array('i', [1, 2, 3]) |
| >>> t = torch.frombuffer(a, dtype=torch.int32) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| |
| >>> # Interprets the signed char bytes as 32-bit integers. |
| >>> # Each 4 signed char elements will be interpreted as |
| >>> # 1 signed 32-bit integer. |
| >>> import array |
| >>> a = array.array('b', [-1, 0, 0, 0]) |
| >>> torch.frombuffer(a, dtype=torch.int32) |
| tensor([255], dtype=torch.int32) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.from_file, |
| r""" |
| from_file(filename, shared=None, size=0, *, dtype=None, layout=None, device=None, pin_memory=False) |
| |
| Creates a CPU tensor with a storage backed by a memory-mapped file. |
| |
| If ``shared`` is True, then memory is shared between processes. All changes are written to the file. |
| If ``shared`` is False, then changes to the tensor do not affect the file. |
| |
| ``size`` is the number of elements in the Tensor. If ``shared`` is ``False``, then the file must contain |
| at least ``size * sizeof(dtype)`` bytes. If ``shared`` is ``True`` the file will be created if needed. |
| |
| .. note:: |
| Only CPU tensors can be mapped to files. |
| |
| .. note:: |
| For now, tensors with storages backed by a memory-mapped file cannot be created in pinned memory. |
| |
| |
| Args: |
| filename (str): file name to map |
| shared (bool): whether to share memory (whether ``MAP_SHARED`` or ``MAP_PRIVATE`` is passed to the |
| underlying `mmap(2) call <https://man7.org/linux/man-pages/man2/mmap.2.html>`_) |
| size (int): number of elements in the tensor |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {pin_memory} |
| |
| Example:: |
| >>> t = torch.randn(2, 5, dtype=torch.float64) |
| >>> t.numpy().tofile('storage.pt') |
| >>> t_mapped = torch.from_file('storage.pt', shared=False, size=10, dtype=torch.float64) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.flatten, |
| r""" |
| flatten(input, start_dim=0, end_dim=-1) -> Tensor |
| |
| Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` |
| are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. |
| The order of elements in :attr:`input` is unchanged. |
| |
| Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, |
| or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can |
| be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the |
| flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. |
| |
| .. note:: |
| Flattening a zero-dimensional tensor will return a one-dimensional view. |
| |
| Args: |
| {input} |
| start_dim (int): the first dim to flatten |
| end_dim (int): the last dim to flatten |
| |
| Example:: |
| |
| >>> t = torch.tensor([[[1, 2], |
| ... [3, 4]], |
| ... [[5, 6], |
| ... [7, 8]]]) |
| >>> torch.flatten(t) |
| tensor([1, 2, 3, 4, 5, 6, 7, 8]) |
| >>> torch.flatten(t, start_dim=1) |
| tensor([[1, 2, 3, 4], |
| [5, 6, 7, 8]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.unflatten, |
| r""" |
| unflatten(input, dim, sizes) -> Tensor |
| |
| Expands a dimension of the input tensor over multiple dimensions. |
| |
| .. seealso:: |
| |
| :func:`torch.flatten` the inverse of this function. It coalesces several dimensions into one. |
| |
| Args: |
| {input} |
| dim (int): Dimension to be unflattened, specified as an index into |
| ``input.shape``. |
| sizes (Tuple[int]): New shape of the unflattened dimension. |
| One of its elements can be `-1` in which case the corresponding output |
| dimension is inferred. Otherwise, the product of ``sizes`` *must* |
| equal ``input.shape[dim]``. |
| |
| Returns: |
| A View of input with the specified dimension unflattened. |
| |
| Examples:: |
| >>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape |
| torch.Size([3, 2, 2, 1]) |
| >>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape |
| torch.Size([3, 2, 2, 1]) |
| >>> torch.unflatten(torch.randn(5, 12, 3), -2, (2, 2, 3, 1, 1)).shape |
| torch.Size([5, 2, 2, 3, 1, 1, 3]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.gather, |
| r""" |
| gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor |
| |
| Gathers values along an axis specified by `dim`. |
| |
| For a 3-D tensor the output is specified by:: |
| |
| out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 |
| out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 |
| out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 |
| |
| :attr:`input` and :attr:`index` must have the same number of dimensions. |
| It is also required that ``index.size(d) <= input.size(d)`` for all |
| dimensions ``d != dim``. :attr:`out` will have the same shape as :attr:`index`. |
| Note that ``input`` and ``index`` do not broadcast against each other. |
| |
| Args: |
| input (Tensor): the source tensor |
| dim (int): the axis along which to index |
| index (LongTensor): the indices of elements to gather |
| |
| Keyword arguments: |
| sparse_grad (bool, optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor. |
| out (Tensor, optional): the destination tensor |
| |
| Example:: |
| |
| >>> t = torch.tensor([[1, 2], [3, 4]]) |
| >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) |
| tensor([[ 1, 1], |
| [ 4, 3]]) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.gcd, |
| r""" |
| gcd(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise greatest common divisor (GCD) of :attr:`input` and :attr:`other`. |
| |
| Both :attr:`input` and :attr:`other` must have integer types. |
| |
| .. note:: |
| This defines :math:`gcd(0, 0) = 0`. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([5, 10, 15]) |
| >>> b = torch.tensor([3, 4, 5]) |
| >>> torch.gcd(a, b) |
| tensor([1, 2, 5]) |
| >>> c = torch.tensor([3]) |
| >>> torch.gcd(a, c) |
| tensor([1, 1, 3]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.ge, |
| r""" |
| ge(input, other, *, out=None) -> Tensor |
| |
| Computes :math:`\text{input} \geq \text{other}` element-wise. |
| """ |
| + r""" |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere |
| |
| Example:: |
| |
| >>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[True, True], [False, True]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.greater_equal, |
| r""" |
| greater_equal(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.ge`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.gradient, |
| r""" |
| gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors |
| |
| Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in |
| one or more dimensions using the `second-order accurate central differences method |
| <https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_ and |
| either first or second order estimates at the boundaries. |
| |
| The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not |
| specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates |
| to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional |
| :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and |
| :math:`g(1, 2, 3)\ == input[1, 2, 3]`. |
| |
| When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. |
| This is detailed in the "Keyword Arguments" section below. |
| |
| The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is |
| accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be |
| improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative |
| is estimated using `Taylor's theorem with remainder <https://en.wikipedia.org/wiki/Taylor%27s_theorem>`_. |
| Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring |
| it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: |
| |
| .. math:: |
| \begin{aligned} |
| f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ |
| f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ |
| \end{aligned} |
| |
| Using the fact that :math:`f \in C^3` and solving the linear system, we derive: |
| |
| .. math:: |
| f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) |
| + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } |
| |
| .. note:: |
| We estimate the gradient of functions in complex domain |
| :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. |
| |
| The value of each partial derivative at the boundary points is computed differently. See edge_order below. |
| |
| Args: |
| input (``Tensor``): the tensor that represents the values of the function |
| |
| Keyword args: |
| spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify |
| how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then |
| the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the |
| indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding |
| indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). |
| Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for |
| the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then |
| the coordinates are (t0[1], t1[2], t2[3]) |
| |
| dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default |
| the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of |
| the :attr:`spacing` argument must correspond with the specified dims." |
| |
| edge_order (``int``, optional): 1 or 2, for `first-order |
| <https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_ or |
| `second-order <https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_ |
| estimation of the boundary ("edge") values, respectively. |
| |
| Examples:: |
| |
| >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] |
| >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) |
| >>> values = torch.tensor([4., 1., 1., 16.], ) |
| >>> torch.gradient(values, spacing = coordinates) |
| (tensor([-3., -2., 2., 5.]),) |
| |
| >>> # Estimates the gradient of the R^2 -> R function whose samples are |
| >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost |
| >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates |
| >>> # partial derivative for both dimensions. |
| >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) |
| >>> torch.gradient(t) |
| (tensor([[ 9., 18., 36., 72.], |
| [ 9., 18., 36., 72.]]), |
| tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], |
| [10.0000, 15.0000, 30.0000, 40.0000]])) |
| |
| >>> # A scalar value for spacing modifies the relationship between tensor indices |
| >>> # and input coordinates by multiplying the indices to find the |
| >>> # coordinates. For example, below the indices of the innermost |
| >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of |
| >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. |
| >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) |
| (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], |
| [ 4.5000, 9.0000, 18.0000, 36.0000]]), |
| tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], |
| [ 5.0000, 7.5000, 15.0000, 20.0000]])) |
| >>> # doubling the spacing between samples halves the estimated partial gradients. |
| |
| >>> |
| >>> # Estimates only the partial derivative for dimension 1 |
| >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) |
| (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], |
| [10.0000, 15.0000, 30.0000, 40.0000]]),) |
| |
| >>> # When spacing is a list of scalars, the relationship between the tensor |
| >>> # indices and input coordinates changes based on dimension. |
| >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate |
| >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension |
| >>> # 0, 1 translate to coordinates of [0, 2]. |
| >>> torch.gradient(t, spacing = [3., 2.]) |
| (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], |
| [ 4.5000, 9.0000, 18.0000, 36.0000]]), |
| tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], |
| [ 3.3333, 5.0000, 10.0000, 13.3333]])) |
| |
| >>> # The following example is a replication of the previous one with explicit |
| >>> # coordinates. |
| >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) |
| >>> torch.gradient(t, spacing = coords) |
| (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], |
| [ 4.5000, 9.0000, 18.0000, 36.0000]]), |
| tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], |
| [ 3.3333, 5.0000, 10.0000, 13.3333]])) |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.geqrf, |
| r""" |
| geqrf(input, *, out=None) -> (Tensor, Tensor) |
| |
| This is a low-level function for calling LAPACK's geqrf directly. This function |
| returns a namedtuple (a, tau) as defined in `LAPACK documentation for geqrf`_ . |
| |
| Computes a QR decomposition of :attr:`input`. |
| Both `Q` and `R` matrices are stored in the same output tensor `a`. |
| The elements of `R` are stored on and above the diagonal. |
| Elementary reflectors (or Householder vectors) implicitly defining matrix `Q` |
| are stored below the diagonal. |
| The results of this function can be used together with :func:`torch.linalg.householder_product` |
| to obtain the `Q` matrix or |
| with :func:`torch.ormqr`, which uses an implicit representation of the `Q` matrix, |
| for an efficient matrix-matrix multiplication. |
| |
| See `LAPACK documentation for geqrf`_ for further details. |
| |
| .. note:: |
| See also :func:`torch.linalg.qr`, which computes Q and R matrices, and :func:`torch.linalg.lstsq` |
| with the ``driver="gels"`` option for a function that can solve matrix equations using a QR decomposition. |
| |
| Args: |
| input (Tensor): the input matrix |
| |
| Keyword args: |
| out (tuple, optional): the output tuple of (Tensor, Tensor). Ignored if `None`. Default: `None`. |
| |
| .. _LAPACK documentation for geqrf: |
| http://www.netlib.org/lapack/explore-html/df/dc5/group__variants_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.inner, |
| r""" |
| inner(input, other, *, out=None) -> Tensor |
| |
| Computes the dot product for 1D tensors. For higher dimensions, sums the product |
| of elements from :attr:`input` and :attr:`other` along their last dimension. |
| |
| .. note:: |
| |
| If either :attr:`input` or :attr:`other` is a scalar, the result is equivalent |
| to `torch.mul(input, other)`. |
| |
| If both :attr:`input` and :attr:`other` are non-scalars, the size of their last |
| dimension must match and the result is equivalent to `torch.tensordot(input, |
| other, dims=([-1], [-1]))` |
| |
| Args: |
| input (Tensor): First input tensor |
| other (Tensor): Second input tensor |
| |
| Keyword args: |
| out (Tensor, optional): Optional output tensor to write result into. The output |
| shape is `input.shape[:-1] + other.shape[:-1]`. |
| |
| Example:: |
| |
| # Dot product |
| >>> torch.inner(torch.tensor([1, 2, 3]), torch.tensor([0, 2, 1])) |
| tensor(7) |
| |
| # Multidimensional input tensors |
| >>> a = torch.randn(2, 3) |
| >>> a |
| tensor([[0.8173, 1.0874, 1.1784], |
| [0.3279, 0.1234, 2.7894]]) |
| >>> b = torch.randn(2, 4, 3) |
| >>> b |
| tensor([[[-0.4682, -0.7159, 0.1506], |
| [ 0.4034, -0.3657, 1.0387], |
| [ 0.9892, -0.6684, 0.1774], |
| [ 0.9482, 1.3261, 0.3917]], |
| |
| [[ 0.4537, 0.7493, 1.1724], |
| [ 0.2291, 0.5749, -0.2267], |
| [-0.7920, 0.3607, -0.3701], |
| [ 1.3666, -0.5850, -1.7242]]]) |
| >>> torch.inner(a, b) |
| tensor([[[-0.9837, 1.1560, 0.2907, 2.6785], |
| [ 2.5671, 0.5452, -0.6912, -1.5509]], |
| |
| [[ 0.1782, 2.9843, 0.7366, 1.5672], |
| [ 3.5115, -0.4864, -1.2476, -4.4337]]]) |
| |
| # Scalar input |
| >>> torch.inner(a, torch.tensor(2)) |
| tensor([[1.6347, 2.1748, 2.3567], |
| [0.6558, 0.2469, 5.5787]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.outer, |
| r""" |
| outer(input, vec2, *, out=None) -> Tensor |
| |
| Outer product of :attr:`input` and :attr:`vec2`. |
| If :attr:`input` is a vector of size :math:`n` and :attr:`vec2` is a vector of |
| size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): 1-D input vector |
| vec2 (Tensor): 1-D input vector |
| |
| Keyword args: |
| out (Tensor, optional): optional output matrix |
| |
| Example:: |
| |
| >>> v1 = torch.arange(1., 5.) |
| >>> v2 = torch.arange(1., 4.) |
| >>> torch.outer(v1, v2) |
| tensor([[ 1., 2., 3.], |
| [ 2., 4., 6.], |
| [ 3., 6., 9.], |
| [ 4., 8., 12.]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.ger, |
| r""" |
| ger(input, vec2, *, out=None) -> Tensor |
| |
| Alias of :func:`torch.outer`. |
| |
| .. warning:: |
| This function is deprecated and will be removed in a future PyTorch release. |
| Use :func:`torch.outer` instead. |
| """, |
| ) |
| |
| add_docstr( |
| torch.get_default_dtype, |
| r""" |
| get_default_dtype() -> torch.dtype |
| |
| Get the current default floating point :class:`torch.dtype`. |
| |
| Example:: |
| |
| >>> torch.get_default_dtype() # initial default for floating point is torch.float32 |
| torch.float32 |
| >>> torch.set_default_dtype(torch.float64) |
| >>> torch.get_default_dtype() # default is now changed to torch.float64 |
| torch.float64 |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.get_num_threads, |
| r""" |
| get_num_threads() -> int |
| |
| Returns the number of threads used for parallelizing CPU operations |
| """, |
| ) |
| |
| add_docstr( |
| torch.get_num_interop_threads, |
| r""" |
| get_num_interop_threads() -> int |
| |
| Returns the number of threads used for inter-op parallelism on CPU |
| (e.g. in JIT interpreter) |
| """, |
| ) |
| |
| add_docstr( |
| torch.gt, |
| r""" |
| gt(input, other, *, out=None) -> Tensor |
| |
| Computes :math:`\text{input} > \text{other}` element-wise. |
| """ |
| + r""" |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere |
| |
| Example:: |
| |
| >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[False, True], [False, False]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.greater, |
| r""" |
| greater(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.gt`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.histc, |
| r""" |
| histc(input, bins=100, min=0, max=0, *, out=None) -> Tensor |
| |
| Computes the histogram of a tensor. |
| |
| The elements are sorted into equal width bins between :attr:`min` and |
| :attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and |
| maximum values of the data are used. |
| |
| Elements lower than min and higher than max and ``NaN`` elements are ignored. |
| |
| Args: |
| {input} |
| bins (int): number of histogram bins |
| min (Scalar): lower end of the range (inclusive) |
| max (Scalar): upper end of the range (inclusive) |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| Tensor: Histogram represented as a tensor |
| |
| Example:: |
| |
| >>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3) |
| tensor([ 0., 2., 1., 0.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.histogram, |
| r""" |
| histogram(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor) |
| |
| Computes a histogram of the values in a tensor. |
| |
| :attr:`bins` can be an integer or a 1D tensor. |
| |
| If :attr:`bins` is an int, it specifies the number of equal-width bins. |
| By default, the lower and upper range of the bins is determined by the |
| minimum and maximum elements of the input tensor. The :attr:`range` |
| argument can be provided to specify a range for the bins. |
| |
| If :attr:`bins` is a 1D tensor, it specifies the sequence of bin edges |
| including the rightmost edge. It should contain at least 2 elements |
| and its elements should be increasing. |
| |
| Args: |
| {input} |
| bins: int or 1D Tensor. If int, defines the number of equal-width bins. If tensor, |
| defines the sequence of bin edges including the rightmost edge. |
| |
| Keyword args: |
| range (tuple of float): Defines the range of the bins. |
| weight (Tensor): If provided, weight should have the same shape as input. Each value in |
| input contributes its associated weight towards its bin's result. |
| density (bool): If False, the result will contain the count (or total weight) in each bin. |
| If True, the result is the value of the probability density function over the bins, |
| normalized such that the integral over the range of the bins is 1. |
| {out} (tuple, optional): The result tuple of two output tensors (hist, bin_edges). |
| |
| Returns: |
| hist (Tensor): 1D Tensor containing the values of the histogram. |
| bin_edges(Tensor): 1D Tensor containing the edges of the histogram bins. |
| |
| Example:: |
| |
| >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.])) |
| (tensor([ 0., 5., 2., 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) |
| >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]), density=True) |
| (tensor([ 0., 0.9524, 0.3810, 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.histogramdd, |
| r""" |
| histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) |
| |
| Computes a multi-dimensional histogram of the values in a tensor. |
| |
| Interprets the elements of an input tensor whose innermost dimension has size N |
| as a collection of N-dimensional points. Maps each of the points into a set of |
| N-dimensional bins and returns the number of points (or total weight) in each bin. |
| |
| :attr:`input` must be a tensor with at least 2 dimensions. |
| If input has shape (M, N), each of its M rows defines a point in N-dimensional space. |
| If input has three or more dimensions, all but the last dimension are flattened. |
| |
| Each dimension is independently associated with its own strictly increasing sequence |
| of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D |
| tensors. Alternatively, bin edges may be constructed automatically by passing a |
| sequence of integers specifying the number of equal-width bins in each dimension. |
| |
| For each N-dimensional point in input: |
| - Each of its coordinates is binned independently among the bin edges |
| corresponding to its dimension |
| - Binning results are combined to identify the N-dimensional bin (if any) |
| into which the point falls |
| - If the point falls into a bin, the bin's count (or total weight) is incremented |
| - Points which do not fall into any bin do not contribute to the output |
| |
| :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. |
| |
| If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences |
| of bin edges. Each 1D tensor should contain a strictly increasing sequence with at |
| least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying |
| the left and right edges of all bins. Every bin is exclusive of its left edge. Only |
| the rightmost bin is inclusive of its right edge. |
| |
| If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins |
| in each dimension. By default, the leftmost and rightmost bin edges in each dimension |
| are determined by the minimum and maximum elements of the input tensor in the |
| corresponding dimension. The :attr:`range` argument can be provided to manually |
| specify the leftmost and rightmost bin edges in each dimension. |
| |
| If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. |
| |
| .. note:: |
| See also :func:`torch.histogram`, which specifically computes 1D histograms. |
| While :func:`torch.histogramdd` infers the dimensionality of its bins and |
| binned values from the shape of :attr:`input`, :func:`torch.histogram` |
| accepts and flattens :attr:`input` of any shape. |
| |
| Args: |
| {input} |
| bins: Tensor[], int[], or int. |
| If Tensor[], defines the sequences of bin edges. |
| If int[], defines the number of equal-width bins in each dimension. |
| If int, defines the number of equal-width bins for all dimensions. |
| Keyword args: |
| range (sequence of float): Defines the leftmost and rightmost bin edges |
| in each dimension. |
| weight (Tensor): By default, each value in the input has weight 1. If a weight |
| tensor is passed, each N-dimensional coordinate in input |
| contributes its associated weight towards its bin's result. |
| The weight tensor should have the same shape as the :attr:`input` |
| tensor excluding its innermost dimension N. |
| density (bool): If False (default), the result will contain the count (or total weight) |
| in each bin. If True, each count (weight) is divided by the total count |
| (total weight), then divided by the volume of its associated bin. |
| Returns: |
| hist (Tensor): N-dimensional Tensor containing the values of the histogram. |
| bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. |
| |
| Example:: |
| >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], |
| ... weight=torch.tensor([1., 2., 4., 8.])) |
| torch.return_types.histogramdd( |
| hist=tensor([[0., 1., 0.], |
| [2., 0., 0.], |
| [4., 0., 8.]]), |
| bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), |
| tensor([0.0000, 0.6667, 1.3333, 2.0000]))) |
| |
| >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], |
| ... range=[0., 1., 0., 1.], density=True) |
| torch.return_types.histogramdd( |
| hist=tensor([[2., 0.], |
| [0., 2.]]), |
| bin_edges=(tensor([0.0000, 0.5000, 1.0000]), |
| tensor([0.0000, 0.5000, 1.0000]))) |
| |
| """.format(**common_args), |
| ) |
| # TODO: Fix via https://github.com/pytorch/pytorch/issues/75798 |
| torch.histogramdd.__module__ = "torch" |
| |
| add_docstr( |
| torch.hypot, |
| r""" |
| hypot(input, other, *, out=None) -> Tensor |
| |
| Given the legs of a right triangle, return its hypotenuse. |
| |
| .. math:: |
| \text{out}_{i} = \sqrt{\text{input}_{i}^{2} + \text{other}_{i}^{2}} |
| |
| The shapes of ``input`` and ``other`` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| """ |
| + r""" |
| Args: |
| input (Tensor): the first input tensor |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0])) |
| tensor([5.0000, 5.6569, 6.4031]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.i0, |
| r""" |
| i0(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.i0`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.igamma, |
| r""" |
| igamma(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.gammainc`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.igammac, |
| r""" |
| igammac(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.gammaincc`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.index_select, |
| r""" |
| index_select(input, dim, index, *, out=None) -> Tensor |
| |
| Returns a new tensor which indexes the :attr:`input` tensor along dimension |
| :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. |
| |
| The returned tensor has the same number of dimensions as the original tensor |
| (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length |
| of :attr:`index`; other dimensions have the same size as in the original tensor. |
| |
| .. note:: The returned tensor does **not** use the same storage as the original |
| tensor. If :attr:`out` has a different shape than expected, we |
| silently change it to the correct shape, reallocating the underlying |
| storage if necessary. |
| |
| Args: |
| {input} |
| dim (int): the dimension in which we index |
| index (IntTensor or LongTensor): the 1-D tensor containing the indices to index |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], |
| [-0.4664, 0.2647, -0.1228, -1.1068], |
| [-1.1734, -0.6571, 0.7230, -0.6004]]) |
| >>> indices = torch.tensor([0, 2]) |
| >>> torch.index_select(x, 0, indices) |
| tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], |
| [-1.1734, -0.6571, 0.7230, -0.6004]]) |
| >>> torch.index_select(x, 1, indices) |
| tensor([[ 0.1427, -0.5414], |
| [-0.4664, -0.1228], |
| [-1.1734, 0.7230]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.inverse, |
| r""" |
| inverse(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.linalg.inv` |
| """, |
| ) |
| |
| add_docstr( |
| torch.isin, |
| r""" |
| isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor |
| |
| Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns |
| a boolean tensor of the same shape as :attr:`elements` that is True for elements |
| in :attr:`test_elements` and False otherwise. |
| |
| .. note:: |
| One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. |
| |
| Args: |
| elements (Tensor or Scalar): Input elements |
| test_elements (Tensor or Scalar): Values against which to test for each input element |
| assume_unique (bool, optional): If True, assumes both :attr:`elements` and |
| :attr:`test_elements` contain unique elements, which can speed up the |
| calculation. Default: False |
| invert (bool, optional): If True, inverts the boolean return tensor, resulting in True |
| values for elements *not* in :attr:`test_elements`. Default: False |
| |
| Returns: |
| A boolean tensor of the same shape as :attr:`elements` that is True for elements in |
| :attr:`test_elements` and False otherwise |
| |
| Example: |
| >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) |
| tensor([[False, True], |
| [ True, False]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.isinf, |
| r""" |
| isinf(input) -> Tensor |
| |
| Tests if each element of :attr:`input` is infinite |
| (positive or negative infinity) or not. |
| |
| .. note:: |
| Complex values are infinite when their real or imaginary part is |
| infinite. |
| |
| Args: |
| {input} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is infinite and False elsewhere |
| |
| Example:: |
| |
| >>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) |
| tensor([False, True, False, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.isposinf, |
| r""" |
| isposinf(input, *, out=None) -> Tensor |
| Tests if each element of :attr:`input` is positive infinity or not. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([-float('inf'), float('inf'), 1.2]) |
| >>> torch.isposinf(a) |
| tensor([False, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.isneginf, |
| r""" |
| isneginf(input, *, out=None) -> Tensor |
| Tests if each element of :attr:`input` is negative infinity or not. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([-float('inf'), float('inf'), 1.2]) |
| >>> torch.isneginf(a) |
| tensor([ True, False, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.isclose, |
| r""" |
| isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor |
| |
| Returns a new tensor with boolean elements representing if each element of |
| :attr:`input` is "close" to the corresponding element of :attr:`other`. |
| Closeness is defined as: |
| |
| .. math:: |
| \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert |
| """ |
| + r""" |
| |
| where :attr:`input` and :attr:`other` are finite. Where :attr:`input` |
| and/or :attr:`other` are nonfinite they are close if and only if |
| they are equal, with NaNs being considered equal to each other when |
| :attr:`equal_nan` is True. |
| |
| Args: |
| input (Tensor): first tensor to compare |
| other (Tensor): second tensor to compare |
| atol (float, optional): absolute tolerance. Default: 1e-08 |
| rtol (float, optional): relative tolerance. Default: 1e-05 |
| equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False`` |
| |
| Examples:: |
| |
| >>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4))) |
| tensor([ True, False, False]) |
| >>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5) |
| tensor([True, True]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.isfinite, |
| r""" |
| isfinite(input) -> Tensor |
| |
| Returns a new tensor with boolean elements representing if each element is `finite` or not. |
| |
| Real values are finite when they are not NaN, negative infinity, or infinity. |
| Complex values are finite when both their real and imaginary parts are finite. |
| |
| Args: |
| {input} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is finite and False elsewhere |
| |
| Example:: |
| |
| >>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) |
| tensor([True, False, True, False, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.isnan, |
| r""" |
| isnan(input) -> Tensor |
| |
| Returns a new tensor with boolean elements representing if each element of :attr:`input` |
| is NaN or not. Complex values are considered NaN when either their real |
| and/or imaginary part is NaN. |
| |
| Arguments: |
| {input} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is NaN and False elsewhere |
| |
| Example:: |
| |
| >>> torch.isnan(torch.tensor([1, float('nan'), 2])) |
| tensor([False, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.isreal, |
| r""" |
| isreal(input) -> Tensor |
| |
| Returns a new tensor with boolean elements representing if each element of :attr:`input` is real-valued or not. |
| All real-valued types are considered real. Complex values are considered real when their imaginary part is 0. |
| |
| Arguments: |
| {input} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is real and False elsewhere |
| |
| Example:: |
| |
| >>> torch.isreal(torch.tensor([1, 1+1j, 2+0j])) |
| tensor([True, False, True]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_floating_point, |
| r""" |
| is_floating_point(input) -> (bool) |
| |
| Returns True if the data type of :attr:`input` is a floating point data type i.e., |
| one of ``torch.float64``, ``torch.float32``, ``torch.float16``, and ``torch.bfloat16``. |
| |
| Args: |
| {input} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_complex, |
| r""" |
| is_complex(input) -> (bool) |
| |
| Returns True if the data type of :attr:`input` is a complex data type i.e., |
| one of ``torch.complex64``, and ``torch.complex128``. |
| |
| Args: |
| {input} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_grad_enabled, |
| r""" |
| is_grad_enabled() -> (bool) |
| |
| Returns True if grad mode is currently enabled. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_inference_mode_enabled, |
| r""" |
| is_inference_mode_enabled() -> (bool) |
| |
| Returns True if inference mode is currently enabled. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_inference, |
