| # mypy: allow-untyped-defs |
| import copy |
| import warnings |
| from collections import namedtuple |
| from typing import Any, Optional, Type, Union |
| from typing_extensions import deprecated |
| |
| import torch |
| import torch.nn as nn |
| from torch.ao.quantization.fake_quantize import ( |
| default_dynamic_fake_quant, |
| default_embedding_fake_quant, |
| default_embedding_fake_quant_4bit, |
| default_fake_quant, |
| default_fused_act_fake_quant, |
| default_fused_per_channel_wt_fake_quant, |
| default_fused_wt_fake_quant, |
| default_per_channel_weight_fake_quant, |
| default_weight_fake_quant, |
| FakeQuantize, |
| FakeQuantizeBase, |
| fused_per_channel_wt_fake_quant_range_neg_127_to_127, |
| fused_wt_fake_quant_range_neg_127_to_127, |
| FusedMovingAvgObsFakeQuantize, |
| ) |
| |
| from .observer import ( |
| _PartialWrapper, |
| default_debug_observer, |
| default_dynamic_quant_observer, |
| default_float_qparams_observer, |
| default_float_qparams_observer_4bit, |
| default_observer, |
| default_per_channel_weight_observer, |
| default_placeholder_observer, |
| default_reuse_input_observer, |
| default_weight_observer, |
| HistogramObserver, |
| MinMaxObserver, |
| MovingAverageMinMaxObserver, |
| NoopObserver, |
| ObserverBase, |
| per_channel_weight_observer_range_neg_127_to_127, |
| PlaceholderObserver, |
| ReuseInputObserver, |
| weight_observer_range_neg_127_to_127, |
| ) |
| |
| |
| __all__ = [ |
| "QConfig", |
| # TODO: deprecated, remove |
| "QConfigDynamic", |
| "default_qconfig", |
| "default_debug_qconfig", |
| "default_per_channel_qconfig", |
| "default_dynamic_qconfig", |
| "float16_dynamic_qconfig", |
| "float16_static_qconfig", |
| "per_channel_dynamic_qconfig", |
| "float_qparams_weight_only_qconfig", |
| "float_qparams_weight_only_qconfig_4bit", |
| "default_quint8_weight_qconfig", |
| "default_qat_qconfig", |
| "default_dynamic_qat_qconfig", |
| "default_weight_only_qconfig", |
| "default_activation_only_qconfig", |
| "default_qat_qconfig_v2", |
| "default_reuse_input_qconfig", |
| "default_symmetric_qnnpack_qconfig", |
| "default_per_channel_symmetric_qnnpack_qconfig", |
| "default_symmetric_qnnpack_qat_qconfig", |
| "default_per_channel_symmetric_qnnpack_qat_qconfig", |
| "default_embedding_qat_qconfig", |
| "default_embedding_qat_qconfig_4bit", |
| "get_default_qconfig", |
| "get_default_qat_qconfig", |
| "get_default_qconfig_dict", |
| "get_default_qat_qconfig_dict", |
| "QConfigAny", |
| "qconfig_equals", |
| ] |
| |
| |
| class QConfig(namedtuple("QConfig", ["activation", "weight"])): |
| """ |
| Describes how to quantize a layer or a part of the network by providing |
| settings (observer classes) for activations and weights respectively. |
| |
| |
| Note that QConfig needs to contain observer **classes** (like MinMaxObserver) or a callable that returns |
| instances on invocation, not the concrete observer instances themselves. |
| Quantization preparation function will instantiate observers multiple times for each of the layers. |
| |
| |
| Observer classes have usually reasonable default arguments, but they can be overwritten with `with_args` |
| method (that behaves like functools.partial):: |
| |
| my_qconfig = QConfig( |
| activation=MinMaxObserver.with_args(dtype=torch.qint8), |
| weight=default_observer.with_args(dtype=torch.qint8)) |
| |
| """ |
| |
| def __new__(cls, activation, weight): |
| # catch common mistakes |
| if isinstance(activation, nn.Module) or isinstance(weight, nn.Module): |
| raise ValueError( |
| "QConfig received observer instance, please pass observer class instead. " |
| + "Use MyObserver.with_args(x=1) to override arguments to constructor if needed" |
| ) |
| return super().__new__(cls, activation, weight) |
| |
| |
| @deprecated( |
| "`QConfigDynamic` is going to be deprecated in PyTorch 1.12, please use `QConfig` instead", |
| category=FutureWarning, |
| ) |
| class QConfigDynamic(namedtuple("QConfigDynamic", ["activation", "weight"])): |
| """ |
| Describes how to dynamically quantize a layer or a part of the network by providing |
| settings (observer classes) for weights. |
| |
| It's like QConfig, but for dynamic quantization. |
| |
| Note that QConfigDynamic needs to contain observer **classes** (like MinMaxObserver) or a callable that returns |
| instances on invocation, not the concrete observer instances themselves. |
| Quantization function will instantiate observers multiple times for each of the layers. |
| |
| Observer classes have usually reasonable default arguments, but they can be overwritten with `with_args` |
| method (that behaves like functools.partial):: |
| |
| my_qconfig = QConfigDynamic(weight=default_observer.with_args(dtype=torch.qint8)) |
| """ |
| |
| def __new__(cls, activation=torch.nn.Identity, weight=torch.nn.Identity): |
| # catch common mistakes |
| if isinstance(weight, nn.Module): |
| raise ValueError( |
| "QConfigDynamic received observer instance, please pass observer class instead. " |
| + "Use MyObserver.with_args(x=1) to override arguments to constructor if needed" |
| ) |
| return super().__new__(cls, activation, weight) |
| |
| |
| default_qconfig = QConfig(activation=default_