| r""" |
| is_inference(input) -> (bool) |
| |
| Returns True if :attr:`input` is an inference tensor. |
| |
| A non-view tensor is an inference tensor if and only if it was |
| allocated during inference mode. A view tensor is an inference |
| tensor if and only if the tensor it is a view of is an inference tensor. |
| |
| For details on inference mode please see |
| `Inference Mode <https://pytorch.org/cppdocs/notes/inference_mode.html>`_. |
| |
| Args: |
| {input} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_conj, |
| r""" |
| is_conj(input) -> (bool) |
| |
| Returns True if the :attr:`input` is a conjugated tensor, i.e. its conjugate bit is set to `True`. |
| |
| Args: |
| {input} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.is_nonzero, |
| r""" |
| is_nonzero(input) -> (bool) |
| |
| Returns True if the :attr:`input` is a single element tensor which is not equal to zero |
| after type conversions. |
| i.e. not equal to ``torch.tensor([0.])`` or ``torch.tensor([0])`` or |
| ``torch.tensor([False])``. |
| Throws a ``RuntimeError`` if ``torch.numel() != 1`` (even in case |
| of sparse tensors). |
| |
| Args: |
| {input} |
| |
| Examples:: |
| |
| >>> torch.is_nonzero(torch.tensor([0.])) |
| False |
| >>> torch.is_nonzero(torch.tensor([1.5])) |
| True |
| >>> torch.is_nonzero(torch.tensor([False])) |
| False |
| >>> torch.is_nonzero(torch.tensor([3])) |
| True |
| >>> torch.is_nonzero(torch.tensor([1, 3, 5])) |
| Traceback (most recent call last): |
| ... |
| RuntimeError: bool value of Tensor with more than one value is ambiguous |
| >>> torch.is_nonzero(torch.tensor([])) |
| Traceback (most recent call last): |
| ... |
| RuntimeError: bool value of Tensor with no values is ambiguous |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.kron, |
| r""" |
| kron(input, other, *, out=None) -> Tensor |
| |
| Computes the Kronecker product, denoted by :math:`\otimes`, of :attr:`input` and :attr:`other`. |
| |
| If :attr:`input` is a :math:`(a_0 \times a_1 \times \dots \times a_n)` tensor and :attr:`other` is a |
| :math:`(b_0 \times b_1 \times \dots \times b_n)` tensor, the result will be a |
| :math:`(a_0*b_0 \times a_1*b_1 \times \dots \times a_n*b_n)` tensor with the following entries: |
| |
| .. math:: |
| (\text{input} \otimes \text{other})_{k_0, k_1, \dots, k_n} = |
| \text{input}_{i_0, i_1, \dots, i_n} * \text{other}_{j_0, j_1, \dots, j_n}, |
| |
| where :math:`k_t = i_t * b_t + j_t` for :math:`0 \leq t \leq n`. |
| If one tensor has fewer dimensions than the other it is unsqueezed until it has the same number of dimensions. |
| |
| Supports real-valued and complex-valued inputs. |
| |
| .. note:: |
| This function generalizes the typical definition of the Kronecker product for two matrices to two tensors, |
| as described above. When :attr:`input` is a :math:`(m \times n)` matrix and :attr:`other` is a |
| :math:`(p \times q)` matrix, the result will be a :math:`(p*m \times q*n)` block matrix: |
| |
| .. math:: |
| \mathbf{A} \otimes \mathbf{B}=\begin{bmatrix} |
| a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\ |
| \vdots & \ddots & \vdots \\ |
| a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B} \end{bmatrix} |
| |
| where :attr:`input` is :math:`\mathbf{A}` and :attr:`other` is :math:`\mathbf{B}`. |
| |
| Arguments: |
| input (Tensor) |
| other (Tensor) |
| |
| Keyword args: |
| out (Tensor, optional): The output tensor. Ignored if ``None``. Default: ``None`` |
| |
| Examples:: |
| |
| >>> mat1 = torch.eye(2) |
| >>> mat2 = torch.ones(2, 2) |
| >>> torch.kron(mat1, mat2) |
| tensor([[1., 1., 0., 0.], |
| [1., 1., 0., 0.], |
| [0., 0., 1., 1.], |
| [0., 0., 1., 1.]]) |
| |
| >>> mat1 = torch.eye(2) |
| >>> mat2 = torch.arange(1, 5).reshape(2, 2) |
| >>> torch.kron(mat1, mat2) |
| tensor([[1., 2., 0., 0.], |
| [3., 4., 0., 0.], |
| [0., 0., 1., 2.], |
| [0., 0., 3., 4.]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.kthvalue, |
| r""" |
| kthvalue(input, k, dim=None, keepdim=False, *, out=None) -> (Tensor, LongTensor) |
| |
| Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th |
| smallest element of each row of the :attr:`input` tensor in the given dimension |
| :attr:`dim`. And ``indices`` is the index location of each element found. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors |
| are the same size as :attr:`input`, except in the dimension :attr:`dim` where |
| they are of size 1. Otherwise, :attr:`dim` is squeezed |
| (see :func:`torch.squeeze`), resulting in both the :attr:`values` and |
| :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. |
| |
| .. note:: |
| When :attr:`input` is a CUDA tensor and there are multiple valid |
| :attr:`k` th values, this function may nondeterministically return |
| :attr:`indices` for any of them. |
| |
| Args: |
| {input} |
| k (int): k for the k-th smallest element |
| dim (int, optional): the dimension to find the kth value along |
| {keepdim} |
| |
| Keyword args: |
| out (tuple, optional): the output tuple of (Tensor, LongTensor) |
| can be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.arange(1., 6.) |
| >>> x |
| tensor([ 1., 2., 3., 4., 5.]) |
| >>> torch.kthvalue(x, 4) |
| torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) |
| |
| >>> x=torch.arange(1.,7.).resize_(2,3) |
| >>> x |
| tensor([[ 1., 2., 3.], |
| [ 4., 5., 6.]]) |
| >>> torch.kthvalue(x, 2, 0, True) |
| torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]])) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.lcm, |
| r""" |
| lcm(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise least common multiple (LCM) of :attr:`input` and :attr:`other`. |
| |
| Both :attr:`input` and :attr:`other` must have integer types. |
| |
| .. note:: |
| This defines :math:`lcm(0, 0) = 0` and :math:`lcm(0, a) = 0`. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([5, 10, 15]) |
| >>> b = torch.tensor([3, 4, 5]) |
| >>> torch.lcm(a, b) |
| tensor([15, 20, 15]) |
| >>> c = torch.tensor([3]) |
| >>> torch.lcm(a, c) |
| tensor([15, 30, 15]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.ldexp, |
| r""" |
| ldexp(input, other, *, out=None) -> Tensor |
| |
| Multiplies :attr:`input` by 2 ** :attr:`other`. |
| |
| .. math:: |
| \text{{out}}_i = \text{{input}}_i * 2^\text{{other}}_i |
| """ |
| + r""" |
| |
| Typically this function is used to construct floating point numbers by multiplying |
| mantissas in :attr:`input` with integral powers of two created from the exponents |
| in :attr:`other`. |
| |
| Args: |
| {input} |
| other (Tensor): a tensor of exponents, typically integers. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.ldexp(torch.tensor([1.]), torch.tensor([1])) |
| tensor([2.]) |
| >>> torch.ldexp(torch.tensor([1.0]), torch.tensor([1, 2, 3, 4])) |
| tensor([ 2., 4., 8., 16.]) |
| |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.le, |
| r""" |
| le(input, other, *, out=None) -> Tensor |
| |
| Computes :math:`\text{input} \leq \text{other}` element-wise. |
| """ |
| + r""" |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or Scalar): the tensor or value to compare |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is less than or equal to |
| :attr:`other` and False elsewhere |
| |
| Example:: |
| |
| >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[True, False], [True, True]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.less_equal, |
| r""" |
| less_equal(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.le`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.lerp, |
| r""" |
| lerp(input, end, weight, *, out=None) |
| |
| Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based |
| on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor. |
| |
| .. math:: |
| \text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) |
| """ |
| + r""" |
| The shapes of :attr:`start` and :attr:`end` must be |
| :ref:`broadcastable <broadcasting-semantics>`. If :attr:`weight` is a tensor, then |
| the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the tensor with the starting points |
| end (Tensor): the tensor with the ending points |
| weight (float or tensor): the weight for the interpolation formula |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> start = torch.arange(1., 5.) |
| >>> end = torch.empty(4).fill_(10) |
| >>> start |
| tensor([ 1., 2., 3., 4.]) |
| >>> end |
| tensor([ 10., 10., 10., 10.]) |
| >>> torch.lerp(start, end, 0.5) |
| tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) |
| >>> torch.lerp(start, end, torch.full_like(start, 0.5)) |
| tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.lgamma, |
| r""" |
| lgamma(input, *, out=None) -> Tensor |
| |
| Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \ln |\Gamma(\text{input}_{i})| |
| """ |
| + """ |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.arange(0.5, 2, 0.5) |
| >>> torch.lgamma(a) |
| tensor([ 0.5724, 0.0000, -0.1208]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.linspace, |
| r""" |
| linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly |
| spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: |
| |
| .. math:: |
| (\text{start}, |
| \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, |
| \ldots, |
| \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, |
| \text{end}) |
| """ |
| + """ |
| |
| From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. |
| |
| Args: |
| start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional |
| end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional |
| steps (int): size of the constructed tensor |
| |
| Keyword arguments: |
| {out} |
| dtype (torch.dtype, optional): the data type to perform the computation in. |
| Default: if None, uses the global default dtype (see torch.get_default_dtype()) |
| when both :attr:`start` and :attr:`end` are real, |
| and corresponding complex dtype when either is complex. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| |
| Example:: |
| |
| >>> torch.linspace(3, 10, steps=5) |
| tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) |
| >>> torch.linspace(-10, 10, steps=5) |
| tensor([-10., -5., 0., 5., 10.]) |
| >>> torch.linspace(start=-10, end=10, steps=5) |
| tensor([-10., -5., 0., 5., 10.]) |
| >>> torch.linspace(start=-10, end=10, steps=1) |
| tensor([-10.]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.log, |
| r""" |
| log(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the natural logarithm of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{e} (x_{i}) |
| """ |
| + r""" |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.rand(5) * 5 |
| >>> a |
| tensor([4.7767, 4.3234, 1.2156, 0.2411, 4.5739]) |
| >>> torch.log(a) |
| tensor([ 1.5637, 1.4640, 0.1952, -1.4226, 1.5204]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.log10, |
| r""" |
| log10(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the logarithm to the base 10 of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{10} (x_{i}) |
| """ |
| + r""" |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.rand(5) |
| >>> a |
| tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251]) |
| |
| |
| >>> torch.log10(a) |
| tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.log1p, |
| r""" |
| log1p(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the natural logarithm of (1 + :attr:`input`). |
| |
| .. math:: |
| y_i = \log_{e} (x_i + 1) |
| """ |
| + r""" |
| .. note:: This function is more accurate than :func:`torch.log` for small |
| values of :attr:`input` |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492]) |
| >>> torch.log1p(a) |
| tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.log2, |
| r""" |
| log2(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the logarithm to the base 2 of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{2} (x_{i}) |
| """ |
| + r""" |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.rand(5) |
| >>> a |
| tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490]) |
| |
| |
| >>> torch.log2(a) |
| tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logaddexp, |
| r""" |
| logaddexp(input, other, *, out=None) -> Tensor |
| |
| Logarithm of the sum of exponentiations of the inputs. |
| |
| Calculates pointwise :math:`\log\left(e^x + e^y\right)`. This function is useful |
| in statistics where the calculated probabilities of events may be so small as to |
| exceed the range of normal floating point numbers. In such cases the logarithm |
| of the calculated probability is stored. This function allows adding |
| probabilities stored in such a fashion. |
| |
| This op should be disambiguated with :func:`torch.logsumexp` which performs a |
| reduction on a single tensor. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3])) |
| tensor([-0.3069, -0.6867, -0.8731]) |
| >>> torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3])) |
| tensor([-1., -2., -3.]) |
| >>> torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3])) |
| tensor([1.1269e+00, 2.0000e+03, 3.0000e+04]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logaddexp2, |
| r""" |
| logaddexp2(input, other, *, out=None) -> Tensor |
| |
| Logarithm of the sum of exponentiations of the inputs in base-2. |
| |
| Calculates pointwise :math:`\log_2\left(2^x + 2^y\right)`. See |
| :func:`torch.logaddexp` for more details. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword arguments: |
| {out} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.xlogy, |
| r""" |
| xlogy(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.xlogy`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.logical_and, |
| r""" |
| logical_and(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise logical AND of the given input tensors. Zeros are treated as ``False`` and nonzeros are |
| treated as ``True``. |
| |
| Args: |
| {input} |
| other (Tensor): the tensor to compute AND with |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False])) |
| tensor([ True, False, False]) |
| >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) |
| >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) |
| >>> torch.logical_and(a, b) |
| tensor([False, False, True, False]) |
| >>> torch.logical_and(a.double(), b.double()) |
| tensor([False, False, True, False]) |
| >>> torch.logical_and(a.double(), b) |
| tensor([False, False, True, False]) |
| >>> torch.logical_and(a, b, out=torch.empty(4, dtype=torch.bool)) |
| tensor([False, False, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logical_not, |
| r""" |
| logical_not(input, *, out=None) -> Tensor |
| |
| Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool |
| dtype. If the input tensor is not a bool tensor, zeros are treated as ``False`` and non-zeros are treated as ``True``. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.logical_not(torch.tensor([True, False])) |
| tensor([False, True]) |
| >>> torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8)) |
| tensor([ True, False, False]) |
| >>> torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double)) |
| tensor([ True, False, False]) |
| >>> torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16)) |
| tensor([1, 0, 0], dtype=torch.int16) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logical_or, |
| r""" |
| logical_or(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise logical OR of the given input tensors. Zeros are treated as ``False`` and nonzeros are |
| treated as ``True``. |
| |
| Args: |
| {input} |
| other (Tensor): the tensor to compute OR with |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False])) |
| tensor([ True, False, True]) |
| >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) |
| >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) |
| >>> torch.logical_or(a, b) |
| tensor([ True, True, True, False]) |
| >>> torch.logical_or(a.double(), b.double()) |
| tensor([ True, True, True, False]) |
| >>> torch.logical_or(a.double(), b) |
| tensor([ True, True, True, False]) |
| >>> torch.logical_or(a, b, out=torch.empty(4, dtype=torch.bool)) |
| tensor([ True, True, True, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logical_xor, |
| r""" |
| logical_xor(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise logical XOR of the given input tensors. Zeros are treated as ``False`` and nonzeros are |
| treated as ``True``. |
| |
| Args: |
| {input} |
| other (Tensor): the tensor to compute XOR with |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False])) |
| tensor([False, False, True]) |
| >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) |
| >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) |
| >>> torch.logical_xor(a, b) |
| tensor([ True, True, False, False]) |
| >>> torch.logical_xor(a.double(), b.double()) |
| tensor([ True, True, False, False]) |
| >>> torch.logical_xor(a.double(), b) |
| tensor([ True, True, False, False]) |
| >>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool)) |
| tensor([ True, True, False, False]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logspace, |
| """ |
| logspace(start, end, steps, base=10.0, *, \ |
| out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ |
| + r""" |
| |
| Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly |
| spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to |
| :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale |
| with base :attr:`base`. That is, the values are: |
| |
| .. math:: |
| (\text{base}^{\text{start}}, |
| \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, |
| \ldots, |
| \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, |
| \text{base}^{\text{end}}) |
| """ |
| + """ |
| |
| |
| From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. |
| |
| Args: |
| start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional |
| end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional |
| steps (int): size of the constructed tensor |
| base (float, optional): base of the logarithm function. Default: ``10.0``. |
| |
| Keyword arguments: |
| {out} |
| dtype (torch.dtype, optional): the data type to perform the computation in. |
| Default: if None, uses the global default dtype (see torch.get_default_dtype()) |
| when both :attr:`start` and :attr:`end` are real, |
| and corresponding complex dtype when either is complex. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.logspace(start=-10, end=10, steps=5) |
| tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) |
| >>> torch.logspace(start=0.1, end=1.0, steps=5) |
| tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) |
| >>> torch.logspace(start=0.1, end=1.0, steps=1) |
| tensor([1.2589]) |
| >>> torch.logspace(start=2, end=2, steps=1, base=2) |
| tensor([4.0]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.logsumexp, |
| r""" |
| logsumexp(input, dim, keepdim=False, *, out=None) |
| |
| Returns the log of summed exponentials of each row of the :attr:`input` |
| tensor in the given dimension :attr:`dim`. The computation is numerically |
| stabilized. |
| |
| For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is |
| |
| .. math:: |
| \text{{logsumexp}}(x)_{{i}} = \log \sum_j \exp(x_{{ij}}) |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {opt_dim} |
| {keepdim} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> torch.logsumexp(a, 1) |
| tensor([1.4907, 1.0593, 1.5696]) |
| >>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1))) |
| tensor(1.6859e-07) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.lt, |
| r""" |
| lt(input, other, *, out=None) -> Tensor |
| |
| Computes :math:`\text{input} < \text{other}` element-wise. |
| """ |
| + r""" |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere |
| |
| Example:: |
| |
| >>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[False, False], [True, False]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.lu_unpack, |
| r""" |
| lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True, *, out=None) -> (Tensor, Tensor, Tensor) |
| |
| Unpacks the LU decomposition returned by :func:`~linalg.lu_factor` into the `P, L, U` matrices. |
| |
| .. seealso:: |
| |
| :func:`~linalg.lu` returns the matrices from the LU decomposition. Its gradient formula is more efficient |
| than that of doing :func:`~linalg.lu_factor` followed by :func:`~linalg.lu_unpack`. |
| |
| Args: |
| LU_data (Tensor): the packed LU factorization data |
| LU_pivots (Tensor): the packed LU factorization pivots |
| unpack_data (bool): flag indicating if the data should be unpacked. |
| If ``False``, then the returned ``L`` and ``U`` are empty tensors. |
| Default: ``True`` |
| unpack_pivots (bool): flag indicating if the pivots should be unpacked into a permutation matrix ``P``. |
| If ``False``, then the returned ``P`` is an empty tensor. |
| Default: ``True`` |
| |
| Keyword args: |
| out (tuple, optional): output tuple of three tensors. Ignored if `None`. |
| |
| Returns: |
| A namedtuple ``(P, L, U)`` |
| |
| Examples:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> LU, pivots = torch.linalg.lu_factor(A) |
| >>> P, L, U = torch.lu_unpack(LU, pivots) |
| >>> # We can recover A from the factorization |
| >>> A_ = P @ L @ U |
| >>> torch.allclose(A, A_) |
| True |
| |
| >>> # LU factorization of a rectangular matrix: |
| >>> A = torch.randn(2, 3, 2) |
| >>> LU, pivots = torch.linalg.lu_factor(A) |
| >>> P, L, U = torch.lu_unpack(LU, pivots) |
| >>> # P, L, U are the same as returned by linalg.lu |
| >>> P_, L_, U_ = torch.linalg.lu(A) |
| >>> torch.allclose(P, P_) and torch.allclose(L, L_) and torch.allclose(U, U_) |
| True |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.less, |
| r""" |
| less(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.lt`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.lu_solve, |
| r""" |
| lu_solve(b, LU_data, LU_pivots, *, out=None) -> Tensor |
| |
| Returns the LU solve of the linear system :math:`Ax = b` using the partially pivoted |
| LU factorization of A from :func:`~linalg.lu_factor`. |
| |
| This function supports ``float``, ``double``, ``cfloat`` and ``cdouble`` dtypes for :attr:`input`. |
| |
| .. warning:: |
| |
| :func:`torch.lu_solve` is deprecated in favor of :func:`torch.linalg.lu_solve`. |
| :func:`torch.lu_solve` will be removed in a future PyTorch release. |
| ``X = torch.lu_solve(B, LU, pivots)`` should be replaced with |
| |
| .. code:: python |
| |
| X = linalg.lu_solve(LU, pivots, B) |
| |
| Arguments: |
| b (Tensor): the RHS tensor of size :math:`(*, m, k)`, where :math:`*` |
| is zero or more batch dimensions. |
| LU_data (Tensor): the pivoted LU factorization of A from :meth:`~linalg.lu_factor` of size :math:`(*, m, m)`, |
| where :math:`*` is zero or more batch dimensions. |
| LU_pivots (IntTensor): the pivots of the LU factorization from :meth:`~linalg.lu_factor` of size :math:`(*, m)`, |
| where :math:`*` is zero or more batch dimensions. |
| The batch dimensions of :attr:`LU_pivots` must be equal to the batch dimensions of |
| :attr:`LU_data`. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> b = torch.randn(2, 3, 1) |
| >>> LU, pivots = torch.linalg.lu_factor(A) |
| >>> x = torch.lu_solve(b, LU, pivots) |
| >>> torch.dist(A @ x, b) |
| tensor(1.00000e-07 * |
| 2.8312) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.masked_select, |
| r""" |
| masked_select(input, mask, *, out=None) -> Tensor |
| |
| Returns a new 1-D tensor which indexes the :attr:`input` tensor according to |
| the boolean mask :attr:`mask` which is a `BoolTensor`. |
| |
| The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need |
| to match, but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. note:: The returned tensor does **not** use the same storage |
| as the original tensor |
| |
| Args: |
| {input} |
| mask (BoolTensor): the tensor containing the binary mask to index with |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| tensor([[ 0.3552, -2.3825, -0.8297, 0.3477], |
| [-1.2035, 1.2252, 0.5002, 0.6248], |
| [ 0.1307, -2.0608, 0.1244, 2.0139]]) |
| >>> mask = x.ge(0.5) |
| >>> mask |
| tensor([[False, False, False, False], |
| [False, True, True, True], |
| [False, False, False, True]]) |
| >>> torch.masked_select(x, mask) |
| tensor([ 1.2252, 0.5002, 0.6248, 2.0139]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.matrix_power, |
| r""" |
| matrix_power(input, n, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.linalg.matrix_power` |
| """, |
| ) |
| |
| add_docstr( |
| torch.matrix_exp, |
| r""" |
| matrix_exp(A) -> Tensor |
| |
| Alias for :func:`torch.linalg.matrix_exp`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.max, |
| r""" |
| max(input) -> Tensor |
| |
| Returns the maximum value of all elements in the ``input`` tensor. |
| |
| .. warning:: |
| This function produces deterministic (sub)gradients unlike ``max(dim=0)`` |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.6763, 0.7445, -2.2369]]) |
| >>> torch.max(a) |
| tensor(0.7445) |
| |
| .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) |
| :noindex: |
| |
| Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum |
| value of each row of the :attr:`input` tensor in the given dimension |
| :attr:`dim`. And ``indices`` is the index location of each maximum value found |
| (argmax). |
| |
| If ``keepdim`` is ``True``, the output tensors are of the same size |
| as ``input`` except in the dimension ``dim`` where they are of size 1. |
| Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensors having 1 fewer dimension than ``input``. |
| |
| .. note:: If there are multiple maximal values in a reduced row then |
| the indices of the first maximal value are returned. |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} Default: ``False``. |
| |
| Keyword args: |
| out (tuple, optional): the result tuple of two output tensors (max, max_indices) |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-1.2360, -0.2942, -0.1222, 0.8475], |
| [ 1.1949, -1.1127, -2.2379, -0.6702], |
| [ 1.5717, -0.9207, 0.1297, -1.8768], |
| [-0.6172, 1.0036, -0.6060, -0.2432]]) |
| >>> torch.max(a, 1) |
| torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) |
| |
| .. function:: max(input, other, *, out=None) -> Tensor |
| :noindex: |
| |
| See :func:`torch.maximum`. |
| |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.maximum, |
| r""" |
| maximum(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise maximum of :attr:`input` and :attr:`other`. |
| |
| .. note:: |
| If one of the elements being compared is a NaN, then that element is returned. |
| :func:`maximum` is not supported for tensors with complex dtypes. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor((1, 2, -1)) |
| >>> b = torch.tensor((3, 0, 4)) |
| >>> torch.maximum(a, b) |
| tensor([3, 2, 4]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.fmax, |
| r""" |
| fmax(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise maximum of :attr:`input` and :attr:`other`. |
| |
| This is like :func:`torch.maximum` except it handles NaNs differently: |
| if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the maximum. |
| Only if both elements are NaN is NaN propagated. |
| |
| This function is a wrapper around C++'s ``std::fmax`` and is similar to NumPy's ``fmax`` function. |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer and floating-point inputs. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')]) |
| >>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')]) |
| >>> torch.fmax(a, b) |
| tensor([9.7000, 0.5000, 3.1000, nan]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.amax, |
| r""" |
| amax(input, dim, keepdim=False, *, out=None) -> Tensor |
| |
| Returns the maximum value of each slice of the :attr:`input` tensor in the given |
| dimension(s) :attr:`dim`. |
| |
| .. note:: |
| The difference between ``max``/``min`` and ``amax``/``amin`` is: |
| - ``amax``/``amin`` supports reducing on multiple dimensions, |
| - ``amax``/``amin`` does not return indices, |
| - ``amax``/``amin`` evenly distributes gradient between equal values, |
| while ``max(dim)``/``min(dim)`` propagates gradient only to a single |
| index in the source tensor. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.8177, 1.4878, -0.2491, 0.9130], |
| [-0.7158, 1.1775, 2.0992, 0.4817], |
| [-0.0053, 0.0164, -1.3738, -0.0507], |
| [ 1.9700, 1.1106, -1.0318, -1.0816]]) |
| >>> torch.amax(a, 1) |
| tensor([1.4878, 2.0992, 0.0164, 1.9700]) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.argmax, |
| r""" |
| argmax(input) -> LongTensor |
| |
| Returns the indices of the maximum value of all elements in the :attr:`input` tensor. |
| |
| This is the second value returned by :meth:`torch.max`. See its |
| documentation for the exact semantics of this method. |
| |
| .. note:: If there are multiple maximal values then the indices of the first maximal value are returned. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], |
| [-0.7401, -0.8805, -0.3402, -1.1936], |
| [ 0.4907, -1.3948, -1.0691, -0.3132], |
| [-1.6092, 0.5419, -0.2993, 0.3195]]) |
| >>> torch.argmax(a) |
| tensor(0) |
| |
| .. function:: argmax(input, dim, keepdim=False) -> LongTensor |
| :noindex: |
| |
| Returns the indices of the maximum values of a tensor across a dimension. |
| |
| This is the second value returned by :meth:`torch.max`. See its |
| documentation for the exact semantics of this method. |
| |
| Args: |
| {input} |
| {dim} If ``None``, the argmax of the flattened input is returned. |
| {keepdim} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], |
| [-0.7401, -0.8805, -0.3402, -1.1936], |
| [ 0.4907, -1.3948, -1.0691, -0.3132], |
| [-1.6092, 0.5419, -0.2993, 0.3195]]) |
| >>> torch.argmax(a, dim=1) |
| tensor([ 0, 2, 0, 1]) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.argwhere, |
| r""" |
| argwhere(input) -> Tensor |
| |
| Returns a tensor containing the indices of all non-zero elements of |
| :attr:`input`. Each row in the result contains the indices of a non-zero |
| element in :attr:`input`. The result is sorted lexicographically, with |
| the last index changing the fastest (C-style). |
| |
| If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor |
| :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of |
| non-zero elements in the :attr:`input` tensor. |
| |
| .. note:: |
| This function is similar to NumPy's `argwhere`. |
| |
| When :attr:`input` is on CUDA, this function causes host-device synchronization. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> t = torch.tensor([1, 0, 1]) |
| >>> torch.argwhere(t) |
| tensor([[0], |
| [2]]) |
| >>> t = torch.tensor([[1, 0, 1], [0, 1, 1]]) |
| >>> torch.argwhere(t) |
| tensor([[0, 0], |
| [0, 2], |
| [1, 1], |
| [1, 2]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.mean, |
| r""" |
| mean(input, *, dtype=None) -> Tensor |
| |
| Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. |
| |
| Args: |
| input (Tensor): |
| the input tensor, either of floating point or complex dtype |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.2294, -0.5481, 1.3288]]) |
| >>> torch.mean(a) |
| tensor(0.3367) |
| |
| .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor |
| :noindex: |
| |
| Returns the mean value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, |
| reduce over all of them. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| {dtype} |
| {out} |
| |
| .. seealso:: |
| |
| :func:`torch.nanmean` computes the mean value of `non-NaN` elements. |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-0.3841, 0.6320, 0.4254, -0.7384], |
| [-0.9644, 1.0131, -0.6549, -1.4279], |
| [-0.2951, -1.3350, -0.7694, 0.5600], |
| [ 1.0842, -0.9580, 0.3623, 0.2343]]) |
| >>> torch.mean(a, 1) |
| tensor([-0.0163, -0.5085, -0.4599, 0.1807]) |
| >>> torch.mean(a, 1, True) |
| tensor([[-0.0163], |
| [-0.5085], |
| [-0.4599], |
| [ 0.1807]]) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.nanmean, |
| r""" |
| nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor |
| |
| Computes the mean of all `non-NaN` elements along the specified dimensions. |
| Input must be floating point or complex. |
| |
| This function is identical to :func:`torch.mean` when there are no `NaN` values |
| in the :attr:`input` tensor. In the presence of `NaN`, :func:`torch.mean` will |
| propagate the `NaN` to the output whereas :func:`torch.nanmean` will ignore the |
| `NaN` values (`torch.nanmean(a)` is equivalent to `torch.mean(a[~a.isnan()])`). |
| |
| {keepdim_details} |
| |
| Args: |
| input (Tensor): the input tensor, either of floating point or complex dtype |
| {opt_dim} |
| {keepdim} |
| |
| Keyword args: |
| {dtype} |
| {out} |
| |
| .. seealso:: |
| |
| :func:`torch.mean` computes the mean value, propagating `NaN`. |
| |
| Example:: |
| |
| >>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]]) |
| >>> x.mean() |
| tensor(nan) |
| >>> x.nanmean() |
| tensor(1.8000) |
| >>> x.mean(dim=0) |
| tensor([ nan, 1.5000, 2.5000]) |
| >>> x.nanmean(dim=0) |
| tensor([1.0000, 1.5000, 2.5000]) |
| |
| # If all elements in the reduced dimensions are NaN then the result is NaN |
| >>> torch.tensor([torch.nan]).nanmean() |
| tensor(nan) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.median, |
| r""" |
| median(input) -> Tensor |
| |
| Returns the median of the values in :attr:`input`. |
| |
| .. note:: |
| The median is not unique for :attr:`input` tensors with an even number |
| of elements. In this case the lower of the two medians is returned. To |
| compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. |
| |
| .. warning:: |
| This function produces deterministic (sub)gradients unlike ``median(dim=0)`` |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 1.5219, -1.5212, 0.2202]]) |
| >>> torch.median(a) |
| tensor(0.2202) |
| |
| .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) |
| :noindex: |
| |
| Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` |
| in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the outputs tensor having 1 fewer dimension than :attr:`input`. |
| |
| .. note:: |
| The median is not unique for :attr:`input` tensors with an even number |
| of elements in the dimension :attr:`dim`. In this case the lower of the |
| two medians is returned. To compute the mean of both medians in |
| :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. |
| |
| .. warning:: |
| ``indices`` does not necessarily contain the first occurrence of each |
| median value found, unless it is unique. |
| The exact implementation details are device-specific. |
| Do not expect the same result when run on CPU and GPU in general. |
| For the same reason do not expect the gradients to be deterministic. |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second |
| tensor, which must have dtype long, with their indices in the dimension |
| :attr:`dim` of :attr:`input`. |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], |
| [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], |
| [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], |
| [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) |
| >>> torch.median(a, 1) |
| torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.nanmedian, |
| r""" |
| nanmedian(input) -> Tensor |
| |
| Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. |
| |
| This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. |
| When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, |
| while this function will return the median of the non-``NaN`` elements in :attr:`input`. |
| If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, float('nan'), 3, 2]) |
| >>> a.median() |
| tensor(nan) |
| >>> a.nanmedian() |
| tensor(2.) |
| |
| .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) |
| :noindex: |
| |
| Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` |
| in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values |
| found in the dimension :attr:`dim`. |
| |
| This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has |
| one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the |
| median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second |
| tensor, which must have dtype long, with their indices in the dimension |
| :attr:`dim` of :attr:`input`. |
| |
| Example:: |
| |
| >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) |
| >>> a |
| tensor([[2., 3., 1.], |
| [nan, 1., nan]]) |
| >>> a.median(0) |
| torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) |
| >>> a.nanmedian(0) |
| torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.quantile, |
| r""" |
| quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor |
| |
| Computes the q-th quantiles of each row of the :attr:`input` tensor along the dimension :attr:`dim`. |
| |
| To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location |
| of the quantile in the sorted input. If the quantile lies between two data points ``a < b`` with |
| indices ``i`` and ``j`` in the sorted order, result is computed according to the given |
| :attr:`interpolation` method as follows: |
| |
| - ``linear``: ``a + (b - a) * fraction``, where ``fraction`` is the fractional part of the computed quantile index. |
| - ``lower``: ``a``. |
| - ``higher``: ``b``. |
| - ``nearest``: ``a`` or ``b``, whichever's index is closer to the computed quantile index (rounding down for .5 fractions). |
| - ``midpoint``: ``(a + b) / 2``. |
| |
| If :attr:`q` is a 1D tensor, the first dimension of the output represents the quantiles and has size |
| equal to the size of :attr:`q`, the remaining dimensions are what remains from the reduction. |
| |
| .. note:: |
| By default :attr:`dim` is ``None`` resulting in the :attr:`input` tensor being flattened before computation. |
| |
| Args: |
| {input} |
| q (float or Tensor): a scalar or 1D tensor of values in the range [0, 1]. |
| {dim} |
| {keepdim} |
| |
| Keyword arguments: |
| interpolation (str): interpolation method to use when the desired quantile lies between two data points. |
| Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. |
| Default is ``linear``. |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(2, 3) |
| >>> a |
| tensor([[ 0.0795, -1.2117, 0.9765], |
| [ 1.1707, 0.6706, 0.4884]]) |
| >>> q = torch.tensor([0.25, 0.5, 0.75]) |
| >>> torch.quantile(a, q, dim=1, keepdim=True) |
| tensor([[[-0.5661], |
| [ 0.5795]], |
| |
| [[ 0.0795], |
| [ 0.6706]], |
| |
| [[ 0.5280], |
| [ 0.9206]]]) |
| >>> torch.quantile(a, q, dim=1, keepdim=True).shape |
| torch.Size([3, 2, 1]) |
| >>> a = torch.arange(4.) |
| >>> a |
| tensor([0., 1., 2., 3.]) |
| >>> torch.quantile(a, 0.6, interpolation='linear') |
| tensor(1.8000) |
| >>> torch.quantile(a, 0.6, interpolation='lower') |
| tensor(1.) |
| >>> torch.quantile(a, 0.6, interpolation='higher') |
| tensor(2.) |
| >>> torch.quantile(a, 0.6, interpolation='midpoint') |
| tensor(1.5000) |
| >>> torch.quantile(a, 0.6, interpolation='nearest') |
| tensor(2.) |
| >>> torch.quantile(a, 0.4, interpolation='nearest') |
| tensor(1.) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.nanquantile, |
| r""" |
| nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor |
| |
| This is a variant of :func:`torch.quantile` that "ignores" ``NaN`` values, |
| computing the quantiles :attr:`q` as if ``NaN`` values in :attr:`input` did |
| not exist. If all values in a reduced row are ``NaN`` then the quantiles for |
| that reduction will be ``NaN``. See the documentation for :func:`torch.quantile`. |
| |
| Args: |
| {input} |
| q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1] |
| {dim} |
| {keepdim} |
| |
| Keyword arguments: |
| interpolation (str): interpolation method to use when the desired quantile lies between two data points. |
| Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. |
| Default is ``linear``. |
| {out} |
| |
| Example:: |
| |
| >>> t = torch.tensor([float('nan'), 1, 2]) |
| >>> t.quantile(0.5) |
| tensor(nan) |
| >>> t.nanquantile(0.5) |
| tensor(1.5000) |
| >>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) |
| >>> t |
| tensor([[nan, nan], |
| [1., 2.]]) |
| >>> t.nanquantile(0.5, dim=0) |
| tensor([1., 2.]) |
| >>> t.nanquantile(0.5, dim=1) |
| tensor([ nan, 1.5000]) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.min, |
| r""" |
| min(input) -> Tensor |
| |
| Returns the minimum value of all elements in the :attr:`input` tensor. |
| |
| .. warning:: |
| This function produces deterministic (sub)gradients unlike ``min(dim=0)`` |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.6750, 1.0857, 1.7197]]) |
| >>> torch.min(a) |
| tensor(0.6750) |
| |
| .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) |
| :noindex: |
| |
| Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum |
| value of each row of the :attr:`input` tensor in the given dimension |
| :attr:`dim`. And ``indices`` is the index location of each minimum value found |
| (argmin). |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| .. note:: If there are multiple minimal values in a reduced row then |
| the indices of the first minimal value are returned. |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| out (tuple, optional): the tuple of two output tensors (min, min_indices) |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-0.6248, 1.1334, -1.1899, -0.2803], |
| [-1.4644, -0.2635, -0.3651, 0.6134], |
| [ 0.2457, 0.0384, 1.0128, 0.7015], |
| [-0.1153, 2.9849, 2.1458, 0.5788]]) |
| >>> torch.min(a, 1) |
| torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) |
| |
| .. function:: min(input, other, *, out=None) -> Tensor |
| :noindex: |
| |
| See :func:`torch.minimum`. |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.minimum, |
| r""" |
| minimum(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise minimum of :attr:`input` and :attr:`other`. |
| |
| .. note:: |
| If one of the elements being compared is a NaN, then that element is returned. |
| :func:`minimum` is not supported for tensors with complex dtypes. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor((1, 2, -1)) |
| >>> b = torch.tensor((3, 0, 4)) |
| >>> torch.minimum(a, b) |
| tensor([1, 0, -1]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.fmin, |
| r""" |
| fmin(input, other, *, out=None) -> Tensor |
| |
| Computes the element-wise minimum of :attr:`input` and :attr:`other`. |
| |
| This is like :func:`torch.minimum` except it handles NaNs differently: |
| if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the minimum. |
| Only if both elements are NaN is NaN propagated. |
| |
| This function is a wrapper around C++'s ``std::fmin`` and is similar to NumPy's ``fmin`` function. |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer and floating-point inputs. |
| |
| Args: |
| {input} |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')]) |
| >>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')]) |
| >>> torch.fmin(a, b) |
| tensor([-9.3000, 0.1000, 2.1000, nan]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.amin, |
| r""" |
| amin(input, dim, keepdim=False, *, out=None) -> Tensor |
| |
| Returns the minimum value of each slice of the :attr:`input` tensor in the given |
| dimension(s) :attr:`dim`. |
| |
| .. note:: |
| The difference between ``max``/``min`` and ``amax``/``amin`` is: |
| - ``amax``/``amin`` supports reducing on multiple dimensions, |
| - ``amax``/``amin`` does not return indices, |
| - ``amax``/``amin`` evenly distributes gradient between equal values, |
| while ``max(dim)``/``min(dim)`` propagates gradient only to a single |
| index in the source tensor. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.6451, -0.4866, 0.2987, -1.3312], |
| [-0.5744, 1.2980, 1.8397, -0.2713], |
| [ 0.9128, 0.9214, -1.7268, -0.2995], |
| [ 0.9023, 0.4853, 0.9075, -1.6165]]) |
| >>> torch.amin(a, 1) |
| tensor([-1.3312, -0.5744, -1.7268, -1.6165]) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.aminmax, |
| r""" |
| aminmax(input, *, dim=None, keepdim=False, out=None) -> (Tensor min, Tensor max) |
| |
| Computes the minimum and maximum values of the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): |
| The input tensor |
| |
| Keyword Args: |
| dim (Optional[int]): |
| The dimension along which to compute the values. If `None`, |
| computes the values over the entire :attr:`input` tensor. |
| Default is `None`. |
| keepdim (bool): |
| If `True`, the reduced dimensions will be kept in the output |
| tensor as dimensions with size 1 for broadcasting, otherwise |
| they will be removed, as if calling (:func:`torch.squeeze`). |
| Default is `False`. |
| out (Optional[Tuple[Tensor, Tensor]]): |
| Optional tensors on which to write the result. Must have the same |
| shape and dtype as the expected output. |
| Default is `None`. |
| |
| Returns: |
| A named tuple `(min, max)` containing the minimum and maximum values. |
| |
| Raises: |
| RuntimeError |
| If any of the dimensions to compute the values over has size 0. |
| |
| .. note:: |
| NaN values are propagated to the output if at least one value is NaN. |
| |
| .. seealso:: |
| :func:`torch.amin` computes just the minimum value |
| :func:`torch.amax` computes just the maximum value |
| |
| Example:: |
| |
| >>> torch.aminmax(torch.tensor([1, -3, 5])) |
| torch.return_types.aminmax( |
| min=tensor(-3), |
| max=tensor(5)) |
| |
| >>> # aminmax propagates NaNs |
| >>> torch.aminmax(torch.tensor([1, -3, 5, torch.nan])) |
| torch.return_types.aminmax( |
| min=tensor(nan), |
| max=tensor(nan)) |
| |
| >>> t = torch.arange(10).view(2, 5) |
| >>> t |
| tensor([[0, 1, 2, 3, 4], |
| [5, 6, 7, 8, 9]]) |
| >>> t.aminmax(dim=0, keepdim=True) |
| torch.return_types.aminmax( |
| min=tensor([[0, 1, 2, 3, 4]]), |
| max=tensor([[5, 6, 7, 8, 9]])) |
| """, |
| ) |
| |
| add_docstr( |
| torch.argmin, |
| r""" |
| argmin(input, dim=None, keepdim=False) -> LongTensor |
| |
| Returns the indices of the minimum value(s) of the flattened tensor or along a dimension |
| |
| This is the second value returned by :meth:`torch.min`. See its |
| documentation for the exact semantics of this method. |
| |
| .. note:: If there are multiple minimal values then the indices of the first minimal value are returned. |
| |
| Args: |
| {input} |
| {dim} If ``None``, the argmin of the flattened input is returned. |
| {keepdim} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.1139, 0.2254, -0.1381, 0.3687], |
| [ 1.0100, -1.1975, -0.0102, -0.4732], |
| [-0.9240, 0.1207, -0.7506, -1.0213], |
| [ 1.7809, -1.2960, 0.9384, 0.1438]]) |
| >>> torch.argmin(a) |
| tensor(13) |
| >>> torch.argmin(a, dim=1) |
| tensor([ 2, 1, 3, 1]) |
| >>> torch.argmin(a, dim=1, keepdim=True) |
| tensor([[2], |
| [1], |
| [3], |
| [1]]) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.mm, |
| r""" |
| mm(input, mat2, *, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`input` and :attr:`mat2`. |
| |
| If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`mat2` is a |
| :math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| For broadcasting matrix products, see :func:`torch.matmul`. |
| |
| Supports strided and sparse 2-D tensors as inputs, autograd with |
| respect to strided inputs. |
| |
| This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`. |
| If :attr:`out` is provided its layout will be used. Otherwise, the result |
| layout will be deduced from that of :attr:`input`. |
| |
| {sparse_beta_warning} |
| |
| {tf32_note} |
| |
| {rocm_fp16_note} |
| |
| Args: |
| input (Tensor): the first matrix to be matrix multiplied |
| mat2 (Tensor): the second matrix to be matrix multiplied |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.mm(mat1, mat2) |
| tensor([[ 0.4851, 0.5037, -0.3633], |
| [-0.0760, -3.6705, 2.4784]]) |
| """.format(**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes), |
| ) |
| |
| add_docstr( |
| torch.hspmm, |
| r""" |
| hspmm(mat1, mat2, *, out=None) -> Tensor |
| |
| Performs a matrix multiplication of a :ref:`sparse COO matrix |
| <sparse-coo-docs>` :attr:`mat1` and a strided matrix :attr:`mat2`. The |
| result is a (1 + 1)-dimensional :ref:`hybrid COO matrix |
| <sparse-hybrid-coo-docs>`. |
| |
| Args: |
| mat1 (Tensor): the first sparse matrix to be matrix multiplied |
| mat2 (Tensor): the second strided matrix to be matrix multiplied |
| |
| Keyword args: |
| {out} |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.matmul, |
| r""" |
| matmul(input, other, *, out=None) -> Tensor |
| |
| Matrix product of two tensors. |
| |
| The behavior depends on the dimensionality of the tensors as follows: |
| |
| - If both tensors are 1-dimensional, the dot product (scalar) is returned. |
| - If both arguments are 2-dimensional, the matrix-matrix product is returned. |
| - If the first argument is 1-dimensional and the second argument is 2-dimensional, |
| a 1 is prepended to its dimension for the purpose of the matrix multiply. |
| After the matrix multiply, the prepended dimension is removed. |
| - If the first argument is 2-dimensional and the second argument is 1-dimensional, |
| the matrix-vector product is returned. |
| - If both arguments are at least 1-dimensional and at least one argument is |
| N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first |
| argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the |
| batched matrix multiply and removed after. If the second argument is 1-dimensional, a |
| 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. |
| The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus |
| must be broadcastable). For example, if :attr:`input` is a |
| :math:`(j \times 1 \times n \times n)` tensor and :attr:`other` is a :math:`(k \times n \times n)` |
| tensor, :attr:`out` will be a :math:`(j \times k \times n \times n)` tensor. |
| |
| Note that the broadcasting logic only looks at the batch dimensions when determining if the inputs |
| are broadcastable, and not the matrix dimensions. For example, if :attr:`input` is a |
| :math:`(j \times 1 \times n \times m)` tensor and :attr:`other` is a :math:`(k \times m \times p)` |
| tensor, these inputs are valid for broadcasting even though the final two dimensions (i.e. the |
| matrix dimensions) are different. :attr:`out` will be a :math:`(j \times k \times n \times p)` tensor. |
| |
| This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`. In particular the |
| matrix-matrix (both arguments 2-dimensional) supports sparse arguments with the same restrictions |
| as :func:`torch.mm` |
| |
| {sparse_beta_warning} |
| |
| {tf32_note} |
| |
| {rocm_fp16_note} |
| |
| .. note:: |
| |
| The 1-dimensional dot product version of this function does not support an :attr:`out` parameter. |
| |
| Arguments: |
| input (Tensor): the first tensor to be multiplied |
| other (Tensor): the second tensor to be multiplied |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> # vector x vector |
| >>> tensor1 = torch.randn(3) |
| >>> tensor2 = torch.randn(3) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([]) |
| >>> # matrix x vector |
| >>> tensor1 = torch.randn(3, 4) |
| >>> tensor2 = torch.randn(4) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([3]) |
| >>> # batched matrix x broadcasted vector |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(4) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3]) |
| >>> # batched matrix x batched matrix |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(10, 4, 5) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3, 5]) |
| >>> # batched matrix x broadcasted matrix |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(4, 5) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3, 5]) |
| |
| """.format(**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes), |
| ) |
| |
| add_docstr( |
| torch.mode, |
| r""" |
| mode(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) |
| |
| Returns a namedtuple ``(values, indices)`` where ``values`` is the mode |
| value of each row of the :attr:`input` tensor in the given dimension |
| :attr:`dim`, i.e. a value which appears most often |
| in that row, and ``indices`` is the index location of each mode value found. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| out (tuple, optional): the result tuple of two output tensors (values, indices) |
| |
| Example:: |
| |
| >>> b = torch.tensor([[0, 0, 0, 2, 0, 0, 2], |
| ... [0, 3, 0, 0, 2, 0, 1], |
| ... [2, 2, 2, 0, 0, 0, 3], |
| ... [2, 2, 3, 0, 1, 1, 0], |
| ... [1, 1, 0, 0, 2, 0, 2]]) |
| >>> torch.mode(b, 0) |
| torch.return_types.mode( |
| values=tensor([0, 2, 0, 0, 0, 0, 2]), |
| indices=tensor([1, 3, 4, 4, 2, 4, 4])) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.mul, |
| r""" |
| mul(input, other, *, out=None) -> Tensor |
| |
| Multiplies :attr:`input` by :attr:`other`. |
| |
| |
| .. math:: |
| \text{out}_i = \text{input}_i \times \text{other}_i |
| """ |
| + r""" |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs. |
| |
| Args: |
| {input} |
| other (Tensor or Number) - the tensor or number to multiply input by. |
| |
| Keyword args: |
| {out} |
| |
| Examples:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| tensor([ 0.2015, -0.4255, 2.6087]) |
| >>> torch.mul(a, 100) |
| tensor([ 20.1494, -42.5491, 260.8663]) |
| |
| >>> b = torch.randn(4, 1) |
| >>> b |
| tensor([[ 1.1207], |
| [-0.3137], |
| [ 0.0700], |
| [ 0.8378]]) |
| >>> c = torch.randn(1, 4) |
| >>> c |
| tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]]) |
| >>> torch.mul(b, c) |
| tensor([[ 0.5767, 0.1363, -0.5877, 2.5083], |
| [-0.1614, -0.0382, 0.1645, -0.7021], |
| [ 0.0360, 0.0085, -0.0367, 0.1567], |
| [ 0.4312, 0.1019, -0.4394, 1.8753]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.multiply, |
| r""" |
| multiply(input, other, *, out=None) |
| |
| Alias for :func:`torch.mul`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.multinomial, |
| r""" |
| multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor |
| |
| Returns a tensor where each row contains :attr:`num_samples` indices sampled |
| from the multinomial (a stricter definition would be multivariate, |
| refer to :class:`torch.distributions.multinomial.Multinomial` for more details) |
| probability distribution located in the corresponding row |
| of tensor :attr:`input`. |
| |
| .. note:: |
| The rows of :attr:`input` do not need to sum to one (in which case we use |
| the values as weights), but must be non-negative, finite and have |
| a non-zero sum. |
| |
| Indices are ordered from left to right according to when each was sampled |
| (first samples are placed in first column). |
| |
| If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`. |
| |
| If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape |
| :math:`(m \times \text{{num\_samples}})`. |
| |
| If replacement is ``True``, samples are drawn with replacement. |
| |
| If not, they are drawn without replacement, which means that when a |
| sample index is drawn for a row, it cannot be drawn again for that row. |
| |
| .. note:: |
| When drawn without replacement, :attr:`num_samples` must be lower than |
| number of non-zero elements in :attr:`input` (or the min number of non-zero |
| elements in each row of :attr:`input` if it is a matrix). |
| |
| Args: |
| input (Tensor): the input tensor containing probabilities |
| num_samples (int): number of samples to draw |
| replacement (bool, optional): whether to draw with replacement or not |
| |
| Keyword args: |
| {generator} |
| {out} |
| |
| Example:: |
| |
| >>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights |
| >>> torch.multinomial(weights, 2) |
| tensor([1, 2]) |
| >>> torch.multinomial(weights, 5) # ERROR! |
| RuntimeError: cannot sample n_sample > prob_dist.size(-1) samples without replacement |
| >>> torch.multinomial(weights, 4, replacement=True) |
| tensor([ 2, 1, 1, 1]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.mv, |
| r""" |
| mv(input, vec, *, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`input` and the vector |
| :attr:`vec`. |
| |
| If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of |
| size :math:`m`, :attr:`out` will be 1-D of size :math:`n`. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.mv(mat, vec) |
| tensor([ 1.0404, -0.6361]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.mvlgamma, |
| r""" |
| mvlgamma(input, p, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.multigammaln`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.movedim, |
| r""" |
| movedim(input, source, destination) -> Tensor |
| |
| Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source` |
| to the position(s) in :attr:`destination`. |
| |
| Other dimensions of :attr:`input` that are not explicitly moved remain in |
| their original order and appear at the positions not specified in :attr:`destination`. |
| |
| Args: |
| {input} |
| source (int or tuple of ints): Original positions of the dims to move. These must be unique. |
| destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique. |
| |
| Examples:: |
| |
| >>> t = torch.randn(3,2,1) |
| >>> t |
| tensor([[[-0.3362], |
| [-0.8437]], |
| |
| [[-0.9627], |
| [ 0.1727]], |
| |
| [[ 0.5173], |
| [-0.1398]]]) |
| >>> torch.movedim(t, 1, 0).shape |
| torch.Size([2, 3, 1]) |
| >>> torch.movedim(t, 1, 0) |
| tensor([[[-0.3362], |
| [-0.9627], |
| [ 0.5173]], |
| |
| [[-0.8437], |
| [ 0.1727], |
| [-0.1398]]]) |
| >>> torch.movedim(t, (1, 2), (0, 1)).shape |
| torch.Size([2, 1, 3]) |
| >>> torch.movedim(t, (1, 2), (0, 1)) |
| tensor([[[-0.3362, -0.9627, 0.5173]], |
| |
| [[-0.8437, 0.1727, -0.1398]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.moveaxis, |
| r""" |
| moveaxis(input, source, destination) -> Tensor |
| |
| Alias for :func:`torch.movedim`. |
| |
| This function is equivalent to NumPy's moveaxis function. |
| |
| Examples:: |
| |
| >>> t = torch.randn(3,2,1) |
| >>> t |
| tensor([[[-0.3362], |
| [-0.8437]], |
| |
| [[-0.9627], |
| [ 0.1727]], |
| |
| [[ 0.5173], |
| [-0.1398]]]) |
| >>> torch.moveaxis(t, 1, 0).shape |
| torch.Size([2, 3, 1]) |
| >>> torch.moveaxis(t, 1, 0) |
| tensor([[[-0.3362], |
| [-0.9627], |
| [ 0.5173]], |
| |
| [[-0.8437], |
| [ 0.1727], |
| [-0.1398]]]) |
| >>> torch.moveaxis(t, (1, 2), (0, 1)).shape |
| torch.Size([2, 1, 3]) |
| >>> torch.moveaxis(t, (1, 2), (0, 1)) |
| tensor([[[-0.3362, -0.9627, 0.5173]], |
| |
| [[-0.8437, 0.1727, -0.1398]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.swapdims, |
| r""" |
| swapdims(input, dim0, dim1) -> Tensor |
| |
| Alias for :func:`torch.transpose`. |
| |
| This function is equivalent to NumPy's swapaxes function. |
| |
| Examples:: |
| |
| >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) |
| >>> x |
| tensor([[[0, 1], |
| [2, 3]], |
| |
| [[4, 5], |
| [6, 7]]]) |
| >>> torch.swapdims(x, 0, 1) |
| tensor([[[0, 1], |
| [4, 5]], |
| |
| [[2, 3], |
| [6, 7]]]) |
| >>> torch.swapdims(x, 0, 2) |
| tensor([[[0, 4], |
| [2, 6]], |
| |
| [[1, 5], |
| [3, 7]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.swapaxes, |
| r""" |
| swapaxes(input, axis0, axis1) -> Tensor |
| |
| Alias for :func:`torch.transpose`. |
| |
| This function is equivalent to NumPy's swapaxes function. |
| |
| Examples:: |
| |
| >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) |
| >>> x |
| tensor([[[0, 1], |
| [2, 3]], |
| |
| [[4, 5], |
| [6, 7]]]) |
| >>> torch.swapaxes(x, 0, 1) |
| tensor([[[0, 1], |
| [4, 5]], |
| |
| [[2, 3], |
| [6, 7]]]) |
| >>> torch.swapaxes(x, 0, 2) |
| tensor([[[0, 4], |
| [2, 6]], |
| |
| [[1, 5], |
| [3, 7]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.narrow, |
| r""" |
| narrow(input, dim, start, length) -> Tensor |
| |
| Returns a new tensor that is a narrowed version of :attr:`input` tensor. The |
| dimension :attr:`dim` is input from :attr:`start` to ``start + length``. The |
| returned tensor and :attr:`input` tensor share the same underlying storage. |
| |
| Args: |
| input (Tensor): the tensor to narrow |
| dim (int): the dimension along which to narrow |
| start (int or Tensor): index of the element to start the narrowed dimension |
| from. Can be negative, which means indexing from the end of `dim`. If |
| `Tensor`, it must be an 0-dim integral `Tensor` (bools not allowed) |
| length (int): length of the narrowed dimension, must be weakly positive |
| |
| Example:: |
| |
| >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> torch.narrow(x, 0, 0, 2) |
| tensor([[ 1, 2, 3], |
| [ 4, 5, 6]]) |
| >>> torch.narrow(x, 1, 1, 2) |
| tensor([[ 2, 3], |
| [ 5, 6], |
| [ 8, 9]]) |
| >>> torch.narrow(x, -1, torch.tensor(-1), 1) |
| tensor([[3], |
| [6], |
| [9]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.narrow_copy, |
| r""" |
| narrow_copy(input, dim, start, length, *, out=None) -> Tensor |
| |
| Same as :meth:`Tensor.narrow` except this returns a copy rather |
| than shared storage. This is primarily for sparse tensors, which |
| do not have a shared-storage narrow method. |
| |
| Args: |
| input (Tensor): the tensor to narrow |
| dim (int): the dimension along which to narrow |
| start (int): index of the element to start the narrowed dimension from. Can |
| be negative, which means indexing from the end of `dim` |
| length (int): length of the narrowed dimension, must be weakly positive |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> torch.narrow_copy(x, 0, 0, 2) |
| tensor([[ 1, 2, 3], |
| [ 4, 5, 6]]) |
| >>> torch.narrow_copy(x, 1, 1, 2) |
| tensor([[ 2, 3], |
| [ 5, 6], |
| [ 8, 9]]) |
| >>> s = torch.arange(16).reshape(2, 2, 2, 2).to_sparse(2) |
| >>> torch.narrow_copy(s, 0, 0, 1) |
| tensor(indices=tensor([[0, 0], |
| [0, 1]]), |
| values=tensor([[[0, 1], |
| [2, 3]], |
| |
| [[4, 5], |
| [6, 7]]]), |
| size=(1, 2, 2, 2), nnz=2, layout=torch.sparse_coo) |
| |
| .. seealso:: |
| |
| :func:`torch.narrow` for a non copy variant |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.nan_to_num, |
| r""" |
| nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None) -> Tensor |
| |
| Replaces :literal:`NaN`, positive infinity, and negative infinity values in :attr:`input` |
| with the values specified by :attr:`nan`, :attr:`posinf`, and :attr:`neginf`, respectively. |
| By default, :literal:`NaN`\ s are replaced with zero, positive infinity is replaced with the |
| greatest finite value representable by :attr:`input`'s dtype, and negative infinity |
| is replaced with the least finite value representable by :attr:`input`'s dtype. |
| |
| Args: |
| {input} |
| nan (Number, optional): the value to replace :literal:`NaN`\s with. Default is zero. |
| posinf (Number, optional): if a Number, the value to replace positive infinity values with. |
| If None, positive infinity values are replaced with the greatest finite value representable by :attr:`input`'s dtype. |
| Default is None. |
| neginf (Number, optional): if a Number, the value to replace negative infinity values with. |
| If None, negative infinity values are replaced with the lowest finite value representable by :attr:`input`'s dtype. |
| Default is None. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14]) |
| >>> torch.nan_to_num(x) |
| tensor([ 0.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00]) |
| >>> torch.nan_to_num(x, nan=2.0) |
| tensor([ 2.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00]) |
| >>> torch.nan_to_num(x, nan=2.0, posinf=1.0) |
| tensor([ 2.0000e+00, 1.0000e+00, -3.4028e+38, 3.1400e+00]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.ne, |
| r""" |
| ne(input, other, *, out=None) -> Tensor |
| |
| Computes :math:`\text{input} \neq \text{other}` element-wise. |
| """ |
| + r""" |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere |
| |
| Example:: |
| |
| >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[False, True], [True, False]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.not_equal, |
| r""" |
| not_equal(input, other, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.ne`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.neg, |
| r""" |
| neg(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the negative of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out} = -1 \times \text{input} |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) |
| >>> torch.neg(a) |
| tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.negative, |
| r""" |
| negative(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.neg` |
| """, |
| ) |
| |
| add_docstr( |
| torch.nextafter, |
| r""" |
| nextafter(input, other, *, out=None) -> Tensor |
| |
| Return the next floating-point value after :attr:`input` towards :attr:`other`, elementwise. |
| |
| The shapes of ``input`` and ``other`` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the first input tensor |
| other (Tensor): the second input tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> eps = torch.finfo(torch.float32).eps |
| >>> torch.nextafter(torch.tensor([1.0, 2.0]), torch.tensor([2.0, 1.0])) == torch.tensor([eps + 1, 2 - eps]) |
| tensor([True, True]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.nonzero, |
| r""" |
| nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors |
| |
| .. note:: |
| :func:`torch.nonzero(..., as_tuple=False) <torch.nonzero>` (default) returns a |
| 2-D tensor where each row is the index for a nonzero value. |
| |
| :func:`torch.nonzero(..., as_tuple=True) <torch.nonzero>` returns a tuple of 1-D |
| index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]`` |
| gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor |
| contains nonzero indices for a certain dimension. |
| |
| See below for more details on the two behaviors. |
| |
| When :attr:`input` is on CUDA, :func:`torch.nonzero() <torch.nonzero>` causes |
| host-device synchronization. |
| |
| **When** :attr:`as_tuple` **is** ``False`` **(default)**: |
| |
| Returns a tensor containing the indices of all non-zero elements of |
| :attr:`input`. Each row in the result contains the indices of a non-zero |
| element in :attr:`input`. The result is sorted lexicographically, with |
| the last index changing the fastest (C-style). |
| |
| If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor |
| :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of |
| non-zero elements in the :attr:`input` tensor. |
| |
| **When** :attr:`as_tuple` **is** ``True``: |
| |
| Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`, |
| each containing the indices (in that dimension) of all non-zero elements of |
| :attr:`input` . |
| |
| If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n` |
| tensors of size :math:`z`, where :math:`z` is the total number of |
| non-zero elements in the :attr:`input` tensor. |
| |
| As a special case, when :attr:`input` has zero dimensions and a nonzero scalar |
| value, it is treated as a one-dimensional tensor with one element. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| out (LongTensor, optional): the output tensor containing indices |
| |
| Returns: |
| LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output |
| tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for |
| each dimension, containing the indices of each nonzero element along that |
| dimension. |
| |
| Example:: |
| |
| >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) |
| tensor([[ 0], |
| [ 1], |
| [ 2], |
| [ 4]]) |
| >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], |
| ... [0.0, 0.4, 0.0, 0.0], |
| ... [0.0, 0.0, 1.2, 0.0], |
| ... [0.0, 0.0, 0.0,-0.4]])) |
| tensor([[ 0, 0], |
| [ 1, 1], |
| [ 2, 2], |
| [ 3, 3]]) |
| >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) |
| (tensor([0, 1, 2, 4]),) |
| >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], |
| ... [0.0, 0.4, 0.0, 0.0], |
| ... [0.0, 0.0, 1.2, 0.0], |
| ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) |
| (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) |
| >>> torch.nonzero(torch.tensor(5), as_tuple=True) |
| (tensor([0]),) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.normal, |
| r""" |
| normal(mean, std, *, generator=None, out=None) -> Tensor |
| |
| Returns a tensor of random numbers drawn from separate normal distributions |
| whose mean and standard deviation are given. |
| |
| The :attr:`mean` is a tensor with the mean of |
| each output element's normal distribution |
| |
| The :attr:`std` is a tensor with the standard deviation of |
| each output element's normal distribution |
| |
| The shapes of :attr:`mean` and :attr:`std` don't need to match, but the |
| total number of elements in each tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`mean` |
| is used as the shape for the returned output tensor |
| |
| .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes |
| its device with the CPU. |
| |
| Args: |
| mean (Tensor): the tensor of per-element means |
| std (Tensor): the tensor of per-element standard deviations |
| |
| Keyword args: |
| {generator} |
| {out} |
| |
| Example:: |
| |
| >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) |
| tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, |
| 8.0505, 8.1408, 9.0563, 10.0566]) |
| |
| .. function:: normal(mean=0.0, std, *, out=None) -> Tensor |
| :noindex: |
| |
| Similar to the function above, but the means are shared among all drawn |
| elements. |
| |
| Args: |
| mean (float, optional): the mean for all distributions |
| std (Tensor): the tensor of per-element standard deviations |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) |
| tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) |
| |
| .. function:: normal(mean, std=1.0, *, out=None) -> Tensor |
| :noindex: |
| |
| Similar to the function above, but the standard deviations are shared among |
| all drawn elements. |
| |
| Args: |
| mean (Tensor): the tensor of per-element means |
| std (float, optional): the standard deviation for all distributions |
| |
| Keyword args: |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(mean=torch.arange(1., 6.)) |
| tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) |
| |
| .. function:: normal(mean, std, size, *, out=None) -> Tensor |
| :noindex: |
| |
| Similar to the function above, but the means and standard deviations are shared |
| among all drawn elements. The resulting tensor has size given by :attr:`size`. |
| |
| Args: |
| mean (float): the mean for all distributions |
| std (float): the standard deviation for all distributions |
| size (int...): a sequence of integers defining the shape of the output tensor. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.normal(2, 3, size=(1, 4)) |
| tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.numel, |
| r""" |
| numel(input) -> int |
| |
| Returns the total number of elements in the :attr:`input` tensor. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 2, 3, 4, 5) |
| >>> torch.numel(a) |
| 120 |
| >>> a = torch.zeros(4,4) |
| >>> torch.numel(a) |
| 16 |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.ones, |
| r""" |
| ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with the scalar value `1`, with the shape defined |
| by the variable argument :attr:`size`. |
| |
| Args: |
| size (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| |
| Keyword arguments: |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.ones(2, 3) |
| tensor([[ 1., 1., 1.], |
| [ 1., 1., 1.]]) |
| |
| >>> torch.ones(5) |
| tensor([ 1., 1., 1., 1., 1.]) |
| |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.ones_like, |
| r""" |
| ones_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a tensor filled with the scalar value `1`, with the same size as |
| :attr:`input`. ``torch.ones_like(input)`` is equivalent to |
| ``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| .. warning:: |
| As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, |
| the old ``torch.ones_like(input, out=output)`` is equivalent to |
| ``torch.ones(input.size(), out=output)``. |
| |
| Args: |
| {input} |
| |
| Keyword arguments: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| |
| Example:: |
| |
| >>> input = torch.empty(2, 3) |
| >>> torch.ones_like(input) |
| tensor([[ 1., 1., 1.], |
| [ 1., 1., 1.]]) |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.orgqr, |
| r""" |
| orgqr(input, tau) -> Tensor |
| |
| Alias for :func:`torch.linalg.householder_product`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.ormqr, |
| r""" |
| ormqr(input, tau, other, left=True, transpose=False, *, out=None) -> Tensor |
| |
| Computes the matrix-matrix multiplication of a product of Householder matrices with a general matrix. |
| |
| Multiplies a :math:`m \times n` matrix `C` (given by :attr:`other`) with a matrix `Q`, |
| where `Q` is represented using Householder reflectors `(input, tau)`. |
| See `Representation of Orthogonal or Unitary Matrices`_ for further details. |
| |
| If :attr:`left` is `True` then `op(Q)` times `C` is computed, otherwise the result is `C` times `op(Q)`. |
| When :attr:`left` is `True`, the implicit matrix `Q` has size :math:`m \times m`. |
| It has size :math:`n \times n` otherwise. |
| If :attr:`transpose` is `True` then `op` is the conjugate transpose operation, otherwise it's a no-op. |
| |
| Supports inputs of float, double, cfloat and cdouble dtypes. |
| Also supports batched inputs, and, if the input is batched, the output is batched with the same dimensions. |
| |
| .. seealso:: |
| :func:`torch.geqrf` can be used to form the Householder representation `(input, tau)` of matrix `Q` |
| from the QR decomposition. |
| |
| .. note:: |
| This function supports backward but it is only fast when ``(input, tau)`` do not require gradients |
| and/or ``tau.size(-1)`` is very small. |
| `` |
| |
| Args: |
| input (Tensor): tensor of shape `(*, mn, k)` where `*` is zero or more batch dimensions |
| and `mn` equals to `m` or `n` depending on the :attr:`left`. |
| tau (Tensor): tensor of shape `(*, min(mn, k))` where `*` is zero or more batch dimensions. |
| other (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. |
| left (bool): controls the order of multiplication. |
| transpose (bool): controls whether the matrix `Q` is conjugate transposed or not. |
| |
| Keyword args: |
| out (Tensor, optional): the output Tensor. Ignored if `None`. Default: `None`. |
| |
| .. _Representation of Orthogonal or Unitary Matrices: |
| https://www.netlib.org/lapack/lug/node128.html |
| """, |
| ) |
| |
| add_docstr( |
| torch.permute, |
| r""" |
| permute(input, dims) -> Tensor |
| |
| Returns a view of the original tensor :attr:`input` with its dimensions permuted. |
| |
| Args: |
| {input} |
| dims (tuple of int): The desired ordering of dimensions |
| |
| Example: |
| >>> x = torch.randn(2, 3, 5) |
| >>> x.size() |
| torch.Size([2, 3, 5]) |
| >>> torch.permute(x, (2, 0, 1)).size() |
| torch.Size([5, 2, 3]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.poisson, |
| r""" |
| poisson(input, generator=None) -> Tensor |
| |
| Returns a tensor of the same size as :attr:`input` with each element |
| sampled from a Poisson distribution with rate parameter given by the corresponding |
| element in :attr:`input` i.e., |
| |
| .. math:: |
| \text{{out}}_i \sim \text{{Poisson}}(\text{{input}}_i) |
| |
| :attr:`input` must be non-negative. |
| |
| Args: |
| input (Tensor): the input tensor containing the rates of the Poisson distribution |
| |
| Keyword args: |
| {generator} |
| |
| Example:: |
| |
| >>> rates = torch.rand(4, 4) * 5 # rate parameter between 0 and 5 |
| >>> torch.poisson(rates) |
| tensor([[9., 1., 3., 5.], |
| [8., 6., 6., 0.], |
| [0., 4., 5., 3.], |
| [2., 1., 4., 2.]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.polygamma, |
| r""" |
| polygamma(n, input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.polygamma`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.positive, |
| r""" |
| positive(input) -> Tensor |
| |
| Returns :attr:`input`. |
| Throws a runtime error if :attr:`input` is a bool tensor. |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> t = torch.randn(5) |
| >>> t |
| tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) |
| >>> torch.positive(t) |
| tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.pow, |
| r""" |
| pow(input, exponent, *, out=None) -> Tensor |
| |
| Takes the power of each element in :attr:`input` with :attr:`exponent` and |
| returns a tensor with the result. |
| |
| :attr:`exponent` can be either a single ``float`` number or a `Tensor` |
| with the same number of elements as :attr:`input`. |
| |
| When :attr:`exponent` is a scalar value, the operation applied is: |
| |
| .. math:: |
| \text{out}_i = x_i ^ \text{exponent} |
| |
| When :attr:`exponent` is a tensor, the operation applied is: |
| |
| .. math:: |
| \text{out}_i = x_i ^ {\text{exponent}_i} |
| """ |
| + r""" |
| When :attr:`exponent` is a tensor, the shapes of :attr:`input` |
| and :attr:`exponent` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| {input} |
| exponent (float or tensor): the exponent value |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) |
| >>> torch.pow(a, 2) |
| tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) |
| >>> exp = torch.arange(1., 5.) |
| |
| >>> a = torch.arange(1., 5.) |
| >>> a |
| tensor([ 1., 2., 3., 4.]) |
| >>> exp |
| tensor([ 1., 2., 3., 4.]) |
| >>> torch.pow(a, exp) |
| tensor([ 1., 4., 27., 256.]) |
| |
| .. function:: pow(self, exponent, *, out=None) -> Tensor |
| :noindex: |
| |
| :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. |
| The returned tensor :attr:`out` is of the same shape as :attr:`exponent` |
| |
| The operation applied is: |
| |
| .. math:: |
| \text{{out}}_i = \text{{self}} ^ {{\text{{exponent}}_i}} |
| |
| Args: |
| self (float): the scalar base value for the power operation |
| exponent (Tensor): the exponent tensor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> exp = torch.arange(1., 5.) |
| >>> base = 2 |
| >>> torch.pow(base, exp) |
| tensor([ 2., 4., 8., 16.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.float_power, |
| r""" |
| float_power(input, exponent, *, out=None) -> Tensor |
| |
| Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. |
| If neither input is complex returns a ``torch.float64`` tensor, |
| and if one or more inputs is complex returns a ``torch.complex128`` tensor. |
| |
| .. note:: |
| This function always computes in double precision, unlike :func:`torch.pow`, |
| which implements more typical :ref:`type promotion <type-promotion-doc>`. |
| This is useful when the computation needs to be performed in a wider or more precise dtype, |
| or the results of the computation may contain fractional values not representable in the input dtypes, |
| like when an integer base is raised to a negative integer exponent. |
| |
| Args: |
| input (Tensor or Number): the base value(s) |
| exponent (Tensor or Number): the exponent value(s) |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randint(10, (4,)) |
| >>> a |
| tensor([6, 4, 7, 1]) |
| >>> torch.float_power(a, 2) |
| tensor([36., 16., 49., 1.], dtype=torch.float64) |
| |
| >>> a = torch.arange(1, 5) |
| >>> a |
| tensor([ 1, 2, 3, 4]) |
| >>> exp = torch.tensor([2, -3, 4, -5]) |
| >>> exp |
| tensor([ 2, -3, 4, -5]) |
| >>> torch.float_power(a, exp) |
| tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.prod, |
| r""" |
| prod(input, *, dtype=None) -> Tensor |
| |
| Returns the product of all elements in the :attr:`input` tensor. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[-0.8020, 0.5428, -1.5854]]) |
| >>> torch.prod(a) |
| tensor(0.6902) |
| |
| .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor |
| :noindex: |
| |
| Returns the product of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| {keepdim} |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) |
| >>> a |
| tensor([[ 0.5261, -0.3837], |
| [ 1.1857, -0.2498], |
| [-1.1646, 0.0705], |
| [ 1.1131, -1.0629]]) |
| >>> torch.prod(a, 1) |
| tensor([-0.2018, -0.2962, -0.0821, -1.1831]) |
| """.format(**single_dim_common), |
| ) |
| |
| add_docstr( |
| torch.promote_types, |
| r""" |
| promote_types(type1, type2) -> dtype |
| |
| Returns the :class:`torch.dtype` with the smallest size and scalar kind that is |
| not smaller nor of lower kind than either `type1` or `type2`. See type promotion |
| :ref:`documentation <type-promotion-doc>` for more information on the type |
| promotion logic. |
| |
| Args: |
| type1 (:class:`torch.dtype`) |
| type2 (:class:`torch.dtype`) |
| |
| Example:: |
| |
| >>> torch.promote_types(torch.int32, torch.float32) |
| torch.float32 |
| >>> torch.promote_types(torch.uint8, torch.long) |
| torch.long |
| """, |
| ) |
| |
| add_docstr( |
| torch.qr, |
| r""" |
| qr(input, some=True, *, out=None) -> (Tensor, Tensor) |
| |
| Computes the QR decomposition of a matrix or a batch of matrices :attr:`input`, |
| and returns a namedtuple (Q, R) of tensors such that :math:`\text{input} = Q R` |
| with :math:`Q` being an orthogonal matrix or batch of orthogonal matrices and |
| :math:`R` being an upper triangular matrix or batch of upper triangular matrices. |
| |
| If :attr:`some` is ``True``, then this function returns the thin (reduced) QR factorization. |
| Otherwise, if :attr:`some` is ``False``, this function returns the complete QR factorization. |
| |
| .. warning:: |
| |
| :func:`torch.qr` is deprecated in favor of :func:`torch.linalg.qr` |
| and will be removed in a future PyTorch release. The boolean parameter :attr:`some` has been |
| replaced with a string parameter :attr:`mode`. |
| |
| ``Q, R = torch.qr(A)`` should be replaced with |
| |
| .. code:: python |
| |
| Q, R = torch.linalg.qr(A) |
| |
| ``Q, R = torch.qr(A, some=False)`` should be replaced with |
| |
| .. code:: python |
| |
| Q, R = torch.linalg.qr(A, mode="complete") |
| |
| .. warning:: |
| If you plan to backpropagate through QR, note that the current backward implementation |
| is only well-defined when the first :math:`\min(input.size(-1), input.size(-2))` |
| columns of :attr:`input` are linearly independent. |
| This behavior will probably change once QR supports pivoting. |
| |
| .. note:: This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs, |
| and may produce different (valid) decompositions on different device types |
| or different platforms. |
| |
| Args: |
| input (Tensor): the input tensor of size :math:`(*, m, n)` where `*` is zero or more |
| batch dimensions consisting of matrices of dimension :math:`m \times n`. |
| some (bool, optional): Set to ``True`` for reduced QR decomposition and ``False`` for |
| complete QR decomposition. If `k = min(m, n)` then: |
| |
| * ``some=True`` : returns `(Q, R)` with dimensions (m, k), (k, n) (default) |
| |
| * ``'some=False'``: returns `(Q, R)` with dimensions (m, m), (m, n) |
| |
| Keyword args: |
| out (tuple, optional): tuple of `Q` and `R` tensors. |
| The dimensions of `Q` and `R` are detailed in the description of :attr:`some` above. |
| |
| Example:: |
| |
| >>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) |
| >>> q, r = torch.qr(a) |
| >>> q |
| tensor([[-0.8571, 0.3943, 0.3314], |
| [-0.4286, -0.9029, -0.0343], |
| [ 0.2857, -0.1714, 0.9429]]) |
| >>> r |
| tensor([[ -14.0000, -21.0000, 14.0000], |
| [ 0.0000, -175.0000, 70.0000], |
| [ 0.0000, 0.0000, -35.0000]]) |
| >>> torch.mm(q, r).round() |
| tensor([[ 12., -51., 4.], |
| [ 6., 167., -68.], |
| [ -4., 24., -41.]]) |
| >>> torch.mm(q.t(), q).round() |
| tensor([[ 1., 0., 0.], |
| [ 0., 1., -0.], |
| [ 0., -0., 1.]]) |
| >>> a = torch.randn(3, 4, 5) |
| >>> q, r = torch.qr(a, some=False) |
| >>> torch.allclose(torch.matmul(q, r), a) |
| True |
| >>> torch.allclose(torch.matmul(q.mT, q), torch.eye(5)) |
| True |
| """, |
| ) |
| |
| add_docstr( |
| torch.rad2deg, |
| r""" |
| rad2deg(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with each of the elements of :attr:`input` |
| converted from angles in radians to degrees. |
| |
| Args: |
| {input} |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]]) |
| >>> torch.rad2deg(a) |
| tensor([[ 180.0233, -180.0233], |
| [ 359.9894, -359.9894], |
| [ 89.9544, -89.9544]]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.deg2rad, |
| r""" |
| deg2rad(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with each of the elements of :attr:`input` |
| converted from angles in degrees to radians. |
| |
| Args: |
| {input} |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]]) |
| >>> torch.deg2rad(a) |
| tensor([[ 3.1416, -3.1416], |
| [ 6.2832, -6.2832], |
| [ 1.5708, -1.5708]]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.heaviside, |
| r""" |
| heaviside(input, values, *, out=None) -> Tensor |
| |
| Computes the Heaviside step function for each element in :attr:`input`. |
| The Heaviside step function is defined as: |
| |
| .. math:: |
| \text{{heaviside}}(input, values) = \begin{cases} |
| 0, & \text{if input < 0}\\ |
| values, & \text{if input == 0}\\ |
| 1, & \text{if input > 0} |
| \end{cases} |
| """ |
| + r""" |
| |
| Args: |
| {input} |
| values (Tensor): The values to use where :attr:`input` is zero. |
| |
| Keyword arguments: |
| {out} |
| |
| Example:: |
| |
| >>> input = torch.tensor([-1.5, 0, 2.0]) |
| >>> values = torch.tensor([0.5]) |
| >>> torch.heaviside(input, values) |
| tensor([0.0000, 0.5000, 1.0000]) |
| >>> values = torch.tensor([1.2, -2.0, 3.5]) |
| >>> torch.heaviside(input, values) |
| tensor([0., -2., 1.]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.rand, |
| """ |
| rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, \ |
| requires_grad=False, pin_memory=False) -> Tensor |
| """ |
| + r""" |
| Returns a tensor filled with random numbers from a uniform distribution |
| on the interval :math:`[0, 1)` |
| |
| The shape of the tensor is defined by the variable argument :attr:`size`. |
| |
| Args: |
| size (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| |
| Keyword args: |
| {generator} |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {pin_memory} |
| |
| Example:: |
| |
| >>> torch.rand(4) |
| tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) |
| >>> torch.rand(2, 3) |
| tensor([[ 0.8237, 0.5781, 0.6879], |
| [ 0.3816, 0.7249, 0.0998]]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.rand_like, |
| r""" |
| rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a tensor with the same size as :attr:`input` that is filled with |
| random numbers from a uniform distribution on the interval :math:`[0, 1)`. |
| ``torch.rand_like(input)`` is equivalent to |
| ``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.randint, |
| """ |
| randint(low=0, high, size, \\*, generator=None, out=None, \ |
| dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with random integers generated uniformly |
| between :attr:`low` (inclusive) and :attr:`high` (exclusive). |
| |
| The shape of the tensor is defined by the variable argument :attr:`size`. |
| |
| .. note:: |
| With the global dtype default (``torch.float32``), this function returns |
| a tensor with dtype ``torch.int64``. |
| |
| Args: |
| low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. |
| high (int): One above the highest integer to be drawn from the distribution. |
| size (tuple): a tuple defining the shape of the output tensor. |
| |
| Keyword args: |
| {generator} |
| {out} |
| dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, |
| this function returns a tensor with dtype ``torch.int64``. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.randint(3, 5, (3,)) |
| tensor([4, 3, 4]) |
| |
| |
| >>> torch.randint(10, (2, 2)) |
| tensor([[0, 2], |
| [5, 5]]) |
| |
| |
| >>> torch.randint(3, 10, (2, 2)) |
| tensor([[4, 5], |
| [6, 7]]) |
| |
| |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.randint_like, |
| """ |
| randint_like(input, low=0, high, \\*, dtype=None, layout=torch.strided, device=None, requires_grad=False, \ |
| memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a tensor with the same shape as Tensor :attr:`input` filled with |
| random integers generated uniformly between :attr:`low` (inclusive) and |
| :attr:`high` (exclusive). |
| |
| .. note: |
| With the global dtype default (``torch.float32``), this function returns |
| a tensor with dtype ``torch.int64``. |
| |
| Args: |
| {input} |
| low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. |
| high (int): One above the highest integer to be drawn from the distribution. |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.randn, |
| """ |
| randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, \ |
| pin_memory=False) -> Tensor |
| """ |
| + r""" |
| |
| Returns a tensor filled with random numbers from a normal distribution |
| with mean `0` and variance `1` (also called the standard normal |
| distribution). |
| |
| .. math:: |
| \text{{out}}_{{i}} \sim \mathcal{{N}}(0, 1) |
| |
| For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and |
| unit variance as |
| |
| .. math:: |
| \text{{out}}_{{i}} \sim \mathcal{{CN}}(0, 1) |
| |
| This is equivalent to separately sampling the real :math:`(\operatorname{{Re}})` and imaginary |
| :math:`(\operatorname{{Im}})` part of :math:`\text{{out}}_i` as |
| |
| .. math:: |
| \operatorname{{Re}}(\text{{out}}_{{i}}) \sim \mathcal{{N}}(0, \frac{{1}}{{2}}),\quad |
| \operatorname{{Im}}(\text{{out}}_{{i}}) \sim \mathcal{{N}}(0, \frac{{1}}{{2}}) |
| |
| The shape of the tensor is defined by the variable argument :attr:`size`. |
| |
| |
| Args: |
| size (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| |
| Keyword args: |
| {generator} |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {pin_memory} |
| |
| Example:: |
| |
| >>> torch.randn(4) |
| tensor([-2.1436, 0.9966, 2.3426, -0.6366]) |
| >>> torch.randn(2, 3) |
| tensor([[ 1.5954, 2.8929, -1.0923], |
| [ 1.1719, -0.4709, -0.1996]]) |
| |
| .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.randn_like, |
| r""" |
| randn_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a tensor with the same size as :attr:`input` that is filled with |
| random numbers from a normal distribution with mean 0 and variance 1. Please refer to :func:`torch.randn` for the |
| sampling process of complex dtypes. ``torch.randn_like(input)`` is equivalent to |
| ``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.randperm, |
| """ |
| randperm(n, *, generator=None, out=None, dtype=torch.int64,layout=torch.strided, \ |
| device=None, requires_grad=False, pin_memory=False) -> Tensor |
| """ |
| + r""" |
| Returns a random permutation of integers from ``0`` to ``n - 1``. |
| |
| Args: |
| n (int): the upper bound (exclusive) |
| |
| Keyword args: |
| {generator} |
| {out} |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: ``torch.int64``. |
| {layout} |
| {device} |
| {requires_grad} |
| {pin_memory} |
| |
| Example:: |
| |
| >>> torch.randperm(4) |
| tensor([2, 1, 0, 3]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.tensor, |
| r""" |
| tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) -> Tensor |
| |
| Constructs a tensor with no autograd history (also known as a "leaf tensor", see :doc:`/notes/autograd`) by copying :attr:`data`. |
| |
| .. warning:: |
| |
| When working with tensors prefer using :func:`torch.Tensor.clone`, |
| :func:`torch.Tensor.detach`, and :func:`torch.Tensor.requires_grad_` for |
| readability. Letting `t` be a tensor, ``torch.tensor(t)`` is equivalent to |
| ``t.clone().detach()``, and ``torch.tensor(t, requires_grad=True)`` |
| is equivalent to ``t.clone().detach().requires_grad_(True)``. |
| |
| .. seealso:: |
| |
| :func:`torch.as_tensor` preserves autograd history and avoids copies where possible. |
| :func:`torch.from_numpy` creates a tensor that shares storage with a NumPy array. |
| |
| Args: |
| {data} |
| |
| Keyword args: |
| {dtype} |
| device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor |
| then the device of data is used. If None and data is not a tensor then |
| the result tensor is constructed on the current device. |
| {requires_grad} |
| {pin_memory} |
| |
| |
| Example:: |
| |
| >>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]) |
| tensor([[ 0.1000, 1.2000], |
| [ 2.2000, 3.1000], |
| [ 4.9000, 5.2000]]) |
| |
| >>> torch.tensor([0, 1]) # Type inference on data |
| tensor([ 0, 1]) |
| |
| >>> torch.tensor([[0.11111, 0.222222, 0.3333333]], |
| ... dtype=torch.float64, |
| ... device=torch.device('cuda:0')) # creates a double tensor on a CUDA device |
| tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') |
| |
| >>> torch.tensor(3.14159) # Create a zero-dimensional (scalar) tensor |
| tensor(3.1416) |
| |
| >>> torch.tensor([]) # Create an empty tensor (of size (0,)) |
| tensor([]) |
| """.format(**factory_data_common_args), |
| ) |
| |
| add_docstr( |
| torch.range, |
| r""" |
| range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1` |
| with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is |
| the gap between two values in the tensor. |
| |
| .. math:: |
| \text{out}_{i+1} = \text{out}_i + \text{step}. |
| """ |
| + r""" |
| .. warning:: |
| This function is deprecated and will be removed in a future release because its behavior is inconsistent with |
| Python's range builtin. Instead, use :func:`torch.arange`, which produces values in [start, end). |
| |
| Args: |
| start (float): the starting value for the set of points. Default: ``0``. |
| end (float): the ending value for the set of points |
| step (float): the gap between each pair of adjacent points. Default: ``1``. |
| |
| Keyword args: |
| {out} |
| {dtype} If `dtype` is not given, infer the data type from the other input |
| arguments. If any of `start`, `end`, or `step` are floating-point, the |
| `dtype` is inferred to be the default dtype, see |
| :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to |
| be `torch.int64`. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.range(1, 4) |
| tensor([ 1., 2., 3., 4.]) |
| >>> torch.range(1, 4, 0.5) |
| tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.arange, |
| r""" |
| arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` |
| with values from the interval ``[start, end)`` taken with common difference |
| :attr:`step` beginning from `start`. |
| |
| Note that non-integer :attr:`step` is subject to floating point rounding errors when |
| comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` |
| in such cases. |
| |
| .. math:: |
| \text{out}_{{i+1}} = \text{out}_{i} + \text{step} |
| """ |
| + r""" |
| Args: |
| start (Number): the starting value for the set of points. Default: ``0``. |
| end (Number): the ending value for the set of points |
| step (Number): the gap between each pair of adjacent points. Default: ``1``. |
| |
| Keyword args: |
| {out} |
| {dtype} If `dtype` is not given, infer the data type from the other input |
| arguments. If any of `start`, `end`, or `stop` are floating-point, the |
| `dtype` is inferred to be the default dtype, see |
| :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to |
| be `torch.int64`. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.arange(5) |
| tensor([ 0, 1, 2, 3, 4]) |
| >>> torch.arange(1, 4) |
| tensor([ 1, 2, 3]) |
| >>> torch.arange(1, 2.5, 0.5) |
| tensor([ 1.0000, 1.5000, 2.0000]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.ravel, |
| r""" |
| ravel(input) -> Tensor |
| |
| Return a contiguous flattened tensor. A copy is made only if needed. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> t = torch.tensor([[[1, 2], |
| ... [3, 4]], |
| ... [[5, 6], |
| ... [7, 8]]]) |
| >>> torch.ravel(t) |
| tensor([1, 2, 3, 4, 5, 6, 7, 8]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.remainder, |
| r""" |
| remainder(input, other, *, out=None) -> Tensor |
| |
| Computes |
| `Python's modulus operation <https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations>`_ |
| entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value |
| is less than that of :attr:`other`. |
| |
| It may also be defined in terms of :func:`torch.div` as |
| |
| .. code:: python |
| |
| torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer and float inputs. |
| |
| .. note:: |
| Complex inputs are not supported. In some cases, it is not mathematically |
| possible to satisfy the definition of a modulo operation with complex numbers. |
| See :func:`torch.fmod` for how division by zero is handled. |
| |
| .. seealso:: |
| |
| :func:`torch.fmod` which implements C++'s `std::fmod <https://en.cppreference.com/w/cpp/numeric/math/fmod>`_. |
| This one is defined in terms of division rounding towards zero. |
| |
| Args: |
| input (Tensor or Scalar): the dividend |
| other (Tensor or Scalar): the divisor |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) |
| tensor([ 1., 0., 1., 1., 0., 1.]) |
| >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) |
| tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.renorm, |
| r""" |
| renorm(input, p, dim, maxnorm, *, out=None) -> Tensor |
| |
| Returns a tensor where each sub-tensor of :attr:`input` along dimension |
| :attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower |
| than the value :attr:`maxnorm` |
| |
| .. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged |
| |
| Args: |
| {input} |
| p (float): the power for the norm computation |
| dim (int): the dimension to slice over to get the sub-tensors |
| maxnorm (float): the maximum norm to keep each sub-tensor under |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> x = torch.ones(3, 3) |
| >>> x[1].fill_(2) |
| tensor([ 2., 2., 2.]) |
| >>> x[2].fill_(3) |
| tensor([ 3., 3., 3.]) |
| >>> x |
| tensor([[ 1., 1., 1.], |
| [ 2., 2., 2.], |
| [ 3., 3., 3.]]) |
| >>> torch.renorm(x, 1, 0, 5) |
| tensor([[ 1.0000, 1.0000, 1.0000], |
| [ 1.6667, 1.6667, 1.6667], |
| [ 1.6667, 1.6667, 1.6667]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.reshape, |
| r""" |
| reshape(input, shape) -> Tensor |
| |
| Returns a tensor with the same data and number of elements as :attr:`input`, |
| but with the specified shape. When possible, the returned tensor will be a view |
| of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs |
| with compatible strides can be reshaped without copying, but you should not |
| depend on the copying vs. viewing behavior. |
| |
| See :meth:`torch.Tensor.view` on when it is possible to return a view. |
| |
| A single dimension may be -1, in which case it's inferred from the remaining |
| dimensions and the number of elements in :attr:`input`. |
| |
| Args: |
| input (Tensor): the tensor to be reshaped |
| shape (tuple of int): the new shape |
| |
| Example:: |
| |
| >>> a = torch.arange(4.) |
| >>> torch.reshape(a, (2, 2)) |
| tensor([[ 0., 1.], |
| [ 2., 3.]]) |
| >>> b = torch.tensor([[0, 1], [2, 3]]) |
| >>> torch.reshape(b, (-1,)) |
| tensor([ 0, 1, 2, 3]) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.result_type, |
| r""" |
| result_type(tensor1, tensor2) -> dtype |
| |
| Returns the :class:`torch.dtype` that would result from performing an arithmetic |
| operation on the provided input tensors. See type promotion :ref:`documentation <type-promotion-doc>` |
| for more information on the type promotion logic. |
| |
| Args: |
| tensor1 (Tensor or Number): an input tensor or number |
| tensor2 (Tensor or Number): an input tensor or number |
| |
| Example:: |
| |
| >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) |
| torch.float32 |
| >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) |
| torch.uint8 |
| """, |
| ) |
| |
| add_docstr( |
| torch.row_stack, |
| r""" |
| row_stack(tensors, *, out=None) -> Tensor |
| |
| Alias of :func:`torch.vstack`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.round, |
| r""" |
| round(input, *, decimals=0, out=None) -> Tensor |
| |
| Rounds elements of :attr:`input` to the nearest integer. |
| |
| For integer inputs, follows the array-api convention of returning a |
| copy of the input tensor. |
| The return type of output is same as that of input's dtype. |
| |
| .. note:: |
| This function implements the "round half to even" to |
| break ties when a number is equidistant from two |
| integers (e.g. `round(2.5)` is 2). |
| |
| When the :attr:\`decimals\` argument is specified the |
| algorithm used is similar to NumPy's `around`. This |
| algorithm is fast but inexact and it can easily |
| overflow for low precision dtypes. |
| Eg. `round(tensor([10000], dtype=torch.float16), decimals=3)` is `inf`. |
| |
| .. seealso:: |
| :func:`torch.ceil`, which rounds up. |
| :func:`torch.floor`, which rounds down. |
| :func:`torch.trunc`, which rounds towards zero. |
| |
| Args: |
| {input} |
| decimals (int): Number of decimal places to round to (default: 0). |
| If decimals is negative, it specifies the number of positions |
| to the left of the decimal point. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7))) |
| tensor([ 5., -2., 9., -8.]) |
| |
| >>> # Values equidistant from two integers are rounded towards the |
| >>> # the nearest even value (zero is treated as even) |
| >>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5])) |
| tensor([-0., 0., 2., 2.]) |
| |
| >>> # A positive decimals argument rounds to the to that decimal place |
| >>> torch.round(torch.tensor([0.1234567]), decimals=3) |
| tensor([0.1230]) |
| |
| >>> # A negative decimals argument rounds to the left of the decimal |
| >>> torch.round(torch.tensor([1200.1234567]), decimals=-3) |
| tensor([1000.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.rsqrt, |
| r""" |
| rsqrt(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the reciprocal of the square-root of each of |
| the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.0370, 0.2970, 1.5420, -0.9105]) |
| >>> torch.rsqrt(a) |
| tensor([ nan, 1.8351, 0.8053, nan]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.scatter, |
| r""" |
| scatter(input, dim, index, src) -> Tensor |
| |
| Out-of-place version of :meth:`torch.Tensor.scatter_` |
| """, |
| ) |
| |
| add_docstr( |
| torch.scatter_add, |
| r""" |
| scatter_add(input, dim, index, src) -> Tensor |
| |
| Out-of-place version of :meth:`torch.Tensor.scatter_add_` |
| """, |
| ) |
| |
| add_docstr( |
| torch.scatter_reduce, |
| r""" |
| scatter_reduce(input, dim, index, src, reduce, *, include_self=True) -> Tensor |
| |
| Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` |
| """, |
| ) |
| |
| add_docstr( |
| torch.select, |
| r""" |
| select(input, dim, index) -> Tensor |
| |
| Slices the :attr:`input` tensor along the selected dimension at the given index. |
| This function returns a view of the original tensor with the given dimension removed. |
| |
| .. note:: If :attr:`input` is a sparse tensor and returning a view of |
| the tensor is not possible, a RuntimeError exception is |
| raised. In this is the case, consider using |
| :func:`torch.select_copy` function. |
| |
| Args: |
| {input} |
| dim (int): the dimension to slice |
| index (int): the index to select with |
| |
| .. note:: |
| |
| :meth:`select` is equivalent to slicing. For example, |
| ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and |
| ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.select_scatter, |
| r""" |
| select_scatter(input, src, dim, index) -> Tensor |
| |
| Embeds the values of the :attr:`src` tensor into :attr:`input` at the given index. |
| This function returns a tensor with fresh storage; it does not create a view. |
| |
| |
| Args: |
| {input} |
| src (Tensor): The tensor to embed into :attr:`input` |
| dim (int): the dimension to insert the slice into. |
| index (int): the index to select with |
| |
| .. note:: |
| |
| :attr:`src` must be of the proper size in order to be embedded |
| into :attr:`input`. Specifically, it should have the same shape as |
| ``torch.select(input, dim, index)`` |
| |
| Example:: |
| |
| >>> a = torch.zeros(2, 2) |
| >>> b = torch.ones(2) |
| >>> a.select_scatter(b, 0, 0) |
| tensor([[1., 1.], |
| [0., 0.]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.slice_scatter, |
| r""" |
| slice_scatter(input, src, dim=0, start=None, end=None, step=1) -> Tensor |
| |
| Embeds the values of the :attr:`src` tensor into :attr:`input` at the given |
| dimension. |
| This function returns a tensor with fresh storage; it does not create a view. |
| |
| |
| Args: |
| {input} |
| src (Tensor): The tensor to embed into :attr:`input` |
| dim (int): the dimension to insert the slice into |
| start (Optional[int]): the start index of where to insert the slice |
| end (Optional[int]): the end index of where to insert the slice |
| step (int): the how many elements to skip in |
| |
| Example:: |
| |
| >>> a = torch.zeros(8, 8) |
| >>> b = torch.ones(2, 8) |
| >>> a.slice_scatter(b, start=6) |
| tensor([[0., 0., 0., 0., 0., 0., 0., 0.], |
| [0., 0., 0., 0., 0., 0., 0., 0.], |
| [0., 0., 0., 0., 0., 0., 0., 0.], |
| [0., 0., 0., 0., 0., 0., 0., 0.], |
| [0., 0., 0., 0., 0., 0., 0., 0.], |
| [0., 0., 0., 0., 0., 0., 0., 0.], |
| [1., 1., 1., 1., 1., 1., 1., 1.], |
| [1., 1., 1., 1., 1., 1., 1., 1.]]) |
| |
| >>> b = torch.ones(8, 2) |
| >>> a.slice_scatter(b, dim=1, start=2, end=6, step=2) |
| tensor([[0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.], |
| [0., 0., 1., 0., 1., 0., 0., 0.]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.set_flush_denormal, |
| r""" |
| set_flush_denormal(mode) -> bool |
| |
| Disables denormal floating numbers on CPU. |
| |
| Returns ``True`` if your system supports flushing denormal numbers and it |
| successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal` |
| is supported on x86 architectures supporting SSE3 and AArch64 architecture. |
| |
| Args: |
| mode (bool): Controls whether to enable flush denormal mode or not |
| |
| Example:: |
| |
| >>> torch.set_flush_denormal(True) |
| True |
| >>> torch.tensor([1e-323], dtype=torch.float64) |
| tensor([ 0.], dtype=torch.float64) |
| >>> torch.set_flush_denormal(False) |
| True |
| >>> torch.tensor([1e-323], dtype=torch.float64) |
| tensor(9.88131e-324 * |
| [ 1.0000], dtype=torch.float64) |
| """, |
| ) |
| |
| add_docstr( |
| torch.set_num_threads, |
| r""" |
| set_num_threads(int) |
| |
| Sets the number of threads used for intraop parallelism on CPU. |
| |
| .. warning:: |
| To ensure that the correct number of threads is used, set_num_threads |
| must be called before running eager, JIT or autograd code. |
| """, |
| ) |
| |
| add_docstr( |
| torch.set_num_interop_threads, |
| r""" |
| set_num_interop_threads(int) |
| |
| Sets the number of threads used for interop parallelism |
| (e.g. in JIT interpreter) on CPU. |
| |
| .. warning:: |
| Can only be called once and before any inter-op parallel work |
| is started (e.g. JIT execution). |
| """, |
| ) |
| |
| add_docstr( |
| torch.sigmoid, |
| r""" |
| sigmoid(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.expit`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.logit, |
| r""" |
| logit(input, eps=None, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.logit`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.sign, |
| r""" |
| sign(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the signs of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \operatorname{sgn}(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) |
| >>> a |
| tensor([ 0.7000, -1.2000, 0.0000, 2.3000]) |
| >>> torch.sign(a) |
| tensor([ 1., -1., 0., 1.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.signbit, |
| r""" |
| signbit(input, *, out=None) -> Tensor |
| |
| Tests if each element of :attr:`input` has its sign bit set or not. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) |
| >>> torch.signbit(a) |
| tensor([ False, True, False, False]) |
| >>> a = torch.tensor([-0.0, 0.0]) |
| >>> torch.signbit(a) |
| tensor([ True, False]) |
| |
| .. note:: |
| signbit handles signed zeros, so negative zero (-0) returns True. |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.sgn, |
| r""" |
| sgn(input, *, out=None) -> Tensor |
| |
| This function is an extension of torch.sign() to complex tensors. |
| It computes a new tensor whose elements have |
| the same angles as the corresponding elements of :attr:`input` and |
| absolute values (i.e. magnitudes) of one for complex tensors and |
| is equivalent to torch.sign() for non-complex tensors. |
| |
| .. math:: |
| \text{out}_{i} = \begin{cases} |
| 0 & |\text{{input}}_i| == 0 \\ |
| \frac{{\text{{input}}_i}}{|{\text{{input}}_i}|} & \text{otherwise} |
| \end{cases} |
| |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> t = torch.tensor([3+4j, 7-24j, 0, 1+2j]) |
| >>> t.sgn() |
| tensor([0.6000+0.8000j, 0.2800-0.9600j, 0.0000+0.0000j, 0.4472+0.8944j]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.sin, |
| r""" |
| sin(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the sine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sin(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.5461, 0.1347, -2.7266, -0.2746]) |
| >>> torch.sin(a) |
| tensor([-0.5194, 0.1343, -0.4032, -0.2711]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.sinc, |
| r""" |
| sinc(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.special.sinc`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.sinh, |
| r""" |
| sinh(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic sine of the elements of |
| :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sinh(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.5380, -0.8632, -0.1265, 0.9399]) |
| >>> torch.sinh(a) |
| tensor([ 0.5644, -0.9744, -0.1268, 1.0845]) |
| |
| .. note:: |
| When :attr:`input` is on the CPU, the implementation of torch.sinh may use |
| the Sleef library, which rounds very large results to infinity or negative |
| infinity. See `here <https://sleef.org/purec.xhtml>`_ for details. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.sort, |
| r""" |
| sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) |
| |
| Sorts the elements of the :attr:`input` tensor along a given dimension |
| in ascending order by value. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`descending` is ``True`` then the elements are sorted in descending |
| order by value. |
| |
| If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving |
| the order of equivalent elements. |
| |
| A namedtuple of (values, indices) is returned, where the `values` are the |
| sorted values and `indices` are the indices of the elements in the original |
| `input` tensor. |
| |
| Args: |
| {input} |
| dim (int, optional): the dimension to sort along |
| descending (bool, optional): controls the sorting order (ascending or descending) |
| stable (bool, optional): makes the sorting routine stable, which guarantees that the order |
| of equivalent elements is preserved. |
| |
| Keyword args: |
| out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can |
| be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> sorted, indices = torch.sort(x) |
| >>> sorted |
| tensor([[-0.2162, 0.0608, 0.6719, 2.3332], |
| [-0.5793, 0.0061, 0.6058, 0.9497], |
| [-0.5071, 0.3343, 0.9553, 1.0960]]) |
| >>> indices |
| tensor([[ 1, 0, 2, 3], |
| [ 3, 1, 0, 2], |
| [ 0, 3, 1, 2]]) |
| |
| >>> sorted, indices = torch.sort(x, 0) |
| >>> sorted |
| tensor([[-0.5071, -0.2162, 0.6719, -0.5793], |
| [ 0.0608, 0.0061, 0.9497, 0.3343], |
| [ 0.6058, 0.9553, 1.0960, 2.3332]]) |
| >>> indices |
| tensor([[ 2, 0, 0, 1], |
| [ 0, 1, 1, 2], |
| [ 1, 2, 2, 0]]) |
| >>> x = torch.tensor([0, 1] * 9) |
| >>> x.sort() |
| torch.return_types.sort( |
| values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), |
| indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) |
| >>> x.sort(stable=True) |
| torch.return_types.sort( |
| values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), |
| indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.argsort, |
| r""" |
| argsort(input, dim=-1, descending=False, stable=False) -> Tensor |
| |
| Returns the indices that sort a tensor along a given dimension in ascending |
| order by value. |
| |
| This is the second value returned by :meth:`torch.sort`. See its documentation |
| for the exact semantics of this method. |
| |
| If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving |
| the order of equivalent elements. If ``False``, the relative order of values |
| which compare equal is not guaranteed. ``True`` is slower. |
| |
| Args: |
| {input} |
| dim (int, optional): the dimension to sort along |
| descending (bool, optional): controls the sorting order (ascending or descending) |
| stable (bool, optional): controls the relative order of equivalent elements |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], |
| [ 0.1598, 0.0788, -0.0745, -1.2700], |
| [ 1.2208, 1.0722, -0.7064, 1.2564], |
| [ 0.0669, -0.2318, -0.8229, -0.9280]]) |
| |
| |
| >>> torch.argsort(a, dim=1) |
| tensor([[2, 0, 3, 1], |
| [3, 2, 1, 0], |
| [2, 1, 0, 3], |
| [3, 2, 1, 0]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.msort, |
| r""" |
| msort(input, *, out=None) -> Tensor |
| |
| Sorts the elements of the :attr:`input` tensor along its first dimension |
| in ascending order by value. |
| |
| .. note:: `torch.msort(t)` is equivalent to `torch.sort(t, dim=0)[0]`. |
| See also :func:`torch.sort`. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> t = torch.randn(3, 4) |
| >>> t |
| tensor([[-0.1321, 0.4370, -1.2631, -1.1289], |
| [-2.0527, -1.1250, 0.2275, 0.3077], |
| [-0.0881, -0.1259, -0.5495, 1.0284]]) |
| >>> torch.msort(t) |
| tensor([[-2.0527, -1.1250, -1.2631, -1.1289], |
| [-0.1321, -0.1259, -0.5495, 0.3077], |
| [-0.0881, 0.4370, 0.2275, 1.0284]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.sparse_compressed_tensor, |
| r"""sparse_compressed_tensor(compressed_indices, plain_indices, values, size=None, """ |
| r"""*, dtype=None, layout=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor |
| |
| Constructs a :ref:`sparse tensor in Compressed Sparse format - CSR, |
| CSC, BSR, or BSC - <sparse-compressed-docs>` with specified values at |
| the given :attr:`compressed_indices` and :attr:`plain_indices`. Sparse |
| matrix multiplication operations in Compressed Sparse format are |
| typically faster than that for sparse tensors in COO format. Make you |
| have a look at :ref:`the note on the data type of the indices |
| <sparse-compressed-docs>`. |
| |
| {sparse_factory_device_note} |
| |
| Args: |
| compressed_indices (array_like): (B+1)-dimensional array of size |
| ``(*batchsize, compressed_dim_size + 1)``. The last element of |
| each batch is the number of non-zero elements or blocks. This |
| tensor encodes the index in ``values`` and ``plain_indices`` |
| depending on where the given compressed dimension (row or |
| column) starts. Each successive number in the tensor |
| subtracted by the number before it denotes the number of |
| elements or blocks in a given compressed dimension. |
| plain_indices (array_like): Plain dimension (column or row) |
| co-ordinates of each element or block in values. (B+1)-dimensional |
| tensor with the same length as values. |
| |
| values (array_list): Initial values for the tensor. Can be a list, |
| tuple, NumPy ``ndarray``, scalar, and other types. that |
| represents a (1+K)-dimensional (for CSR and CSC layouts) or |
| (1+2+K)-dimensional tensor (for BSR and BSC layouts) where |
| ``K`` is the number of dense dimensions. |
| size (list, tuple, :class:`torch.Size`, optional): Size of the |
| sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * |
| blocksize[1], *densesize)`` where ``blocksize[0] == |
| blocksize[1] == 1`` for CSR and CSC formats. If not provided, |
| the size will be inferred as the minimum size big enough to |
| hold all non-zero elements or blocks. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of |
| returned tensor. Default: if None, infers data type from |
| :attr:`values`. |
| layout (:class:`torch.layout`, required): the desired layout of |
| returned tensor: :attr:`torch.sparse_csr`, |
| :attr:`torch.sparse_csc`, :attr:`torch.sparse_bsr`, or |
| :attr:`torch.sparse_bsc`. |
| device (:class:`torch.device`, optional): the desired device of |
| returned tensor. Default: if None, uses the current device |
| for the default tensor type (see |
| :func:`torch.set_default_device`). :attr:`device` will be |
| the CPU for CPU tensor types and the current CUDA device for |
| CUDA tensor types. |
| {pin_memory} |
| {requires_grad} |
| {check_invariants} |
| |
| Example:: |
| >>> compressed_indices = [0, 2, 4] |
| >>> plain_indices = [0, 1, 0, 1] |
| >>> values = [1, 2, 3, 4] |
| >>> torch.sparse_compressed_tensor(torch.tensor(compressed_indices, dtype=torch.int64), |
| ... torch.tensor(plain_indices, dtype=torch.int64), |
| ... torch.tensor(values), dtype=torch.double, layout=torch.sparse_csr) |
| tensor(crow_indices=tensor([0, 2, 4]), |
| col_indices=tensor([0, 1, 0, 1]), |
| values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, |
| dtype=torch.float64, layout=torch.sparse_csr) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.sparse_csr_tensor, |
| r"""sparse_csr_tensor(crow_indices, col_indices, values, size=None, """ |
| r"""*, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor |
| |
| Constructs a :ref:`sparse tensor in CSR (Compressed Sparse Row) <sparse-csr-docs>` with specified |
| values at the given :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix multiplication operations |
| in CSR format are typically faster than that for sparse tensors in COO format. Make you have a look |
| at :ref:`the note on the data type of the indices <sparse-csr-docs>`. |
| |
| {sparse_factory_device_note} |
| |
| Args: |
| crow_indices (array_like): (B+1)-dimensional array of size |
| ``(*batchsize, nrows + 1)``. The last element of each batch |
| is the number of non-zeros. This tensor encodes the index in |
| values and col_indices depending on where the given row |
| starts. Each successive number in the tensor subtracted by the |
| number before it denotes the number of elements in a given |
| row. |
| col_indices (array_like): Column co-ordinates of each element in |
| values. (B+1)-dimensional tensor with the same length |
| as values. |
| values (array_list): Initial values for the tensor. Can be a list, |
| tuple, NumPy ``ndarray``, scalar, and other types that |
| represents a (1+K)-dimensional tensor where ``K`` is the number |
| of dense dimensions. |
| size (list, tuple, :class:`torch.Size`, optional): Size of the |
| sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If |
| not provided, the size will be inferred as the minimum size |
| big enough to hold all non-zero elements. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of |
| returned tensor. Default: if None, infers data type from |
| :attr:`values`. |
| device (:class:`torch.device`, optional): the desired device of |
| returned tensor. Default: if None, uses the current device |
| for the default tensor type (see |
| :func:`torch.set_default_device`). :attr:`device` will be |
| the CPU for CPU tensor types and the current CUDA device for |
| CUDA tensor types. |
| {pin_memory} |
| {requires_grad} |
| {check_invariants} |
| |
| Example:: |
| >>> crow_indices = [0, 2, 4] |
| >>> col_indices = [0, 1, 0, 1] |
| >>> values = [1, 2, 3, 4] |
| >>> torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64), |
| ... torch.tensor(col_indices, dtype=torch.int64), |
| ... torch.tensor(values), dtype=torch.double) |
| tensor(crow_indices=tensor([0, 2, 4]), |
| col_indices=tensor([0, 1, 0, 1]), |
| values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, |
| dtype=torch.float64, layout=torch.sparse_csr) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.sparse_csc_tensor, |
| r"""sparse_csc_tensor(ccol_indices, row_indices, values, size=None, """ |
| r"""*, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor |
| |
| Constructs a :ref:`sparse tensor in CSC (Compressed Sparse Column) |
| <sparse-csc-docs>` with specified values at the given |
| :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix |
| multiplication operations in CSC format are typically faster than that |
| for sparse tensors in COO format. Make you have a look at :ref:`the |
| note on the data type of the indices <sparse-csc-docs>`. |
| |
| {sparse_factory_device_note} |
| |
| Args: |
| ccol_indices (array_like): (B+1)-dimensional array of size |
| ``(*batchsize, ncols + 1)``. The last element of each batch |
| is the number of non-zeros. This tensor encodes the index in |
| values and row_indices depending on where the given column |
| starts. Each successive number in the tensor subtracted by the |
| number before it denotes the number of elements in a given |
| column. |
| row_indices (array_like): Row co-ordinates of each element in |
| values. (B+1)-dimensional tensor with the same length as |
| values. |
| values (array_list): Initial values for the tensor. Can be a list, |
| tuple, NumPy ``ndarray``, scalar, and other types that |
| represents a (1+K)-dimensional tensor where ``K`` is the number |
| of dense dimensions. |
| size (list, tuple, :class:`torch.Size`, optional): Size of the |
| sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If |
| not provided, the size will be inferred as the minimum size |
| big enough to hold all non-zero elements. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of |
| returned tensor. Default: if None, infers data type from |
| :attr:`values`. |
| device (:class:`torch.device`, optional): the desired device of |
| returned tensor. Default: if None, uses the current device |
| for the default tensor type (see |
| :func:`torch.set_default_device`). :attr:`device` will be |
| the CPU for CPU tensor types and the current CUDA device for |
| CUDA tensor types. |
| {pin_memory} |
| {requires_grad} |
| {check_invariants} |
| |
| Example:: |
| >>> ccol_indices = [0, 2, 4] |
| >>> row_indices = [0, 1, 0, 1] |
| >>> values = [1, 2, 3, 4] |
| >>> torch.sparse_csc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), |
| ... torch.tensor(row_indices, dtype=torch.int64), |
| ... torch.tensor(values), dtype=torch.double) |
| tensor(ccol_indices=tensor([0, 2, 4]), |
| row_indices=tensor([0, 1, 0, 1]), |
| values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, |
| dtype=torch.float64, layout=torch.sparse_csc) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.sparse_bsr_tensor, |
| r"""sparse_bsr_tensor(crow_indices, col_indices, values, size=None, """ |
| r"""*, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor |
| |
| Constructs a :ref:`sparse tensor in BSR (Block Compressed Sparse Row)) |
| <sparse-bsr-docs>` with specified 2-dimensional blocks at the given |
| :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix |
| multiplication operations in BSR format are typically faster than that |
| for sparse tensors in COO format. Make you have a look at :ref:`the |
| note on the data type of the indices <sparse-bsr-docs>`. |
| |
| {sparse_factory_device_note} |
| |
| Args: |
| crow_indices (array_like): (B+1)-dimensional array of size |
| ``(*batchsize, nrowblocks + 1)``. The last element of each |
| batch is the number of non-zeros. This tensor encodes the |
| block index in values and col_indices depending on where the |
| given row block starts. Each successive number in the tensor |
| subtracted by the number before it denotes the number of |
| blocks in a given row. |
| col_indices (array_like): Column block co-ordinates of each block |
| in values. (B+1)-dimensional tensor with the same length as |
| values. |
| values (array_list): Initial values for the tensor. Can be a list, |
| tuple, NumPy ``ndarray``, scalar, and other types that |
| represents a (1 + 2 + K)-dimensional tensor where ``K`` is the |
| number of dense dimensions. |
| size (list, tuple, :class:`torch.Size`, optional): Size of the |
| sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * |
| blocksize[1], *densesize)`` where ``blocksize == |
| values.shape[1:3]``. If not provided, the size will be |
| inferred as the minimum size big enough to hold all non-zero |
| blocks. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of |
| returned tensor. Default: if None, infers data type from |
| :attr:`values`. |
| device (:class:`torch.device`, optional): the desired device of |
| returned tensor. Default: if None, uses the current device |
| for the default tensor type (see |
| :func:`torch.set_default_device`). :attr:`device` will be |
| the CPU for CPU tensor types and the current CUDA device for |
| CUDA tensor types. |
| {pin_memory} |
| {requires_grad} |
| {check_invariants} |
| |
| Example:: |
| >>> crow_indices = [0, 1, 2] |
| >>> col_indices = [0, 1] |
| >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] |
| >>> torch.sparse_bsr_tensor(torch.tensor(crow_indices, dtype=torch.int64), |
| ... torch.tensor(col_indices, dtype=torch.int64), |
| ... torch.tensor(values), dtype=torch.double) |
| tensor(crow_indices=tensor([0, 1, 2]), |
| col_indices=tensor([0, 1]), |
| values=tensor([[[1., 2.], |
| [3., 4.]], |
| [[5., 6.], |
| [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, |
| layout=torch.sparse_bsr) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.sparse_bsc_tensor, |
| r"""sparse_bsc_tensor(ccol_indices, row_indices, values, size=None, """ |
| r"""*, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor |
| |
| Constructs a :ref:`sparse tensor in BSC (Block Compressed Sparse |
| Column)) <sparse-bsc-docs>` with specified 2-dimensional blocks at the |
| given :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix |
| multiplication operations in BSC format are typically faster than that |
| for sparse tensors in COO format. Make you have a look at :ref:`the |
| note on the data type of the indices <sparse-bsc-docs>`. |
| |
| {sparse_factory_device_note} |
| |
| Args: |
| ccol_indices (array_like): (B+1)-dimensional array of size |
| ``(*batchsize, ncolblocks + 1)``. The last element of each |
| batch is the number of non-zeros. This tensor encodes the |
| index in values and row_indices depending on where the given |
| column starts. Each successive number in the tensor subtracted |
| by the number before it denotes the number of elements in a |
| given column. |
| row_indices (array_like): Row block co-ordinates of each block in |
| values. (B+1)-dimensional tensor with the same length |
| as values. |
| values (array_list): Initial blocks for the tensor. Can be a list, |
| tuple, NumPy ``ndarray``, and other types that |
| represents a (1 + 2 + K)-dimensional tensor where ``K`` is the |
| number of dense dimensions. |
| size (list, tuple, :class:`torch.Size`, optional): Size of the |
| sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * |
| blocksize[1], *densesize)`` If not provided, the size will be |
| inferred as the minimum size big enough to hold all non-zero |
| blocks. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of |
| returned tensor. Default: if None, infers data type from |
| :attr:`values`. |
| device (:class:`torch.device`, optional): the desired device of |
| returned tensor. Default: if None, uses the current device |
| for the default tensor type (see |
| :func:`torch.set_default_device`). :attr:`device` will be |
| the CPU for CPU tensor types and the current CUDA device for |
| CUDA tensor types. |
| {pin_memory} |
| {requires_grad} |
| {check_invariants} |
| |
| Example:: |
| >>> ccol_indices = [0, 1, 2] |
| >>> row_indices = [0, 1] |
| >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] |
| >>> torch.sparse_bsc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), |
| ... torch.tensor(row_indices, dtype=torch.int64), |
| ... torch.tensor(values), dtype=torch.double) |
| tensor(ccol_indices=tensor([0, 1, 2]), |
| row_indices=tensor([0, 1]), |
| values=tensor([[[1., 2.], |
| [3., 4.]], |
| [[5., 6.], |
| [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, |
| layout=torch.sparse_bsc) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.sparse_coo_tensor, |
| r"""sparse_coo_tensor(indices, values, size=None, """ |
| r"""*, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None, is_coalesced=None) -> Tensor |
| |
| Constructs a :ref:`sparse tensor in COO(rdinate) format |
| <sparse-coo-docs>` with specified values at the given |
| :attr:`indices`. |
| |
| .. note:: |
| |
| This function returns an :ref:`uncoalesced tensor |
| <sparse-uncoalesced-coo-docs>` when :attr:`is_coalesced` is |
| unspecified or ``None``. |
| |
| {sparse_factory_device_note} |
| |
| Args: |
| indices (array_like): Initial data for the tensor. Can be a list, tuple, |
| NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor` |
| internally. The indices are the coordinates of the non-zero values in the matrix, and thus |
| should be two-dimensional where the first dimension is the number of tensor dimensions and |
| the second dimension is the number of non-zero values. |
| values (array_like): Initial values for the tensor. Can be a list, tuple, |
| NumPy ``ndarray``, scalar, and other types. |
| size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not |
| provided the size will be inferred as the minimum size big enough to hold all non-zero |
| elements. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if None, infers data type from :attr:`values`. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if None, uses the current device for the default tensor type |
| (see :func:`torch.set_default_device`). :attr:`device` will be the CPU |
| for CPU tensor types and the current CUDA device for CUDA tensor types. |
| {pin_memory} |
| {requires_grad} |
| {check_invariants} |
| is_coalesced (bool, optional): When``True``, the caller is |
| responsible for providing tensor indices that correspond to a |
| coalesced tensor. If the :attr:`check_invariants` flag is |
| False, no error will be raised if the prerequisites are not |
| met and this will lead to silently incorrect results. To force |
| coalescion please use :meth:`coalesce` on the resulting |
| Tensor. |
| Default: None: except for trivial cases (e.g. nnz < 2) the |
| resulting Tensor has is_coalesced set to ``False```. |
| |
| Example:: |
| |
| >>> i = torch.tensor([[0, 1, 1], |
| ... [2, 0, 2]]) |
| >>> v = torch.tensor([3, 4, 5], dtype=torch.float32) |
| >>> torch.sparse_coo_tensor(i, v, [2, 4]) |
| tensor(indices=tensor([[0, 1, 1], |
| [2, 0, 2]]), |
| values=tensor([3., 4., 5.]), |
| size=(2, 4), nnz=3, layout=torch.sparse_coo) |
| |
| >>> torch.sparse_coo_tensor(i, v) # Shape inference |
| tensor(indices=tensor([[0, 1, 1], |
| [2, 0, 2]]), |
| values=tensor([3., 4., 5.]), |
| size=(2, 3), nnz=3, layout=torch.sparse_coo) |
| |
| >>> torch.sparse_coo_tensor(i, v, [2, 4], |
| ... dtype=torch.float64, |
| ... device=torch.device('cuda:0')) |
| tensor(indices=tensor([[0, 1, 1], |
| [2, 0, 2]]), |
| values=tensor([3., 4., 5.]), |
| device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64, |
| layout=torch.sparse_coo) |
| |
| # Create an empty sparse tensor with the following invariants: |
| # 1. sparse_dim + dense_dim = len(SparseTensor.shape) |
| # 2. SparseTensor._indices().shape = (sparse_dim, nnz) |
| # 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) |
| # |
| # For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and |
| # sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0)) |
| >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1]) |
| tensor(indices=tensor([], size=(1, 0)), |
| values=tensor([], size=(0,)), |
| size=(1,), nnz=0, layout=torch.sparse_coo) |
| |
| # and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and |
| # sparse_dim = 1 |
| >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2]) |
| tensor(indices=tensor([], size=(1, 0)), |
| values=tensor([], size=(0, 2)), |
| size=(1, 2), nnz=0, layout=torch.sparse_coo) |
| |
| .. _torch.sparse: https://pytorch.org/docs/stable/sparse.html |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.sqrt, |
| r""" |
| sqrt(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the square-root of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sqrt{\text{input}_{i}} |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-2.0755, 1.0226, 0.0831, 0.4806]) |
| >>> torch.sqrt(a) |
| tensor([ nan, 1.0112, 0.2883, 0.6933]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.square, |
| r""" |
| square(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the square of the elements of :attr:`input`. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-2.0755, 1.0226, 0.0831, 0.4806]) |
| >>> torch.square(a) |
| tensor([ 4.3077, 1.0457, 0.0069, 0.2310]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.squeeze, |
| r""" |
| squeeze(input, dim=None) -> Tensor |
| |
| Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. |
| |
| For example, if `input` is of shape: |
| :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` |
| will be of shape: :math:`(A \times B \times C \times D)`. |
| |
| When :attr:`dim` is given, a squeeze operation is done only in the given |
| dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, |
| ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` |
| will squeeze the tensor to the shape :math:`(A \times B)`. |
| |
| .. note:: The returned tensor shares the storage with the input tensor, |
| so changing the contents of one will change the contents of the other. |
| |
| .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` |
| will also remove the batch dimension, which can lead to unexpected |
| errors. Consider specifying only the dims you wish to be squeezed. |
| |
| Args: |
| {input} |
| dim (int or tuple of ints, optional): if given, the input will be squeezed |
| only in the specified dimensions. |
| |
| .. versionchanged:: 2.0 |
| :attr:`dim` now accepts tuples of dimensions. |
| |
| Example:: |
| |
| >>> x = torch.zeros(2, 1, 2, 1, 2) |
| >>> x.size() |
| torch.Size([2, 1, 2, 1, 2]) |
| >>> y = torch.squeeze(x) |
| >>> y.size() |
| torch.Size([2, 2, 2]) |
| >>> y = torch.squeeze(x, 0) |
| >>> y.size() |
| torch.Size([2, 1, 2, 1, 2]) |
| >>> y = torch.squeeze(x, 1) |
| >>> y.size() |
| torch.Size([2, 2, 1, 2]) |
| >>> y = torch.squeeze(x, (1, 2, 3)) |
| torch.Size([2, 2, 2]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.std, |
| r""" |
| std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor |
| |
| Calculates the standard deviation over the dimensions specified by :attr:`dim`. |
| :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to |
| reduce over all dimensions. |
| |
| The standard deviation (:math:`\sigma`) is calculated as |
| |
| .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} |
| |
| where :math:`x` is the sample set of elements, :math:`\bar{x}` is the |
| sample mean, :math:`N` is the number of samples and :math:`\delta N` is |
| the :attr:`correction`. |
| """ |
| + r""" |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {dim} |
| |
| Keyword args: |
| correction (int): difference between the sample size and sample degrees of freedom. |
| Defaults to `Bessel's correction`_, ``correction=1``. |
| |
| .. versionchanged:: 2.0 |
| Previously this argument was called ``unbiased`` and was a boolean |
| with ``True`` corresponding to ``correction=1`` and ``False`` being |
| ``correction=0``. |
| {keepdim} |
| {out} |
| |
| Example: |
| |
| >>> a = torch.tensor( |
| ... [[ 0.2035, 1.2959, 1.8101, -0.4644], |
| ... [ 1.5027, -0.3270, 0.5905, 0.6538], |
| ... [-1.5745, 1.3330, -0.5596, -0.6548], |
| ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) |
| >>> torch.std(a, dim=1, keepdim=True) |
| tensor([[1.0311], |
| [0.7477], |
| [1.2204], |
| [0.9087]]) |
| |
| .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction |
| |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.std_mean, |
| r""" |
| std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) |
| |
| Calculates the standard deviation and mean over the dimensions specified by |
| :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or |
| ``None`` to reduce over all dimensions. |
| |
| The standard deviation (:math:`\sigma`) is calculated as |
| |
| .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} |
| |
| where :math:`x` is the sample set of elements, :math:`\bar{x}` is the |
| sample mean, :math:`N` is the number of samples and :math:`\delta N` is |
| the :attr:`correction`. |
| |
| """ |
| + r""" |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {opt_dim} |
| |
| Keyword args: |
| correction (int): difference between the sample size and sample degrees of freedom. |
| Defaults to `Bessel's correction`_, ``correction=1``. |
| |
| .. versionchanged:: 2.0 |
| Previously this argument was called ``unbiased`` and was a boolean |
| with ``True`` corresponding to ``correction=1`` and ``False`` being |
| ``correction=0``. |
| {keepdim} |
| {out} |
| |
| Returns: |
| A tuple (std, mean) containing the standard deviation and mean. |
| |
| Example: |
| |
| >>> a = torch.tensor( |
| ... [[ 0.2035, 1.2959, 1.8101, -0.4644], |
| ... [ 1.5027, -0.3270, 0.5905, 0.6538], |
| ... [-1.5745, 1.3330, -0.5596, -0.6548], |
| ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) |
| >>> torch.std_mean(a, dim=0, keepdim=True) |
| (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), |
| tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) |
| |
| .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction |
| |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.sub, |
| r""" |
| sub(input, other, *, alpha=1, out=None) -> Tensor |
| |
| Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. |
| |
| .. math:: |
| \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i |
| """ |
| + r""" |
| |
| Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`, |
| :ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs. |
| |
| Args: |
| {input} |
| other (Tensor or Number): the tensor or number to subtract from :attr:`input`. |
| |
| Keyword args: |
| alpha (Number): the multiplier for :attr:`other`. |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.tensor((1, 2)) |
| >>> b = torch.tensor((0, 1)) |
| >>> torch.sub(a, b, alpha=2) |
| tensor([1, 0]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.subtract, |
| r""" |
| subtract(input, other, *, alpha=1, out=None) -> Tensor |
| |
| Alias for :func:`torch.sub`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.sum, |
| r""" |
| sum(input, *, dtype=None) -> Tensor |
| |
| Returns the sum of all elements in the :attr:`input` tensor. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.1133, -0.9567, 0.2958]]) |
| >>> torch.sum(a) |
| tensor(-0.5475) |
| |
| .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor |
| :noindex: |
| |
| Returns the sum of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, |
| reduce over all of them. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {opt_dim} |
| {keepdim} |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], |
| [-0.2993, 0.9138, 0.9337, -1.6864], |
| [ 0.1132, 0.7892, -0.1003, 0.5688], |
| [ 0.3637, -0.9906, -0.4752, -1.5197]]) |
| >>> torch.sum(a, 1) |
| tensor([-0.4598, -0.1381, 1.3708, -2.6217]) |
| >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) |
| >>> torch.sum(b, (2, 1)) |
| tensor([ 435., 1335., 2235., 3135.]) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.nansum, |
| r""" |
| nansum(input, *, dtype=None) -> Tensor |
| |
| Returns the sum of all elements, treating Not a Numbers (NaNs) as zero. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.tensor([1., 2., float('nan'), 4.]) |
| >>> torch.nansum(a) |
| tensor(7.) |
| |
| .. function:: nansum(input, dim, keepdim=False, *, dtype=None) -> Tensor |
| :noindex: |
| |
| Returns the sum of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`, treating Not a Numbers (NaNs) as zero. |
| If :attr:`dim` is a list of dimensions, reduce over all of them. |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {opt_dim} |
| {keepdim} |
| |
| Keyword args: |
| {dtype} |
| |
| Example:: |
| |
| >>> torch.nansum(torch.tensor([1., float("nan")])) |
| 1.0 |
| >>> a = torch.tensor([[1, 2], [3., float("nan")]]) |
| >>> torch.nansum(a) |
| tensor(6.) |
| >>> torch.nansum(a, dim=0) |
| tensor([4., 2.]) |
| >>> torch.nansum(a, dim=1) |
| tensor([3., 3.]) |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.svd, |
| r""" |
| svd(input, some=True, compute_uv=True, *, out=None) -> (Tensor, Tensor, Tensor) |
| |
| Computes the singular value decomposition of either a matrix or batch of |
| matrices :attr:`input`. The singular value decomposition is represented as a |
| namedtuple `(U, S, V)`, such that :attr:`input` :math:`= U \text{diag}(S) V^{\text{H}}`. |
| where :math:`V^{\text{H}}` is the transpose of `V` for real inputs, |
| and the conjugate transpose of `V` for complex inputs. |
| If :attr:`input` is a batch of matrices, then `U`, `S`, and `V` are also |
| batched with the same batch dimensions as :attr:`input`. |
| |
| If :attr:`some` is `True` (default), the method returns the reduced singular |
| value decomposition. In this case, if the last two dimensions of :attr:`input` are |
| `m` and `n`, then the returned `U` and `V` matrices will contain only |
| `min(n, m)` orthonormal columns. |
| |
| If :attr:`compute_uv` is `False`, the returned `U` and `V` will be |
| zero-filled matrices of shape `(m, m)` and `(n, n)` |
| respectively, and the same device as :attr:`input`. The argument :attr:`some` |
| has no effect when :attr:`compute_uv` is `False`. |
| |
| Supports :attr:`input` of float, double, cfloat and cdouble data types. |
| The dtypes of `U` and `V` are the same as :attr:`input`'s. `S` will |
| always be real-valued, even if :attr:`input` is complex. |
| |
| .. warning:: |
| |
| :func:`torch.svd` is deprecated in favor of :func:`torch.linalg.svd` |
| and will be removed in a future PyTorch release. |
| |
| ``U, S, V = torch.svd(A, some=some, compute_uv=True)`` (default) should be replaced with |
| |
| .. code:: python |
| |
| U, S, Vh = torch.linalg.svd(A, full_matrices=not some) |
| V = Vh.mH |
| |
| ``_, S, _ = torch.svd(A, some=some, compute_uv=False)`` should be replaced with |
| |
| .. code:: python |
| |
| S = torch.linalg.svdvals(A) |
| |
| .. note:: Differences with :func:`torch.linalg.svd`: |
| |
| * :attr:`some` is the opposite of |
| :func:`torch.linalg.svd`'s :attr:`full_matrices`. Note that |
| default value for both is `True`, so the default behavior is |
| effectively the opposite. |
| * :func:`torch.svd` returns `V`, whereas :func:`torch.linalg.svd` returns |
| `Vh`, that is, :math:`V^{\text{H}}`. |
| * If :attr:`compute_uv` is `False`, :func:`torch.svd` returns zero-filled |
| tensors for `U` and `Vh`, whereas :func:`torch.linalg.svd` returns |
| empty tensors. |
| |
| .. note:: The singular values are returned in descending order. If :attr:`input` is a batch of matrices, |
| then the singular values of each matrix in the batch are returned in descending order. |
| |
| .. note:: The `S` tensor can only be used to compute gradients if :attr:`compute_uv` is `True`. |
| |
| .. note:: When :attr:`some` is `False`, the gradients on `U[..., :, min(m, n):]` |
| and `V[..., :, min(m, n):]` will be ignored in the backward pass, as those vectors |
| can be arbitrary bases of the corresponding subspaces. |
| |
| .. note:: The implementation of :func:`torch.linalg.svd` on CPU uses LAPACK's routine `?gesdd` |
| (a divide-and-conquer algorithm) instead of `?gesvd` for speed. Analogously, |
| on GPU, it uses cuSOLVER's routines `gesvdj` and `gesvdjBatched` on CUDA 10.1.243 |
| and later, and MAGMA's routine `gesdd` on earlier versions of CUDA. |
| |
| .. note:: The returned `U` will not be contiguous. The matrix (or batch of matrices) will |
| be represented as a column-major matrix (i.e. Fortran-contiguous). |
| |
| .. warning:: The gradients with respect to `U` and `V` will only be finite when the input does not |
| have zero nor repeated singular values. |
| |
| .. warning:: If the distance between any two singular values is close to zero, the gradients with respect to |
| `U` and `V` will be numerically unstable, as they depends on |
| :math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`. The same happens when the matrix |
| has small singular values, as these gradients also depend on `S^{-1}`. |
| |
| .. warning:: For complex-valued :attr:`input` the singular value decomposition is not unique, |
| as `U` and `V` may be multiplied by an arbitrary phase factor :math:`e^{i \phi}` on every column. |
| The same happens when :attr:`input` has repeated singular values, where one may multiply |
| the columns of the spanning subspace in `U` and `V` by a rotation matrix |
| and `the resulting vectors will span the same subspace`_. |
| Different platforms, like NumPy, or inputs on different device types, |
| may produce different `U` and `V` tensors. |
| |
| Args: |
| input (Tensor): the input tensor of size `(*, m, n)` where `*` is zero or more |
| batch dimensions consisting of `(m, n)` matrices. |
| some (bool, optional): controls whether to compute the reduced or full decomposition, and |
| consequently, the shape of returned `U` and `V`. Default: `True`. |
| compute_uv (bool, optional): controls whether to compute `U` and `V`. Default: `True`. |
| |
| Keyword args: |
| out (tuple, optional): the output tuple of tensors |
| |
| Example:: |
| |
| >>> a = torch.randn(5, 3) |
| >>> a |
| tensor([[ 0.2364, -0.7752, 0.6372], |
| [ 1.7201, 0.7394, -0.0504], |
| [-0.3371, -1.0584, 0.5296], |
| [ 0.3550, -0.4022, 1.5569], |
| [ 0.2445, -0.0158, 1.1414]]) |
| >>> u, s, v = torch.svd(a) |
| >>> u |
| tensor([[ 0.4027, 0.0287, 0.5434], |
| [-0.1946, 0.8833, 0.3679], |
| [ 0.4296, -0.2890, 0.5261], |
| [ 0.6604, 0.2717, -0.2618], |
| [ 0.4234, 0.2481, -0.4733]]) |
| >>> s |
| tensor([2.3289, 2.0315, 0.7806]) |
| >>> v |
| tensor([[-0.0199, 0.8766, 0.4809], |
| [-0.5080, 0.4054, -0.7600], |
| [ 0.8611, 0.2594, -0.4373]]) |
| >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) |
| tensor(8.6531e-07) |
| >>> a_big = torch.randn(7, 5, 3) |
| >>> u, s, v = torch.svd(a_big) |
| >>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.mT)) |
| tensor(2.6503e-06) |
| |
| .. _the resulting vectors will span the same subspace: |
| (https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.t, |
| r""" |
| t(input) -> Tensor |
| |
| Expects :attr:`input` to be <= 2-D tensor and transposes dimensions 0 |
| and 1. |
| |
| 0-D and 1-D tensors are returned as is. When input is a 2-D tensor this |
| is equivalent to ``transpose(input, 0, 1)``. |
| |
| Args: |
| {input} |
| |
| Example:: |
| |
| >>> x = torch.randn(()) |
| >>> x |
| tensor(0.1995) |
| >>> torch.t(x) |
| tensor(0.1995) |
| >>> x = torch.randn(3) |
| >>> x |
| tensor([ 2.4320, -0.4608, 0.7702]) |
| >>> torch.t(x) |
| tensor([ 2.4320, -0.4608, 0.7702]) |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 0.4875, 0.9158, -0.5872], |
| [ 0.3938, -0.6929, 0.6932]]) |
| >>> torch.t(x) |
| tensor([[ 0.4875, 0.3938], |
| [ 0.9158, -0.6929], |
| [-0.5872, 0.6932]]) |
| |
| See also :func:`torch.transpose`. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.flip, |
| r""" |
| flip(input, dims) -> Tensor |
| |
| Reverse the order of an n-D tensor along given axis in dims. |
| |
| .. note:: |
| `torch.flip` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flip`, |
| which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, |
| `torch.flip` is expected to be slower than `np.flip`. |
| |
| Args: |
| {input} |
| dims (a list or tuple): axis to flip on |
| |
| Example:: |
| |
| >>> x = torch.arange(8).view(2, 2, 2) |
| >>> x |
| tensor([[[ 0, 1], |
| [ 2, 3]], |
| |
| [[ 4, 5], |
| [ 6, 7]]]) |
| >>> torch.flip(x, [0, 1]) |
| tensor([[[ 6, 7], |
| [ 4, 5]], |
| |
| [[ 2, 3], |
| [ 0, 1]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.fliplr, |
| r""" |
| fliplr(input) -> Tensor |
| |
| Flip tensor in the left/right direction, returning a new tensor. |
| |
| Flip the entries in each row in the left/right direction. |
| Columns are preserved, but appear in a different order than before. |
| |
| Note: |
| Requires the tensor to be at least 2-D. |
| |
| .. note:: |
| `torch.fliplr` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.fliplr`, |
| which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, |
| `torch.fliplr` is expected to be slower than `np.fliplr`. |
| |
| Args: |
| input (Tensor): Must be at least 2-dimensional. |
| |
| Example:: |
| |
| >>> x = torch.arange(4).view(2, 2) |
| >>> x |
| tensor([[0, 1], |
| [2, 3]]) |
| >>> torch.fliplr(x) |
| tensor([[1, 0], |
| [3, 2]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.flipud, |
| r""" |
| flipud(input) -> Tensor |
| |
| Flip tensor in the up/down direction, returning a new tensor. |
| |
| Flip the entries in each column in the up/down direction. |
| Rows are preserved, but appear in a different order than before. |
| |
| Note: |
| Requires the tensor to be at least 1-D. |
| |
| .. note:: |
| `torch.flipud` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flipud`, |
| which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, |
| `torch.flipud` is expected to be slower than `np.flipud`. |
| |
| Args: |
| input (Tensor): Must be at least 1-dimensional. |
| |
| Example:: |
| |
| >>> x = torch.arange(4).view(2, 2) |
| >>> x |
| tensor([[0, 1], |
| [2, 3]]) |
| >>> torch.flipud(x) |
| tensor([[2, 3], |
| [0, 1]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.roll, |
| r""" |
| roll(input, shifts, dims=None) -> Tensor |
| |
| Roll the tensor :attr:`input` along the given dimension(s). Elements that are |
| shifted beyond the last position are re-introduced at the first position. If |
| :attr:`dims` is `None`, the tensor will be flattened before rolling and then |
| restored to the original shape. |
| |
| Args: |
| {input} |
| shifts (int or tuple of ints): The number of places by which the elements |
| of the tensor are shifted. If shifts is a tuple, dims must be a tuple of |
| the same size, and each dimension will be rolled by the corresponding |
| value |
| dims (int or tuple of ints): Axis along which to roll |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) |
| >>> x |
| tensor([[1, 2], |
| [3, 4], |
| [5, 6], |
| [7, 8]]) |
| >>> torch.roll(x, 1) |
| tensor([[8, 1], |
| [2, 3], |
| [4, 5], |
| [6, 7]]) |
| >>> torch.roll(x, 1, 0) |
| tensor([[7, 8], |
| [1, 2], |
| [3, 4], |
| [5, 6]]) |
| >>> torch.roll(x, -1, 0) |
| tensor([[3, 4], |
| [5, 6], |
| [7, 8], |
| [1, 2]]) |
| >>> torch.roll(x, shifts=(2, 1), dims=(0, 1)) |
| tensor([[6, 5], |
| [8, 7], |
| [2, 1], |
| [4, 3]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.rot90, |
| r""" |
| rot90(input, k=1, dims=(0, 1)) -> Tensor |
| |
| Rotate an n-D tensor by 90 degrees in the plane specified by dims axis. |
| Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0. |
| |
| Args: |
| {input} |
| k (int): number of times to rotate. Default value is 1 |
| dims (a list or tuple): axis to rotate. Default value is [0, 1] |
| |
| Example:: |
| |
| >>> x = torch.arange(4).view(2, 2) |
| >>> x |
| tensor([[0, 1], |
| [2, 3]]) |
| >>> torch.rot90(x, 1, [0, 1]) |
| tensor([[1, 3], |
| [0, 2]]) |
| |
| >>> x = torch.arange(8).view(2, 2, 2) |
| >>> x |
| tensor([[[0, 1], |
| [2, 3]], |
| |
| [[4, 5], |
| [6, 7]]]) |
| >>> torch.rot90(x, 1, [1, 2]) |
| tensor([[[1, 3], |
| [0, 2]], |
| |
| [[5, 7], |
| [4, 6]]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.take, |
| r""" |
| take(input, index) -> Tensor |
| |
| Returns a new tensor with the elements of :attr:`input` at the given indices. |
| The input tensor is treated as if it were viewed as a 1-D tensor. The result |
| takes the same shape as the indices. |
| |
| Args: |
| {input} |
| index (LongTensor): the indices into tensor |
| |
| Example:: |
| |
| >>> src = torch.tensor([[4, 3, 5], |
| ... [6, 7, 8]]) |
| >>> torch.take(src, torch.tensor([0, 2, 5])) |
| tensor([ 4, 5, 8]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.take_along_dim, |
| r""" |
| take_along_dim(input, indices, dim=None, *, out=None) -> Tensor |
| |
| Selects values from :attr:`input` at the 1-dimensional indices from :attr:`indices` along the given :attr:`dim`. |
| |
| If :attr:`dim` is None, the input array is treated as if it has been flattened to 1d. |
| |
| Functions that return indices along a dimension, like :func:`torch.argmax` and :func:`torch.argsort`, |
| are designed to work with this function. See the examples below. |
| |
| .. note:: |
| This function is similar to NumPy's `take_along_axis`. |
| See also :func:`torch.gather`. |
| |
| Args: |
| {input} |
| indices (tensor): the indices into :attr:`input`. Must have long dtype. |
| dim (int, optional): dimension to select along. |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> t = torch.tensor([[10, 30, 20], [60, 40, 50]]) |
| >>> max_idx = torch.argmax(t) |
| >>> torch.take_along_dim(t, max_idx) |
| tensor([60]) |
| >>> sorted_idx = torch.argsort(t, dim=1) |
| >>> torch.take_along_dim(t, sorted_idx, dim=1) |
| tensor([[10, 20, 30], |
| [40, 50, 60]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.tan, |
| r""" |
| tan(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the tangent of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tan(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-1.2027, -1.7687, 0.4412, -1.3856]) |
| >>> torch.tan(a) |
| tensor([-2.5930, 4.9859, 0.4722, -5.3366]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.tanh, |
| r""" |
| tanh(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic tangent of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tanh(\text{input}_{i}) |
| """ |
| + r""" |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.8986, -0.7279, 1.1745, 0.2611]) |
| >>> torch.tanh(a) |
| tensor([ 0.7156, -0.6218, 0.8257, 0.2553]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| # torch.softmax doc str. Point this to torch.nn.functional.softmax |
| torch.softmax, |
| r""" |
| softmax(input, dim, *, dtype=None) -> Tensor |
| |
| Alias for :func:`torch.nn.functional.softmax`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.topk, |
| r""" |
| topk(input, k, dim=None, largest=True, sorted=True, *, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k` largest elements of the given :attr:`input` tensor along |
| a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`largest` is ``False`` then the `k` smallest elements are returned. |
| |
| A namedtuple of `(values, indices)` is returned with the `values` and |
| `indices` of the largest `k` elements of each row of the `input` tensor in the |
| given dimension `dim`. |
| |
| The boolean option :attr:`sorted` if ``True``, will make sure that the returned |
| `k` elements are themselves sorted |
| |
| Args: |
| {input} |
| k (int): the k in "top-k" |
| dim (int, optional): the dimension to sort along |
| largest (bool, optional): controls whether to return largest or |
| smallest elements |
| sorted (bool, optional): controls whether to return the elements |
| in sorted order |
| |
| Keyword args: |
| out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be |
| optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.arange(1., 6.) |
| >>> x |
| tensor([ 1., 2., 3., 4., 5.]) |
| >>> torch.topk(x, 3) |
| torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2])) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.trace, |
| r""" |
| trace(input) -> Tensor |
| |
| Returns the sum of the elements of the diagonal of the input 2-D matrix. |
| |
| Example:: |
| |
| >>> x = torch.arange(1., 10.).view(3, 3) |
| >>> x |
| tensor([[ 1., 2., 3.], |
| [ 4., 5., 6.], |
| [ 7., 8., 9.]]) |
| >>> torch.trace(x) |
| tensor(15.) |
| """, |
| ) |
| |
| add_docstr( |
| torch.transpose, |
| r""" |
| transpose(input, dim0, dim1) -> Tensor |
| |
| Returns a tensor that is a transposed version of :attr:`input`. |
| The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. |
| |
| If :attr:`input` is a strided tensor then the resulting :attr:`out` |
| tensor shares its underlying storage with the :attr:`input` tensor, so |
| changing the content of one would change the content of the other. |
| |
| If :attr:`input` is a :ref:`sparse tensor <sparse-docs>` then the |
| resulting :attr:`out` tensor *does not* share the underlying storage |
| with the :attr:`input` tensor. |
| |
| If :attr:`input` is a :ref:`sparse tensor <sparse-docs>` with compressed |
| layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments |
| :attr:`dim0` and :attr:`dim1` must be both batch dimensions, or must |
| both be sparse dimensions. The batch dimensions of a sparse tensor are the |
| dimensions preceding the sparse dimensions. |
| |
| .. note:: |
| Transpositions which interchange the sparse dimensions of a `SparseCSR` |
| or `SparseCSC` layout tensor will result in the layout changing between |
| the two options. Transposition of the sparse dimensions of a ` SparseBSR` |
| or `SparseBSC` layout tensor will likewise generate a result with the |
| opposite layout. |
| |
| |
| Args: |
| {input} |
| dim0 (int): the first dimension to be transposed |
| dim1 (int): the second dimension to be transposed |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 1.0028, -0.9893, 0.5809], |
| [-0.1669, 0.7299, 0.4942]]) |
| >>> torch.transpose(x, 0, 1) |
| tensor([[ 1.0028, -0.1669], |
| [-0.9893, 0.7299], |
| [ 0.5809, 0.4942]]) |
| |
| See also :func:`torch.t`. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.triangular_solve, |
| r""" |
| triangular_solve(b, A, upper=True, transpose=False, unitriangular=False, *, out=None) -> (Tensor, Tensor) |
| |
| Solves a system of equations with a square upper or lower triangular invertible matrix :math:`A` |
| and multiple right-hand sides :math:`b`. |
| |
| In symbols, it solves :math:`AX = b` and assumes :math:`A` is square upper-triangular |
| (or lower-triangular if :attr:`upper`\ `= False`) and does not have zeros on the diagonal. |
| |
| `torch.triangular_solve(b, A)` can take in 2D inputs `b, A` or inputs that are |
| batches of 2D matrices. If the inputs are batches, then returns |
| batched outputs `X` |
| |
| If the diagonal of :attr:`A` contains zeros or elements that are very close to zero and |
| :attr:`unitriangular`\ `= False` (default) or if the input matrix is badly conditioned, |
| the result may contain `NaN` s. |
| |
| Supports input of float, double, cfloat and cdouble data types. |
| |
| .. warning:: |
| |
| :func:`torch.triangular_solve` is deprecated in favor of :func:`torch.linalg.solve_triangular` |
| and will be removed in a future PyTorch release. |
| :func:`torch.linalg.solve_triangular` has its arguments reversed and does not return a |
| copy of one of the inputs. |
| |
| ``X = torch.triangular_solve(B, A).solution`` should be replaced with |
| |
| .. code:: python |
| |
| X = torch.linalg.solve_triangular(A, B) |
| |
| Args: |
| b (Tensor): multiple right-hand sides of size :math:`(*, m, k)` where |
| :math:`*` is zero of more batch dimensions |
| A (Tensor): the input triangular coefficient matrix of size :math:`(*, m, m)` |
| where :math:`*` is zero or more batch dimensions |
| upper (bool, optional): whether :math:`A` is upper or lower triangular. Default: ``True``. |
| transpose (bool, optional): solves `op(A)X = b` where `op(A) = A^T` if this flag is ``True``, |
| and `op(A) = A` if it is ``False``. Default: ``False``. |
| unitriangular (bool, optional): whether :math:`A` is unit triangular. |
| If True, the diagonal elements of :math:`A` are assumed to be |
| 1 and not referenced from :math:`A`. Default: ``False``. |
| |
| Keyword args: |
| out ((Tensor, Tensor), optional): tuple of two tensors to write |
| the output to. Ignored if `None`. Default: `None`. |
| |
| Returns: |
| A namedtuple `(solution, cloned_coefficient)` where `cloned_coefficient` |
| is a clone of :math:`A` and `solution` is the solution :math:`X` to :math:`AX = b` |
| (or whatever variant of the system of equations, depending on the keyword arguments.) |
| |
| Examples:: |
| |
| >>> A = torch.randn(2, 2).triu() |
| >>> A |
| tensor([[ 1.1527, -1.0753], |
| [ 0.0000, 0.7986]]) |
| >>> b = torch.randn(2, 3) |
| >>> b |
| tensor([[-0.0210, 2.3513, -1.5492], |
| [ 1.5429, 0.7403, -1.0243]]) |
| >>> torch.triangular_solve(b, A) |
| torch.return_types.triangular_solve( |
| solution=tensor([[ 1.7841, 2.9046, -2.5405], |
| [ 1.9320, 0.9270, -1.2826]]), |
| cloned_coefficient=tensor([[ 1.1527, -1.0753], |
| [ 0.0000, 0.7986]])) |
| """, |
| ) |
| |
| add_docstr( |
| torch.tril, |
| r""" |
| tril(input, diagonal=0, *, out=None) -> Tensor |
| |
| Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices |
| :attr:`input`, the other elements of the result tensor :attr:`out` are set to 0. |
| |
| The lower triangular part of the matrix is defined as the elements on and |
| below the diagonal. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. If |
| :attr:`diagonal` = 0, all elements on and below the main diagonal are |
| retained. A positive value includes just as many diagonals above the main |
| diagonal, and similarly a negative value excludes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where |
| :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| """ |
| + r""" |
| Args: |
| {input} |
| diagonal (int, optional): the diagonal to consider |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[-1.0813, -0.8619, 0.7105], |
| [ 0.0935, 0.1380, 2.2112], |
| [-0.3409, -0.9828, 0.0289]]) |
| >>> torch.tril(a) |
| tensor([[-1.0813, 0.0000, 0.0000], |
| [ 0.0935, 0.1380, 0.0000], |
| [-0.3409, -0.9828, 0.0289]]) |
| |
| >>> b = torch.randn(4, 6) |
| >>> b |
| tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461], |
| [ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145], |
| [ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864], |
| [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]]) |
| >>> torch.tril(b, diagonal=1) |
| tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000], |
| [ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000], |
| [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]]) |
| >>> torch.tril(b, diagonal=-1) |
| tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000], |
| [-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]]) |
| """.format(**common_args), |
| ) |
| |
| # docstr is split in two parts to avoid format mis-captureing :math: braces '{}' |
| # as common args. |
| add_docstr( |
| torch.tril_indices, |
| r""" |
| tril_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor |
| |
| Returns the indices of the lower triangular part of a :attr:`row`-by- |
| :attr:`col` matrix in a 2-by-N Tensor, where the first row contains row |
| coordinates of all indices and the second row contains column coordinates. |
| Indices are ordered based on rows and then columns. |
| |
| The lower triangular part of the matrix is defined as the elements on and |
| below the diagonal. |
| |
| The argument :attr:`offset` controls which diagonal to consider. If |
| :attr:`offset` = 0, all elements on and below the main diagonal are |
| retained. A positive value includes just as many diagonals above the main |
| diagonal, and similarly a negative value excludes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` |
| where :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| |
| .. note:: |
| When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to |
| prevent overflow during calculation. |
| """ |
| + r""" |
| Args: |
| row (``int``): number of rows in the 2-D matrix. |
| col (``int``): number of columns in the 2-D matrix. |
| offset (``int``): diagonal offset from the main diagonal. |
| Default: if not provided, 0. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if ``None``, ``torch.long``. |
| {device} |
| layout (:class:`torch.layout`, optional): currently only support ``torch.strided``. |
| |
| Example:: |
| |
| >>> a = torch.tril_indices(3, 3) |
| >>> a |
| tensor([[0, 1, 1, 2, 2, 2], |
| [0, 0, 1, 0, 1, 2]]) |
| |
| >>> a = torch.tril_indices(4, 3, -1) |
| >>> a |
| tensor([[1, 2, 2, 3, 3, 3], |
| [0, 0, 1, 0, 1, 2]]) |
| |
| >>> a = torch.tril_indices(4, 3, 1) |
| >>> a |
| tensor([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], |
| [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2]]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.triu, |
| r""" |
| triu(input, diagonal=0, *, out=None) -> Tensor |
| |
| Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices |
| :attr:`input`, the other elements of the result tensor :attr:`out` are set to 0. |
| |
| The upper triangular part of the matrix is defined as the elements on and |
| above the diagonal. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. If |
| :attr:`diagonal` = 0, all elements on and above the main diagonal are |
| retained. A positive value excludes just as many diagonals above the main |
| diagonal, and similarly a negative value includes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where |
| :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| """ |
| + r""" |
| Args: |
| {input} |
| diagonal (int, optional): the diagonal to consider |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[ 0.2309, 0.5207, 2.0049], |
| [ 0.2072, -1.0680, 0.6602], |
| [ 0.3480, -0.5211, -0.4573]]) |
| >>> torch.triu(a) |
| tensor([[ 0.2309, 0.5207, 2.0049], |
| [ 0.0000, -1.0680, 0.6602], |
| [ 0.0000, 0.0000, -0.4573]]) |
| >>> torch.triu(a, diagonal=1) |
| tensor([[ 0.0000, 0.5207, 2.0049], |
| [ 0.0000, 0.0000, 0.6602], |
| [ 0.0000, 0.0000, 0.0000]]) |
| >>> torch.triu(a, diagonal=-1) |
| tensor([[ 0.2309, 0.5207, 2.0049], |
| [ 0.2072, -1.0680, 0.6602], |
| [ 0.0000, -0.5211, -0.4573]]) |
| |
| >>> b = torch.randn(4, 6) |
| >>> b |
| tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], |
| [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], |
| [ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], |
| [-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]]) |
| >>> torch.triu(b, diagonal=1) |
| tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], |
| [ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857], |
| [ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410], |
| [ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]]) |
| >>> torch.triu(b, diagonal=-1) |
| tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], |
| [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], |
| [ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], |
| [ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]]) |
| """.format(**common_args), |
| ) |
| |
| # docstr is split in two parts to avoid format mis-capturing :math: braces '{}' |
| # as common args. |
| add_docstr( |
| torch.triu_indices, |
| r""" |
| triu_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor |
| |
| Returns the indices of the upper triangular part of a :attr:`row` by |
| :attr:`col` matrix in a 2-by-N Tensor, where the first row contains row |
| coordinates of all indices and the second row contains column coordinates. |
| Indices are ordered based on rows and then columns. |
| |
| The upper triangular part of the matrix is defined as the elements on and |
| above the diagonal. |
| |
| The argument :attr:`offset` controls which diagonal to consider. If |
| :attr:`offset` = 0, all elements on and above the main diagonal are |
| retained. A positive value excludes just as many diagonals above the main |
| diagonal, and similarly a negative value includes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` |
| where :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| |
| .. note:: |
| When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to |
| prevent overflow during calculation. |
| """ |
| + r""" |
| Args: |
| row (``int``): number of rows in the 2-D matrix. |
| col (``int``): number of columns in the 2-D matrix. |
| offset (``int``): diagonal offset from the main diagonal. |
| Default: if not provided, 0. |
| |
| Keyword args: |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if ``None``, ``torch.long``. |
| {device} |
| layout (:class:`torch.layout`, optional): currently only support ``torch.strided``. |
| |
| Example:: |
| |
| >>> a = torch.triu_indices(3, 3) |
| >>> a |
| tensor([[0, 0, 0, 1, 1, 2], |
| [0, 1, 2, 1, 2, 2]]) |
| |
| >>> a = torch.triu_indices(4, 3, -1) |
| >>> a |
| tensor([[0, 0, 0, 1, 1, 1, 2, 2, 3], |
| [0, 1, 2, 0, 1, 2, 1, 2, 2]]) |
| |
| >>> a = torch.triu_indices(4, 3, 1) |
| >>> a |
| tensor([[0, 0, 1], |
| [1, 2, 2]]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.true_divide, |
| r""" |
| true_divide(dividend, divisor, *, out) -> Tensor |
| |
| Alias for :func:`torch.div` with ``rounding_mode=None``. |
| """, |
| ) |
| |
| add_docstr( |
| torch.trunc, |
| r""" |
| trunc(input, *, out=None) -> Tensor |
| |
| Returns a new tensor with the truncated integer values of |
| the elements of :attr:`input`. |
| |
| For integer inputs, follows the array-api convention of returning a |
| copy of the input tensor. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {out} |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 3.4742, 0.5466, -0.8008, -0.9079]) |
| >>> torch.trunc(a) |
| tensor([ 3., 0., -0., -0.]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.fake_quantize_per_tensor_affine, |
| r""" |
| fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor |
| |
| Returns a new tensor with the data in :attr:`input` fake quantized using :attr:`scale`, |
| :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`. |
| |
| .. math:: |
| \text{output} = ( |
| min( |
| \text{quant\_max}, |
| max( |
| \text{quant\_min}, |
| \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} |
| ) |
| ) - \text{zero\_point} |
| ) \times \text{scale} |
| |
| Args: |
| input (Tensor): the input value(s), ``torch.float32`` tensor |
| scale (double scalar or ``float32`` Tensor): quantization scale |
| zero_point (int64 scalar or ``int32`` Tensor): quantization zero_point |
| quant_min (int64): lower bound of the quantized domain |
| quant_max (int64): upper bound of the quantized domain |
| |
| Returns: |
| Tensor: A newly fake_quantized ``torch.float32`` tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(4) |
| >>> x |
| tensor([ 0.0552, 0.9730, 0.3973, -1.0780]) |
| >>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255) |
| tensor([0.1000, 1.0000, 0.4000, 0.0000]) |
| >>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255) |
| tensor([0.1000, 1.0000, 0.4000, 0.0000]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.fake_quantize_per_channel_affine, |
| r""" |
| fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max) -> Tensor |
| |
| Returns a new tensor with the data in :attr:`input` fake quantized per channel using :attr:`scale`, |
| :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`, across the channel specified by :attr:`axis`. |
| |
| .. math:: |
| \text{output} = ( |
| min( |
| \text{quant\_max}, |
| max( |
| \text{quant\_min}, |
| \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} |
| ) |
| ) - \text{zero\_point} |
| ) \times \text{scale} |
| |
| Args: |
| input (Tensor): the input value(s), in ``torch.float32`` |
| scale (Tensor): quantization scale, per channel in ``torch.float32`` |
| zero_point (Tensor): quantization zero_point, per channel in ``torch.int32`` or ``torch.half`` or ``torch.float32`` |
| axis (int32): channel axis |
| quant_min (int64): lower bound of the quantized domain |
| quant_max (int64): upper bound of the quantized domain |
| |
| Returns: |
| Tensor: A newly fake_quantized per channel ``torch.float32`` tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 2, 2) |
| >>> x |
| tensor([[[-0.2525, -0.0466], |
| [ 0.3491, -0.2168]], |
| |
| [[-0.5906, 1.6258], |
| [ 0.6444, -0.0542]]]) |
| >>> scales = (torch.randn(2) + 1) * 0.05 |
| >>> scales |
| tensor([0.0475, 0.0486]) |
| >>> zero_points = torch.zeros(2).to(torch.int32) |
| >>> zero_points |
| tensor([0, 0]) |
| >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) |
| tensor([[[0.0000, 0.0000], |
| [0.3405, 0.0000]], |
| |
| [[0.0000, 1.6134], |
| [0.6323, 0.0000]]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.fix, |
| r""" |
| fix(input, *, out=None) -> Tensor |
| |
| Alias for :func:`torch.trunc` |
| """, |
| ) |
| |
| add_docstr( |
| torch.unsqueeze, |
| r""" |
| unsqueeze(input, dim) -> Tensor |
| |
| Returns a new tensor with a dimension of size one inserted at the |
| specified position. |
| |
| The returned tensor shares the same underlying data with this tensor. |
| |
| A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)`` |
| can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze` |
| applied at :attr:`dim` = ``dim + input.dim() + 1``. |
| |
| Args: |
| {input} |
| dim (int): the index at which to insert the singleton dimension |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3, 4]) |
| >>> torch.unsqueeze(x, 0) |
| tensor([[ 1, 2, 3, 4]]) |
| >>> torch.unsqueeze(x, 1) |
| tensor([[ 1], |
| [ 2], |
| [ 3], |
| [ 4]]) |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.var, |
| r""" |
| var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor |
| |
| Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` |
| can be a single dimension, list of dimensions, or ``None`` to reduce over all |
| dimensions. |
| |
| The variance (:math:`\sigma^2`) is calculated as |
| |
| .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 |
| |
| where :math:`x` is the sample set of elements, :math:`\bar{x}` is the |
| sample mean, :math:`N` is the number of samples and :math:`\delta N` is |
| the :attr:`correction`. |
| """ |
| + r""" |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {opt_dim} |
| |
| Keyword args: |
| correction (int): difference between the sample size and sample degrees of freedom. |
| Defaults to `Bessel's correction`_, ``correction=1``. |
| |
| .. versionchanged:: 2.0 |
| Previously this argument was called ``unbiased`` and was a boolean |
| with ``True`` corresponding to ``correction=1`` and ``False`` being |
| ``correction=0``. |
| {keepdim} |
| {out} |
| |
| Example: |
| |
| >>> a = torch.tensor( |
| ... [[ 0.2035, 1.2959, 1.8101, -0.4644], |
| ... [ 1.5027, -0.3270, 0.5905, 0.6538], |
| ... [-1.5745, 1.3330, -0.5596, -0.6548], |
| ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) |
| >>> torch.var(a, dim=1, keepdim=True) |
| tensor([[1.0631], |
| [0.5590], |
| [1.4893], |
| [0.8258]]) |
| |
| .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction |
| |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.var_mean, |
| r""" |
| var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) |
| |
| Calculates the variance and mean over the dimensions specified by :attr:`dim`. |
| :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to |
| reduce over all dimensions. |
| |
| The variance (:math:`\sigma^2`) is calculated as |
| |
| .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 |
| |
| where :math:`x` is the sample set of elements, :math:`\bar{x}` is the |
| sample mean, :math:`N` is the number of samples and :math:`\delta N` is |
| the :attr:`correction`. |
| """ |
| + r""" |
| |
| {keepdim_details} |
| |
| Args: |
| {input} |
| {opt_dim} |
| |
| Keyword args: |
| correction (int): difference between the sample size and sample degrees of freedom. |
| Defaults to `Bessel's correction`_, ``correction=1``. |
| |
| .. versionchanged:: 2.0 |
| Previously this argument was called ``unbiased`` and was a boolean |
| with ``True`` corresponding to ``correction=1`` and ``False`` being |
| ``correction=0``. |
| {keepdim} |
| {out} |
| |
| Returns: |
| A tuple (var, mean) containing the variance and mean. |
| |
| Example: |
| |
| >>> a = torch.tensor( |
| ... [[ 0.2035, 1.2959, 1.8101, -0.4644], |
| ... [ 1.5027, -0.3270, 0.5905, 0.6538], |
| ... [-1.5745, 1.3330, -0.5596, -0.6548], |
| ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) |
| >>> torch.var_mean(a, dim=0, keepdim=True) |
| (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), |
| tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) |
| |
| .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction |
| |
| """.format(**multi_dim_common), |
| ) |
| |
| add_docstr( |
| torch.zeros, |
| r""" |
| zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with the scalar value `0`, with the shape defined |
| by the variable argument :attr:`size`. |
| |
| Args: |
| size (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| |
| Keyword args: |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.zeros(2, 3) |
| tensor([[ 0., 0., 0.], |
| [ 0., 0., 0.]]) |
| |
| >>> torch.zeros(5) |
| tensor([ 0., 0., 0., 0., 0.]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.zeros_like, |
| r""" |
| zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a tensor filled with the scalar value `0`, with the same size as |
| :attr:`input`. ``torch.zeros_like(input)`` is equivalent to |
| ``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| .. warning:: |
| As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, |
| the old ``torch.zeros_like(input, out=output)`` is equivalent to |
| ``torch.zeros(input.size(), out=output)``. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| |
| Example:: |
| |
| >>> input = torch.empty(2, 3) |
| >>> torch.zeros_like(input) |
| tensor([[ 0., 0., 0.], |
| [ 0., 0., 0.]]) |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.empty, |
| """ |
| empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, \ |
| memory_format=torch.contiguous_format) -> Tensor |
| |
| Returns a tensor filled with uninitialized data. The shape of the tensor is |
| defined by the variable argument :attr:`size`. |
| |
| .. note:: |
| If :func:`torch.use_deterministic_algorithms()` and |
| :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to |
| ``True``, the output tensor is initialized to prevent any possible |
| nondeterministic behavior from using the data as an input to an operation. |
| Floating point and complex tensors are filled with NaN, and integer tensors |
| are filled with the maximum value. |
| |
| Args: |
| size (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| |
| Keyword args: |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {pin_memory} |
| {memory_format} |
| |
| Example:: |
| |
| >>> torch.empty((2,3), dtype=torch.int64) |
| tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], |
| [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.empty_like, |
| r""" |
| empty_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor |
| |
| Returns an uninitialized tensor with the same size as :attr:`input`. |
| ``torch.empty_like(input)`` is equivalent to |
| ``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| .. note:: |
| If :func:`torch.use_deterministic_algorithms()` and |
| :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to |
| ``True``, the output tensor is initialized to prevent any possible |
| nondeterministic behavior from using the data as an input to an operation. |
| Floating point and complex tensors are filled with NaN, and integer tensors |
| are filled with the maximum value. |
| |
| Args: |
| {input} |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| |
| Example:: |
| |
| >>> a=torch.empty((2,3), dtype=torch.int32, device = 'cuda') |
| >>> torch.empty_like(a) |
| tensor([[0, 0, 0], |
| [0, 0, 0]], device='cuda:0', dtype=torch.int32) |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.empty_strided, |
| r""" |
| empty_strided(size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor |
| |
| Creates a tensor with the specified :attr:`size` and :attr:`stride` and filled with undefined data. |
| |
| .. warning:: |
| If the constructed tensor is "overlapped" (with multiple indices referring to the same element |
| in memory) its behavior is undefined. |
| |
| .. note:: |
| If :func:`torch.use_deterministic_algorithms()` and |
| :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to |
| ``True``, the output tensor is initialized to prevent any possible |
| nondeterministic behavior from using the data as an input to an operation. |
| Floating point and complex tensors are filled with NaN, and integer tensors |
| are filled with the maximum value. |
| |
| Args: |
| size (tuple of int): the shape of the output tensor |
| stride (tuple of int): the strides of the output tensor |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {pin_memory} |
| |
| Example:: |
| |
| >>> a = torch.empty_strided((2, 3), (1, 2)) |
| >>> a |
| tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07], |
| [0.0000e+00, 0.0000e+00, 3.0705e-41]]) |
| >>> a.stride() |
| (1, 2) |
| >>> a.size() |
| torch.Size([2, 3]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.empty_permuted, |
| r""" |
| empty_permuted(size, physical_layout, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor |
| |
| Creates an uninitialized, non-overlapping and dense tensor with the |
| specified :attr:`size`, with :attr:`physical_layout` specifying how the |
| dimensions are physically laid out in memory (each logical dimension is listed |
| from outermost to innermost). :attr:`physical_layout` is a generalization |
| of NCHW/NHWC notation: if each dimension is assigned a number according to |
| what order they occur in size (N=0, C=1, H=2, W=3), then NCHW is ``(0, 1, 2, 3)`` |
| while NHWC is ``(0, 2, 3, 1)``. Equivalently, the strides of the output |
| tensor ``t`` are such that ``t.stride(physical_layout[i]) == contiguous_strides[i]`` |
| (notably, this function is *not* equivalent to ``torch.empty(size).permute(physical_layout)``). |
| |
| Unlike :func:`torch.empty_strided`, this is guaranteed to produce a dense |
| tensor with no overlaps. If possible, prefer using this function over |
| :func:`torch.empty_strided` or manual use of :func:`torch.as_strided`. |
| |
| .. note:: |
| If :func:`torch.use_deterministic_algorithms()` and |
| :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to |
| ``True``, the output tensor is initialized to prevent any possible |
| nondeterministic behavior from using the data as an input to an operation. |
| Floating point and complex tensors are filled with NaN, and integer tensors |
| are filled with the maximum value. |
| |
| Args: |
| size (tuple of int): the shape of the output tensor |
| physical_layout (tuple of int): the ordering of dimensions physically in memory |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {pin_memory} |
| |
| Examples: |
| |
| >>> torch.empty((2, 3, 5, 7)).stride() |
| (105, 35, 7, 1) |
| >>> torch.empty_permuted((2, 3, 5, 7), (0, 1, 2, 3)).stride() |
| (105, 35, 7, 1) |
| >>> torch.empty((2, 3, 5, 7), memory_format=torch.channels_last).stride() |
| (105, 1, 21, 3) |
| >>> torch.empty_permuted((2, 3, 5, 7), (0, 2, 3, 1)).stride() |
| (105, 1, 21, 3) |
| >>> torch.empty_permuted((2, 3, 5, 7), (0, 2, 3, 1)).dim_order() |
| (0, 2, 3, 1) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.full, |
| r""" |
| full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The |
| tensor's dtype is inferred from :attr:`fill_value`. |
| |
| Args: |
| size (int...): a list, tuple, or :class:`torch.Size` of integers defining the |
| shape of the output tensor. |
| fill_value (Scalar): the value to fill the output tensor with. |
| |
| Keyword args: |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.full((2, 3), 3.141592) |
| tensor([[ 3.1416, 3.1416, 3.1416], |
| [ 3.1416, 3.1416, 3.1416]]) |
| """.format(**factory_common_args), |
| ) |
| |
| add_docstr( |
| torch.full_like, |
| """ |
| full_like(input, fill_value, \\*, dtype=None, layout=torch.strided, device=None, requires_grad=False, \ |
| memory_format=torch.preserve_format) -> Tensor |
| |
| Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`. |
| ``torch.full_like(input, fill_value)`` is equivalent to |
| ``torch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| fill_value: the number to fill the output tensor with. |
| |
| Keyword args: |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| {memory_format} |
| """.format(**factory_like_common_args), |
| ) |
| |
| add_docstr( |
| torch.det, |
| r""" |
| det(input) -> Tensor |
| |
| Alias for :func:`torch.linalg.det` |
| """, |
| ) |
| |
| add_docstr( |
| torch.where, |
| r""" |
| where(condition, input, other, *, out=None) -> Tensor |
| |
| Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. |
| |
| The operation is defined as: |
| |
| .. math:: |
| \text{out}_i = \begin{cases} |
| \text{input}_i & \text{if } \text{condition}_i \\ |
| \text{other}_i & \text{otherwise} \\ |
| \end{cases} |
| """ |
| + r""" |
| .. note:: |
| The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Arguments: |
| condition (BoolTensor): When True (nonzero), yield input, otherwise yield other |
| input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices |
| where :attr:`condition` is ``True`` |
| other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices |
| where :attr:`condition` is ``False`` |
| |
| Keyword args: |
| {out} |
| |
| Returns: |
| Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 2) |
| >>> y = torch.ones(3, 2) |
| >>> x |
| tensor([[-0.4620, 0.3139], |
| [ 0.3898, -0.7197], |
| [ 0.0478, -0.1657]]) |
| >>> torch.where(x > 0, 1.0, 0.0) |
| tensor([[0., 1.], |
| [1., 0.], |
| [1., 0.]]) |
| >>> torch.where(x > 0, x, y) |
| tensor([[ 1.0000, 0.3139], |
| [ 0.3898, 1.0000], |
| [ 0.0478, 1.0000]]) |
| >>> x = torch.randn(2, 2, dtype=torch.double) |
| >>> x |
| tensor([[ 1.0779, 0.0383], |
| [-0.8785, -1.1089]], dtype=torch.float64) |
| >>> torch.where(x > 0, x, 0.) |
| tensor([[1.0779, 0.0383], |
| [0.0000, 0.0000]], dtype=torch.float64) |
| |
| .. function:: where(condition) -> tuple of LongTensor |
| :noindex: |
| |
| ``torch.where(condition)`` is identical to |
| ``torch.nonzero(condition, as_tuple=True)``. |
| |
| .. note:: |
| See also :func:`torch.nonzero`. |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.logdet, |
| r""" |
| logdet(input) -> Tensor |
| |
| Calculates log determinant of a square matrix or batches of square matrices. |
| |
| It returns ``-inf`` if the input has a determinant of zero, and ``NaN`` if it has |
| a negative determinant. |
| |
| .. note:: |
| Backward through :meth:`logdet` internally uses SVD results when :attr:`input` |
| is not invertible. In this case, double backward through :meth:`logdet` will |
| be unstable in when :attr:`input` doesn't have distinct singular values. See |
| :func:`torch.linalg.svd` for details. |
| |
| .. seealso:: |
| |
| :func:`torch.linalg.slogdet` computes the sign (resp. angle) and natural logarithm of the |
| absolute value of the determinant of real-valued (resp. complex) square matrices. |
| |
| Arguments: |
| input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more |
| batch dimensions. |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| tensor(0.2611) |
| >>> torch.logdet(A) |
| tensor(-1.3430) |
| >>> A |
| tensor([[[ 0.9254, -0.6213], |
| [-0.5787, 1.6843]], |
| |
| [[ 0.3242, -0.9665], |
| [ 0.4539, -0.0887]], |
| |
| [[ 1.1336, -0.4025], |
| [-0.7089, 0.9032]]]) |
| >>> A.det() |
| tensor([1.1990, 0.4099, 0.7386]) |
| >>> A.det().log() |
| tensor([ 0.1815, -0.8917, -0.3031]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.slogdet, |
| r""" |
| slogdet(input) -> (Tensor, Tensor) |
| |
| Alias for :func:`torch.linalg.slogdet` |
| """, |
| ) |
| |
| add_docstr( |
| torch.pinverse, |
| r""" |
| pinverse(input, rcond=1e-15) -> Tensor |
| |
| Alias for :func:`torch.linalg.pinv` |
| """, |
| ) |
| |
| add_docstr( |
| torch.hann_window, |
| """ |
| hann_window(window_length, periodic=True, *, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ |
| + r""" |
| Hann window function. |
| |
| .. math:: |
| w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = |
| \sin^2 \left( \frac{\pi n}{N - 1} \right), |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.hann_window(L, periodic=True)`` equal to |
| ``torch.hann_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| """ |
| + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| |
| Keyword args: |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.hamming_window, |
| """ |
| hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ |
| + r""" |
| Hamming window function. |
| |
| .. math:: |
| w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.hamming_window(L, periodic=True)`` equal to |
| ``torch.hamming_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| |
| .. note:: |
| This is a generalized version of :meth:`torch.hann_window`. |
| """ |
| + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| alpha (float, optional): The coefficient :math:`\alpha` in the equation above |
| beta (float, optional): The coefficient :math:`\beta` in the equation above |
| |
| Keyword args: |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window. |
| |
| """.format(**factory_common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.bartlett_window, |
| """ |
| bartlett_window(window_length, periodic=True, *, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ |
| + r""" |
| Bartlett window function. |
| |
| .. math:: |
| w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} |
| \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ |
| 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ |
| \end{cases}, |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.bartlett_window(L, periodic=True)`` equal to |
| ``torch.bartlett_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| """ |
| + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| |
| Keyword args: |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.blackman_window, |
| """ |
| blackman_window(window_length, periodic=True, *, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ |
| + r""" |
| Blackman window function. |
| |
| .. math:: |
| w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.blackman_window(L, periodic=True)`` equal to |
| ``torch.blackman_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| """ |
| + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| |
| Keyword args: |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.kaiser_window, |
| """ |
| kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ |
| + r""" |
| Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. |
| |
| Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and |
| ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, |
| where ``L`` is the :attr:`window_length`. This function computes: |
| |
| .. math:: |
| out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) |
| |
| Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling |
| ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. |
| The :attr:`periodic` argument is intended as a helpful shorthand |
| to produce a periodic window as input to functions like :func:`torch.stft`. |
| |
| .. note:: |
| If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. |
| |
| """ |
| + r""" |
| Args: |
| window_length (int): length of the window. |
| periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. |
| If False, returns a symmetric window suitable for use in filter design. |
| beta (float, optional): shape parameter for the window. |
| |
| Keyword args: |
| {dtype} |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| """.format(**factory_common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.vander, |
| """ |
| vander(x, N=None, increasing=False) -> Tensor |
| """ |
| + r""" |
| Generates a Vandermonde matrix. |
| |
| The columns of the output matrix are elementwise powers of the input vector :math:`x^{{(N-1)}}, x^{{(N-2)}}, ..., x^0`. |
| If increasing is True, the order of the columns is reversed :math:`x^0, x^1, ..., x^{{(N-1)}}`. Such a |
| matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde. |
| |
| Arguments: |
| x (Tensor): 1-D input tensor. |
| N (int, optional): Number of columns in the output. If N is not specified, |
| a square array is returned :math:`(N = len(x))`. |
| increasing (bool, optional): Order of the powers of the columns. If True, |
| the powers increase from left to right, if False (the default) they are reversed. |
| |
| Returns: |
| Tensor: Vandermonde matrix. If increasing is False, the first column is :math:`x^{{(N-1)}}`, |
| the second :math:`x^{{(N-2)}}` and so forth. If increasing is True, the columns |
| are :math:`x^0, x^1, ..., x^{{(N-1)}}`. |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3, 5]) |
| >>> torch.vander(x) |
| tensor([[ 1, 1, 1, 1], |
| [ 8, 4, 2, 1], |
| [ 27, 9, 3, 1], |
| [125, 25, 5, 1]]) |
| >>> torch.vander(x, N=3) |
| tensor([[ 1, 1, 1], |
| [ 4, 2, 1], |
| [ 9, 3, 1], |
| [25, 5, 1]]) |
| >>> torch.vander(x, N=3, increasing=True) |
| tensor([[ 1, 1, 1], |
| [ 1, 2, 4], |
| [ 1, 3, 9], |
| [ 1, 5, 25]]) |
| |
| """.format(**factory_common_args), |
| ) |
| |
| |
| add_docstr( |
| torch.unbind, |
| r""" |
| unbind(input, dim=0) -> seq |
| |
| Removes a tensor dimension. |
| |
| Returns a tuple of all slices along a given dimension, already without it. |
| |
| Arguments: |
| input (Tensor): the tensor to unbind |
| dim (int): dimension to remove |
| |
| Example:: |
| |
| >>> torch.unbind(torch.tensor([[1, 2, 3], |
| >>> [4, 5, 6], |
| >>> [7, 8, 9]])) |
| (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9])) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.combinations, |
| r""" |
| combinations(input, r=2, with_replacement=False) -> seq |
| |
| Compute combinations of length :math:`r` of the given tensor. The behavior is similar to |
| python's `itertools.combinations` when `with_replacement` is set to `False`, and |
| `itertools.combinations_with_replacement` when `with_replacement` is set to `True`. |
| |
| Arguments: |
| input (Tensor): 1D vector. |
| r (int, optional): number of elements to combine |
| with_replacement (bool, optional): whether to allow duplication in combination |
| |
| Returns: |
| Tensor: A tensor equivalent to converting all the input tensors into lists, do |
| `itertools.combinations` or `itertools.combinations_with_replacement` on these |
| lists, and finally convert the resulting list into tensor. |
| |
| Example:: |
| |
| >>> a = [1, 2, 3] |
| >>> list(itertools.combinations(a, r=2)) |
| [(1, 2), (1, 3), (2, 3)] |
| >>> list(itertools.combinations(a, r=3)) |
| [(1, 2, 3)] |
| >>> list(itertools.combinations_with_replacement(a, r=2)) |
| [(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)] |
| >>> tensor_a = torch.tensor(a) |
| >>> torch.combinations(tensor_a) |
| tensor([[1, 2], |
| [1, 3], |
| [2, 3]]) |
| >>> torch.combinations(tensor_a, r=3) |
| tensor([[1, 2, 3]]) |
| >>> torch.combinations(tensor_a, with_replacement=True) |
| tensor([[1, 1], |
| [1, 2], |
| [1, 3], |
| [2, 2], |
| [2, 3], |
| [3, 3]]) |
| |
| """, |
| ) |
| |
| add_docstr( |
| torch.trapezoid, |
| r""" |
| trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor |
| |
| Computes the `trapezoidal rule <https://en.wikipedia.org/wiki/Trapezoidal_rule>`_ along |
| :attr:`dim`. By default the spacing between elements is assumed to be 1, but |
| :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be |
| used to specify arbitrary spacing along :attr:`dim`. |
| |
| |
| Assuming :attr:`y` is a one-dimensional tensor with elements :math:`{y_0, y_1, ..., y_n}`, |
| the default computation is |
| |
| .. math:: |
| \begin{aligned} |
| \sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1}) |
| \end{aligned} |
| |
| When :attr:`dx` is specified the computation becomes |
| |
| .. math:: |
| \begin{aligned} |
| \sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1}) |
| \end{aligned} |
| |
| effectively multiplying the result by :attr:`dx`. When :attr:`x` is specified, |
| assuming :attr:`x` is also a one-dimensional tensor with |
| elements :math:`{x_0, x_1, ..., x_n}`, the computation becomes |
| |
| .. math:: |
| \begin{aligned} |
| \sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1}) |
| \end{aligned} |
| |
| When :attr:`x` and :attr:`y` have the same size, the computation is as described above and no broadcasting is needed. |
| The broadcasting behavior of this function is as follows when their sizes are different. For both :attr:`x` |
| and :attr:`y`, the function computes the difference between consecutive elements along |
| dimension :attr:`dim`. This effectively creates two tensors, `x_diff` and `y_diff`, that have |
| the same shape as the original tensors except their lengths along the dimension :attr:`dim` is reduced by 1. |
| After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule. |
| See the examples below for details. |
| |
| .. note:: |
| The trapezoidal rule is a technique for approximating the definite integral of a function |
| by averaging its left and right Riemann sums. The approximation becomes more accurate as |
| the resolution of the partition increases. |
| |
| Arguments: |
| y (Tensor): Values to use when computing the trapezoidal rule. |
| x (Tensor): If specified, defines spacing between values as specified above. |
| |
| Keyword arguments: |
| dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` |
| are specified then this defaults to 1. Effectively multiplies the result by its value. |
| dim (int): The dimension along which to compute the trapezoidal rule. |
| The last (inner-most) dimension by default. |
| |
| Examples:: |
| |
| >>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 |
| >>> y = torch.tensor([1, 5, 10]) |
| >>> torch.trapezoid(y) |
| tensor(10.5) |
| |
| >>> # Computes the same trapezoidal rule directly to verify |
| >>> (1 + 10 + 10) / 2 |
| 10.5 |
| |
| >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 |
| >>> # NOTE: the result is the same as before, but multiplied by 2 |
| >>> torch.trapezoid(y, dx=2) |
| 21.0 |
| |
| >>> # Computes the trapezoidal rule in 1D with arbitrary spacing |
| >>> x = torch.tensor([1, 3, 6]) |
| >>> torch.trapezoid(y, x) |
| 28.5 |
| |
| >>> # Computes the same trapezoidal rule directly to verify |
| >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 |
| 28.5 |
| |
| >>> # Computes the trapezoidal rule for each row of a 3x3 matrix |
| >>> y = torch.arange(9).reshape(3, 3) |
| tensor([[0, 1, 2], |
| [3, 4, 5], |
| [6, 7, 8]]) |
| >>> torch.trapezoid(y) |
| tensor([ 2., 8., 14.]) |
| |
| >>> # Computes the trapezoidal rule for each column of the matrix |
| >>> torch.trapezoid(y, dim=0) |
| tensor([ 6., 8., 10.]) |
| |
| >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix |
| >>> # with the same arbitrary spacing |
| >>> y = torch.ones(3, 3) |
| >>> x = torch.tensor([1, 3, 6]) |
| >>> torch.trapezoid(y, x) |
| array([5., 5., 5.]) |
| |
| >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix |
| >>> # with different arbitrary spacing per row |
| >>> y = torch.ones(3, 3) |
| >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) |
| >>> torch.trapezoid(y, x) |
| array([2., 4., 6.]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.trapz, |
| r""" |
| trapz(y, x, *, dim=-1) -> Tensor |
| |
| Alias for :func:`torch.trapezoid`. |
| """, |
| ) |
| |
| add_docstr( |
| torch.cumulative_trapezoid, |
| r""" |
| cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor |
| |
| Cumulatively computes the `trapezoidal rule <https://en.wikipedia.org/wiki/Trapezoidal_rule>`_ |
| along :attr:`dim`. By default the spacing between elements is assumed to be 1, but |
| :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be |
| used to specify arbitrary spacing along :attr:`dim`. |
| |
| For more details, please read :func:`torch.trapezoid`. The difference between :func:`torch.trapezoid` |
| and this function is that, :func:`torch.trapezoid` returns a value for each integration, |
| where as this function returns a cumulative value for every spacing within the integration. This |
| is analogous to how `.sum` returns a value and `.cumsum` returns a cumulative sum. |
| |
| Arguments: |
| y (Tensor): Values to use when computing the trapezoidal rule. |
| x (Tensor): If specified, defines spacing between values as specified above. |
| |
| Keyword arguments: |
| dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` |
| are specified then this defaults to 1. Effectively multiplies the result by its value. |
| dim (int): The dimension along which to compute the trapezoidal rule. |
| The last (inner-most) dimension by default. |
| |
| Examples:: |
| |
| >>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. |
| >>> y = torch.tensor([1, 5, 10]) |
| >>> torch.cumulative_trapezoid(y) |
| tensor([3., 10.5]) |
| |
| >>> # Computes the same trapezoidal rule directly up to each element to verify |
| >>> (1 + 5) / 2 |
| 3.0 |
| >>> (1 + 10 + 10) / 2 |
| 10.5 |
| |
| >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 |
| >>> # NOTE: the result is the same as before, but multiplied by 2 |
| >>> torch.cumulative_trapezoid(y, dx=2) |
| tensor([6., 21.]) |
| |
| >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing |
| >>> x = torch.tensor([1, 3, 6]) |
| >>> torch.cumulative_trapezoid(y, x) |
| tensor([6., 28.5]) |
| |
| >>> # Computes the same trapezoidal rule directly up to each element to verify |
| >>> ((3 - 1) * (1 + 5)) / 2 |
| 6.0 |
| >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 |
| 28.5 |
| |
| >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix |
| >>> y = torch.arange(9).reshape(3, 3) |
| tensor([[0, 1, 2], |
| [3, 4, 5], |
| [6, 7, 8]]) |
| >>> torch.cumulative_trapezoid(y) |
| tensor([[ 0.5, 2.], |
| [ 3.5, 8.], |
| [ 6.5, 14.]]) |
| |
| >>> # Cumulatively computes the trapezoidal rule for each column of the matrix |
| >>> torch.cumulative_trapezoid(y, dim=0) |
| tensor([[ 1.5, 2.5, 3.5], |
| [ 6.0, 8.0, 10.0]]) |
| |
| >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix |
| >>> # with the same arbitrary spacing |
| >>> y = torch.ones(3, 3) |
| >>> x = torch.tensor([1, 3, 6]) |
| >>> torch.cumulative_trapezoid(y, x) |
| tensor([[2., 5.], |
| [2., 5.], |
| [2., 5.]]) |
| |
| >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix |
| >>> # with different arbitrary spacing per row |
| >>> y = torch.ones(3, 3) |
| >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) |
| >>> torch.cumulative_trapezoid(y, x) |
| tensor([[1., 2.], |
| [2., 4.], |
| [3., 6.]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.repeat_interleave, |
| r""" |
| repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor |
| |
| Repeat elements of a tensor. |
| |
| .. warning:: |
| |
| This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. |
| |
| Args: |
| {input} |
| repeats (Tensor or int): The number of repetitions for each element. |
| repeats is broadcasted to fit the shape of the given axis. |
| dim (int, optional): The dimension along which to repeat values. |
| By default, use the flattened input array, and return a flat output |
| array. |
| |
| Keyword args: |
| output_size (int, optional): Total output size for the given axis |
| ( e.g. sum of repeats). If given, it will avoid stream synchronization |
| needed to calculate output shape of the tensor. |
| |
| Returns: |
| Tensor: Repeated tensor which has the same shape as input, except along the given axis. |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3]) |
| >>> x.repeat_interleave(2) |
| tensor([1, 1, 2, 2, 3, 3]) |
| >>> y = torch.tensor([[1, 2], [3, 4]]) |
| >>> torch.repeat_interleave(y, 2) |
| tensor([1, 1, 2, 2, 3, 3, 4, 4]) |
| >>> torch.repeat_interleave(y, 3, dim=1) |
| tensor([[1, 1, 1, 2, 2, 2], |
| [3, 3, 3, 4, 4, 4]]) |
| >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) |
| tensor([[1, 2], |
| [3, 4], |
| [3, 4]]) |
| >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) |
| tensor([[1, 2], |
| [3, 4], |
| [3, 4]]) |
| |
| If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be |
| `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, |
| `1` appears `n2` times, `2` appears `n3` times, etc. |
| |
| .. function:: repeat_interleave(repeats, *) -> Tensor |
| :noindex: |
| |
| Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. |
| |
| Args: |
| repeats (Tensor): The number of repetitions for each element. |
| |
| Returns: |
| Tensor: Repeated tensor of size `sum(repeats)`. |
| |
| Example:: |
| |
| >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) |
| tensor([0, 1, 1, 2, 2, 2]) |
| |
| """.format(**common_args), |
| ) |
| |
| add_docstr( |
| torch.tile, |
| r""" |
| tile(input, dims) -> Tensor |
| |
| Constructs a tensor by repeating the elements of :attr:`input`. |
| The :attr:`dims` argument specifies the number of repetitions |
| in each dimension. |
| |
| If :attr:`dims` specifies fewer dimensions than :attr:`input` has, then |
| ones are prepended to :attr:`dims` until all dimensions are specified. |
| For example, if :attr:`input` has shape (8, 6, 4, 2) and :attr:`dims` |
| is (2, 2), then :attr:`dims` is treated as (1, 1, 2, 2). |
| |
| Analogously, if :attr:`input` has fewer dimensions than :attr:`dims` |
| specifies, then :attr:`input` is treated as if it were unsqueezed at |
| dimension zero until it has as many dimensions as :attr:`dims` specifies. |
| For example, if :attr:`input` has shape (4, 2) and :attr:`dims` |
| is (3, 3, 2, 2), then :attr:`input` is treated as if it had the |
| shape (1, 1, 4, 2). |
| |
| .. note:: |
| |
| This function is similar to NumPy's tile function. |
| |
| Args: |
| input (Tensor): the tensor whose elements to repeat. |
| dims (tuple): the number of repetitions per dimension. |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3]) |
| >>> x.tile((2,)) |
| tensor([1, 2, 3, 1, 2, 3]) |
| >>> y = torch.tensor([[1, 2], [3, 4]]) |
| >>> torch.tile(y, (2, 2)) |
| tensor([[1, 2, 1, 2], |
| [3, 4, 3, 4], |
| [1, 2, 1, 2], |
| [3, 4, 3, 4]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.quantize_per_tensor, |
| r""" |
| quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor |
| |
| Converts a float tensor to a quantized tensor with given scale and zero point. |
| |
| Arguments: |
| input (Tensor): float tensor or list of tensors to quantize |
| scale (float or Tensor): scale to apply in quantization formula |
| zero_point (int or Tensor): offset in integer value that maps to float zero |
| dtype (:class:`torch.dtype`): the desired data type of returned tensor. |
| Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` |
| |
| Returns: |
| Tensor: A newly quantized tensor or list of quantized tensors. |
| |
| Example:: |
| |
| >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) |
| tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) |
| >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() |
| tensor([ 0, 10, 20, 30], dtype=torch.uint8) |
| >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], |
| >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) |
| (tensor([-1., 0.], size=(2,), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), |
| tensor([-2., 2.], size=(2,), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) |
| >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) |
| tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) |
| """, |
| ) |
| |
| add_docstr( |
| torch.quantize_per_tensor_dynamic, |
| r""" |
| quantize_per_tensor_dynamic(input, dtype, reduce_range) -> Tensor |
| |
| Converts a float tensor to a quantized tensor with scale and zero_point calculated |
| dynamically based on the input. |
| |
| Arguments: |
| input (Tensor): float tensor or list of tensors to quantize |
| dtype (:class:`torch.dtype`): the desired data type of returned tensor. |
| Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8`` |
| reduce_range (bool): a flag to indicate whether to reduce the range of quantized |
| data by 1 bit, it's required to avoid instruction overflow for some hardwares |
| |
| Returns: |
| Tensor: A newly (dynamically) quantized tensor |
| |
| Example:: |
| |
| >>> t = torch.quantize_per_tensor_dynamic(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.quint8, False) |
| >>> print(t) |
| tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=0.011764705882352941, |
| zero_point=85) |
| >>> t.int_repr() |
| tensor([ 0, 85, 170, 255], dtype=torch.uint8) |
| """, |
| ) |
| |
| add_docstr( |
| torch.quantize_per_channel, |
| r""" |
| quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor |
| |
| Converts a float tensor to a per-channel quantized tensor with given scales and zero points. |
| |
| Arguments: |
| input (Tensor): float tensor to quantize |
| scales (Tensor): float 1D tensor of scales to use, size should match ``input.size(axis)`` |
| zero_points (int): integer 1D tensor of offset to use, size should match ``input.size(axis)`` |
| axis (int): dimension on which apply per-channel quantization |
| dtype (:class:`torch.dtype`): the desired data type of returned tensor. |
| Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` |
| |
| Returns: |
| Tensor: A newly quantized tensor |
| |
| Example:: |
| |
| >>> x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]]) |
| >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8) |
| tensor([[-1., 0.], |
| [ 1., 2.]], size=(2, 2), dtype=torch.quint8, |
| quantization_scheme=torch.per_channel_affine, |
| scale=tensor([0.1000, 0.0100], dtype=torch.float64), |
| zero_point=tensor([10, 0]), axis=0) |
| >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr() |
| tensor([[ 0, 10], |
| [100, 200]], dtype=torch.uint8) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.quantized_batch_norm, |
| r""" |
| quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) -> Tensor |
| |
| Applies batch normalization on a 4D (NCHW) quantized tensor. |
| |
| .. math:: |
| |
| y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta |
| |
| Arguments: |
| input (Tensor): quantized tensor |
| weight (Tensor): float tensor that corresponds to the gamma, size C |
| bias (Tensor): float tensor that corresponds to the beta, size C |
| mean (Tensor): float mean value in batch normalization, size C |
| var (Tensor): float tensor for variance, size C |
| eps (float): a value added to the denominator for numerical stability. |
| output_scale (float): output quantized tensor scale |
| output_zero_point (int): output quantized tensor zero_point |
| |
| Returns: |
| Tensor: A quantized tensor with batch normalization applied. |
| |
| Example:: |
| |
| >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) |
| >>> torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2) |
| tensor([[[[-0.2000, -0.2000], |
| [ 1.6000, -0.2000]], |
| |
| [[-0.4000, -0.4000], |
| [-0.4000, 0.6000]]], |
| |
| |
| [[[-0.2000, -0.2000], |
| [-0.2000, -0.2000]], |
| |
| [[ 0.6000, -0.4000], |
| [ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.quantized_max_pool1d, |
| r""" |
| quantized_max_pool1d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor |
| |
| Applies a 1D max pooling over an input quantized tensor composed of several input planes. |
| |
| Arguments: |
| input (Tensor): quantized tensor |
| kernel_size (list of int): the size of the sliding window |
| stride (``list of int``, optional): the stride of the sliding window |
| padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2 |
| dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1 |
| ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape. |
| Defaults to False. |
| |
| |
| Returns: |
| Tensor: A quantized tensor with max_pool1d applied. |
| |
| Example:: |
| |
| >>> qx = torch.quantize_per_tensor(torch.rand(2, 2), 1.5, 3, torch.quint8) |
| >>> torch.quantized_max_pool1d(qx, [2]) |
| tensor([[0.0000], |
| [1.5000]], size=(2, 1), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.quantized_max_pool2d, |
| r""" |
| quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor |
| |
| Applies a 2D max pooling over an input quantized tensor composed of several input planes. |
| |
| Arguments: |
| input (Tensor): quantized tensor |
| kernel_size (``list of int``): the size of the sliding window |
| stride (``list of int``, optional): the stride of the sliding window |
| padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2 |
| dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1 |
| ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape. |
| Defaults to False. |
| |
| |
| Returns: |
| Tensor: A quantized tensor with max_pool2d applied. |
| |
| Example:: |
| |
| >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) |
| >>> torch.quantized_max_pool2d(qx, [2,2]) |
| tensor([[[[1.5000]], |
| |
| [[1.5000]]], |
| |
| |
| [[[0.0000]], |
| |
| [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8, |
| quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Stream, |
| r""" |
| Stream(device, *, priority) -> Stream |
| |
| An in-order queue of executing the respective tasks asynchronously in first in first out (FIFO) order. |
| It can control or synchronize the execution of other Stream or block the current host thread to ensure |
| the correct task sequencing. |
| |
| See in-depth description of the CUDA behavior at :ref:`cuda-semantics` for details |
| on the exact semantic that applies to all devices. |
| |
| Arguments: |
| device (:class:`torch.device`, optional): the desired device for the Stream. |
| If not given, the current :ref:`accelerator<accelerators>` type will be used. |
| priority (int, optional): priority of the stream, should be 0 or negative, where negative |
| numbers indicate higher priority. By default, streams have priority 0. |
| |
| Returns: |
| Stream: An torch.Stream object. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Stream.query, |
| r""" |
| Stream.query() -> bool |
| |
| Check if all the work submitted has been completed. |
| |
| Returns: |
| bool: A boolean indicating if all kernels in this stream are completed. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| >>> s_cuda.query() |
| True |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Stream.record_event, |
| r""" |
| Stream.record_event(event) -> Event |
| |
| Record an event. En-queuing it into the Stream to allow further synchronization from the current point in the FIFO queue. |
| |
| Arguments: |
| event (:class:`torch.Event`, optional): event to record. If not given, a new one will be allocated. |
| |
| Returns: |
| Event: Recorded event. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| >>> e_cuda = s_cuda.record_event() |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Stream.synchronize, |
| r""" |
| Stream.synchronize() -> None |
| |
| Wait for all the kernels in this stream to complete. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| >>> s_cuda.synchronize() |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Stream.wait_event, |
| r""" |
| Stream.wait_event(event) -> None |
| |
| Make all future work submitted to the stream wait for an event. |
| |
| Arguments: |
| event (:class:`torch.Event`): an event to wait for. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s1_cuda = torch.Stream(device='cuda') |
| >>> s2_cuda = torch.Stream(device='cuda') |
| >>> e_cuda = s1_cuda.record_event() |
| >>> s2_cuda.wait_event(e_cuda) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Stream.wait_stream, |
| r""" |
| Stream.wait_stream(stream) -> None |
| |
| Synchronize with another stream. All future work submitted to this stream will wait until all kernels |
| already submitted to the given stream are completed. |
| |
| Arguments: |
| stream (:class:`torch.Stream`): a stream to synchronize. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s1_cuda = torch.Stream(device='cuda') |
| >>> s2_cuda = torch.Stream(device='cuda') |
| >>> s2_cuda.wait_stream(s1_cuda) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Event, |
| r""" |
| Event(device, *, enable_timing) -> Event |
| |
| Query and record Stream status to identify or control dependencies across Stream and measure timing. |
| |
| Arguments: |
| device (:class:`torch.device`, optional): the desired device for the Event. |
| If not given, the current :ref:`accelerator<accelerators>` type will be used. |
| enable_timing (bool, optional): indicates if the event should measure time (default: ``False``). |
| |
| Returns: |
| Event: An torch.Event object. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> e_cuda = torch.Event(device='cuda') |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Event.elapsed_time, |
| r""" |
| Event.elapsed_time(end_event) -> float |
| |
| Returns the elapsed time in milliseconds between when this event and the :attr:`end_event` are |
| each recorded via :func:`torch.Stream.record_event`. |
| |
| Arguments: |
| end_event (:class:`torch.Event`): The ending event has been recorded. |
| |
| Returns: |
| float: Time between starting and ending event in milliseconds. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| >>> e1_cuda = s_cuda.record_event() |
| >>> e2_cuda = s_cuda.record_event() |
| >>> ms = e1_cuda.elapsed_time(e2_cuda) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Event.query, |
| r""" |
| Event.query() -> bool |
| |
| Check if the stream where this event was recorded already moved past the point where the event was recorded. |
| Always returns ``True`` if the Event was not recorded. |
| |
| Returns: |
| bool: A boolean indicating if all work currently captured by event has completed. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| >>> e_cuda = s_cuda.record_event() |
| >>> e_cuda.query() |
| True |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Event.record, |
| r""" |
| Event.record(stream) -> None |
| |
| Record the event in a given stream. The stream's device must match the event's device. |
| This function is equivalent to ``stream.record_event(self)``. |
| |
| Arguments: |
| stream (:class:`torch.Stream`, optional): A stream to be recorded. |
| If not given, the current stream will be used. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> e_cuda = torch.Event(device='cuda') |
| >>> e_cuda.record() |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Event.synchronize, |
| r""" |
| Event.synchronize() -> None |
| |
| Wait for the event to complete. This prevents the CPU thread from proceeding until the event completes. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s_cuda = torch.Stream(device='cuda') |
| >>> e_cuda = s_cuda.record_event() |
| >>> e_cuda.synchronize() |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Event.wait, |
| r""" |
| Event.wait(stream) -> None |
| |
| Make all future work submitted to the given stream wait for this event. |
| |
| Arguments: |
| stream (:class:`torch.Stream`, optional): A stream to synchronize. |
| If not given, the current stream will be used. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> s1_cuda = torch.Stream(device='cuda') |
| >>> s2_cuda = torch.Stream(device='cuda') |
| >>> e_cuda = s1_cuda.record() |
| >>> e_cuda.wait(s2) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Generator, |
| r""" |
| Generator(device='cpu') -> Generator |
| |
| Creates and returns a generator object that manages the state of the algorithm which |
| produces pseudo random numbers. Used as a keyword argument in many :ref:`inplace-random-sampling` |
| functions. |
| |
| Arguments: |
| device (:class:`torch.device`, optional): the desired device for the generator. |
| |
| Returns: |
| Generator: An torch.Generator object. |
| |
| Example:: |
| |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> g_cpu = torch.Generator() |
| >>> g_cuda = torch.Generator(device='cuda') |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Generator.set_state, |
| r""" |
| Generator.set_state(new_state) -> void |
| |
| Sets the Generator state. |
| |
| Arguments: |
| new_state (torch.ByteTensor): The desired state. |
| |
| Example:: |
| |
| >>> g_cpu = torch.Generator() |
| >>> g_cpu_other = torch.Generator() |
| >>> g_cpu.set_state(g_cpu_other.get_state()) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Generator.get_state, |
| r""" |
| Generator.get_state() -> Tensor |
| |
| Returns the Generator state as a ``torch.ByteTensor``. |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` which contains all the necessary bits |
| to restore a Generator to a specific point in time. |
| |
| Example:: |
| |
| >>> g_cpu = torch.Generator() |
| >>> g_cpu.get_state() |
| """, |
| ) |
| |
| add_docstr( |
| torch.Generator.graphsafe_set_state, |
| r""" |
| Generator.graphsafe_set_state(state) -> None |
| |
| Sets the state of the generator to the specified state in a manner that is safe for use in graph capture. |
| This method is crucial for ensuring that the generator's state can be captured in the CUDA graph. |
| |
| Arguments: |
| state (torch.Generator): A Generator point to the new state for the generator, typically obtained from `graphsafe_get_state`. |
| |
| Example: |
| >>> g_cuda = torch.Generator(device='cuda') |
| >>> g_cuda_other = torch.Generator(device='cuda') |
| >>> current_state = g_cuda_other.graphsafe_get_state() |
| >>> g_cuda.graphsafe_set_state(current_state) |
| """, |
| ) |
| |
| add_docstr( |
| torch.Generator.graphsafe_get_state, |
| r""" |
| Generator.graphsafe_get_state() -> torch.Generator |
| |
| Retrieves the current state of the generator in a manner that is safe for graph capture. |
| This method is crucial for ensuring that the generator's state can be captured in the CUDA graph. |
| |
| Returns: |
| torch.Generator: A Generator point to the current state of the generator |
| |
| Example: |
| >>> g_cuda = torch.Generator(device='cuda') |
| >>> current_state = g_cuda.graphsafe_get_state() |
| """, |
| ) |
| |
| add_docstr( |
| torch.Generator.clone_state, |
| r""" |
| Generator.clone_state() -> torch.Generator |
| |
| Clones the current state of the generator and returns a new generator pointing to this cloned state. |
| This method is beneficial for preserving a particular state of a generator to restore at a later point. |
| |
| Returns: |
| torch.Generator: A Generator pointing to the newly cloned state. |
| |
| Example: |
| >>> g_cuda = torch.Generator(device='cuda') |
| >>> cloned_state = g_cuda.clone_state() |
| """, |
| ) |
| |
| add_docstr( |
| torch.Generator.manual_seed, |
| r""" |
| Generator.manual_seed(seed) -> Generator |
| |
| Sets the seed for generating random numbers. Returns a `torch.Generator` object. Any 32-bit integer is a valid seed. |
| |
| Arguments: |
| seed (int): The desired seed. Value must be within the inclusive range |
| `[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError |
| is raised. Negative inputs are remapped to positive values with the formula |
| `0xffff_ffff_ffff_ffff + seed`. |
| |
| Returns: |
| Generator: An torch.Generator object. |
| |
| Example:: |
| |
| >>> g_cpu = torch.Generator() |
| >>> g_cpu.manual_seed(2147483647) |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Generator.initial_seed, |
| r""" |
| Generator.initial_seed() -> int |
| |
| Returns the initial seed for generating random numbers. |
| |
| Example:: |
| |
| >>> g_cpu = torch.Generator() |
| >>> g_cpu.initial_seed() |
| 2147483647 |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Generator.seed, |
| r""" |
| Generator.seed() -> int |
| |
| Gets a non-deterministic random number from std::random_device or the current |
| time and uses it to seed a Generator. |
| |
| Example:: |
| |
| >>> g_cpu = torch.Generator() |
| >>> g_cpu.seed() |
| 1516516984916 |
| """, |
| ) |
| |
| |
| add_docstr( |
| torch.Generator.device, |
| r""" |
| Generator.device -> device |
| |
| Gets the current device of the generator. |
| |
| Example:: |
| |
| >>> g_cpu = torch.Generator() |
| >>> g_cpu.device |
| device(type='cpu') |
| """, |
| ) |
| |
| add_docstr( |
| torch._assert_async, |
| r""" |
| _assert_async(tensor) -> void |
| |
| Asynchronously assert that the contents of tensor are nonzero. For CPU tensors, |
| this is equivalent to ``assert tensor`` or ``assert tensor.is_nonzero()``; for |
| CUDA tensors, we DO NOT synchronize and you may only find out the assertion |
| failed at a later CUDA kernel launch. Asynchronous assertion can be helpful for |
| testing invariants in CUDA tensors without giving up performance. This function |
| is NOT intended to be used for regular error checking, as it will trash your CUDA |
| context if the assert fails (forcing you to restart your PyTorch process.) |
| |
| Args: |
| tensor (Tensor): a one element tensor to test to see if it is nonzero. Zero |
| elements (including False for boolean tensors) cause an assertion failure |
| to be raised. |
| """, |
| ) |
| |
| add_docstr( |
| torch.searchsorted, |
| r""" |
| searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) -> Tensor |
| |
| Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the |
| corresponding values in :attr:`values` were inserted before the indices, when sorted, the order |
| of the corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved. |
| Return a new tensor with the same size as :attr:`values`. More formally, |
| the returned index satisfies the following rules: |
| |
| .. list-table:: |
| :widths: 12 10 78 |
| :header-rows: 1 |
| |
| * - :attr:`sorted_sequence` |
| - :attr:`right` |
| - *returned index satisfies* |
| * - 1-D |
| - False |
| - ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]`` |
| * - 1-D |
| - True |
| - ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]`` |
| * - N-D |
| - False |
| - ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]`` |
| * - N-D |
| - True |
| - ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]`` |
| |
| Args: |
| sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost* |
| dimension unless :attr:`sorter` is provided, in which case the sequence does not |
| need to be sorted |
| values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). |
| |
| Keyword args: |
| out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. |
| Default value is False, i.e. default output data type is torch.int64. |
| right (bool, optional): if False, return the first suitable location that is found. If True, return the |
| last such index. If no suitable index found, return 0 for non-numerical value |
| (eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence` |
| (one pass the last index of the *innermost* dimension). In other words, if False, |
| gets the lower bound index for each value in :attr:`values` on the corresponding |
| *innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper |
| bound index instead. Default value is False. :attr:`side` does the same and is |
| preferred. It will error if :attr:`side` is set to "left" while this is True. |
| side (str, optional): the same as :attr:`right` but preferred. "left" corresponds to False for :attr:`right` |
| and "right" corresponds to True for :attr:`right`. It will error if this is set to |
| "left" while :attr:`right` is True. Default value is None. |
| out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided. |
| sorter (LongTensor, optional): if provided, a tensor matching the shape of the unsorted |
| :attr:`sorted_sequence` containing a sequence of indices that sort it in the |
| ascending order on the innermost dimension |
| |
| |
| Example:: |
| |
| >>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) |
| >>> sorted_sequence |
| tensor([[ 1, 3, 5, 7, 9], |
| [ 2, 4, 6, 8, 10]]) |
| >>> values = torch.tensor([[3, 6, 9], [3, 6, 9]]) |
| >>> values |
| tensor([[3, 6, 9], |
| [3, 6, 9]]) |
| >>> torch.searchsorted(sorted_sequence, values) |
| tensor([[1, 3, 4], |
| [1, 2, 4]]) |
| >>> torch.searchsorted(sorted_sequence, values, side='right') |
| tensor([[2, 3, 5], |
| [1, 3, 4]]) |
| |
| >>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) |
| >>> sorted_sequence_1d |
| tensor([1, 3, 5, 7, 9]) |
| >>> torch.searchsorted(sorted_sequence_1d, values) |
| tensor([[1, 3, 4], |
| [1, 3, 4]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.bucketize, |
| r""" |
| bucketize(input, boundaries, *, out_int32=False, right=False, out=None) -> Tensor |
| |
| Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the |
| boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size |
| as :attr:`input`. If :attr:`right` is False (default), then the left boundary is open. Note that |
| this behavior is opposite the behavior of |
| `numpy.digitize <https://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html>`_. |
| More formally, the returned index satisfies the following rules: |
| |
| .. list-table:: |
| :widths: 15 85 |
| :header-rows: 1 |
| |
| * - :attr:`right` |
| - *returned index satisfies* |
| * - False |
| - ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]`` |
| * - True |
| - ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]`` |
| |
| Args: |
| input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). |
| boundaries (Tensor): 1-D tensor, must contain a strictly increasing sequence, or the return value is undefined. |
| |
| Keyword args: |
| out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. |
| Default value is False, i.e. default output data type is torch.int64. |
| right (bool, optional): if False, return the first suitable location that is found. If True, return the |
| last such index. If no suitable index found, return 0 for non-numerical value |
| (eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index). |
| In other words, if False, gets the lower bound index for each value in :attr:`input` |
| from :attr:`boundaries`. If True, gets the upper bound index instead. |
| Default value is False. |
| out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided. |
| |
| |
| Example:: |
| |
| >>> boundaries = torch.tensor([1, 3, 5, 7, 9]) |
| >>> boundaries |
| tensor([1, 3, 5, 7, 9]) |
| >>> v = torch.tensor([[3, 6, 9], [3, 6, 9]]) |
| >>> v |
| tensor([[3, 6, 9], |
| [3, 6, 9]]) |
| >>> torch.bucketize(v, boundaries) |
| tensor([[1, 3, 4], |
| [1, 3, 4]]) |
| >>> torch.bucketize(v, boundaries, right=True) |
| tensor([[2, 3, 5], |
| [2, 3, 5]]) |
| """, |
| ) |
| |
| add_docstr( |
| torch.view_as_real_copy, |
| r""" |
| Performs the same operation as :func:`torch.view_as_real`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.view_as_complex_copy, |
| r""" |
| Performs the same operation as :func:`torch.view_as_complex`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.as_strided_copy, |
| r""" |
| Performs the same operation as :func:`torch.as_strided`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.diagonal_copy, |
| r""" |
| Performs the same operation as :func:`torch.diagonal`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.expand_copy, |
| r""" |
| Performs the same operation as :func:`torch.expand`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.permute_copy, |
| r""" |
| Performs the same operation as :func:`torch.permute`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.select_copy, |
| r""" |
| Performs the same operation as :func:`torch.select`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.detach_copy, |
| r""" |
| Performs the same operation as :func:`torch.detach`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.slice_copy, |
| r""" |
| Performs the same operation as :func:`torch.slice`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.split_copy, |
| r""" |
| Performs the same operation as :func:`torch.split`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.split_with_sizes_copy, |
| r""" |
| Performs the same operation as :func:`torch.split_with_sizes`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.squeeze_copy, |
| r""" |
| Performs the same operation as :func:`torch.squeeze`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.t_copy, |
| r""" |
| Performs the same operation as :func:`torch.t`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.transpose_copy, |
| r""" |
| Performs the same operation as :func:`torch.transpose`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.unsqueeze_copy, |
| r""" |
| Performs the same operation as :func:`torch.unsqueeze`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.indices_copy, |
| r""" |
| Performs the same operation as :func:`torch.indices`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.values_copy, |
| r""" |
| Performs the same operation as :func:`torch.values`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.crow_indices_copy, |
| r""" |
| Performs the same operation as :func:`torch.crow_indices`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.col_indices_copy, |
| r""" |
| Performs the same operation as :func:`torch.col_indices`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.unbind_copy, |
| r""" |
| Performs the same operation as :func:`torch.unbind`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.view_copy, |
| r""" |
| Performs the same operation as :func:`torch.view`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.unfold_copy, |
| r""" |
| Performs the same operation as :func:`torch.unfold`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| add_docstr( |
| torch.alias_copy, |
| r""" |
| Performs the same operation as :func:`torch.alias`, but all output tensors |
| are freshly created instead of aliasing the input. |
| """, |
| ) |
| |
| for unary_base_func_name in ( |
| "exp", |
| "sqrt", |
| "abs", |
| "acos", |
| "asin", |
| "atan", |
| "ceil", |
| "cos", |
| "cosh", |
| "erf", |
| "erfc", |
| "expm1", |
| "floor", |
| "log", |
| "log10", |
| "log1p", |
| "log2", |
| "neg", |
| "tan", |
| "tanh", |
| "sin", |
| "sinh", |
| "round", |
| "lgamma", |
| "frac", |
| "reciprocal", |
| "sigmoid", |
| "trunc", |
| "zero", |
| ): |
| unary_foreach_func_name = f"_foreach_{unary_base_func_name}" |
| if hasattr(torch, unary_foreach_func_name): |
| add_docstr( |
| getattr(torch, unary_foreach_func_name), |
| rf""" |
| {unary_foreach_func_name}(self: List[Tensor]) -> List[Tensor] |
| |
| Apply :func:`torch.{unary_base_func_name}` to each Tensor of the input list. |
| """, |
| ) |
| unary_inplace_foreach_func_name = f"{unary_foreach_func_name}_" |
| if hasattr(torch, unary_inplace_foreach_func_name): |
| add_docstr( |
| getattr(torch, unary_inplace_foreach_func_name), |
| rf""" |
| {unary_inplace_foreach_func_name}(self: List[Tensor]) -> None |
| |
| Apply :func:`torch.{unary_base_func_name}` to each Tensor of the input list. |
| """, |
| ) |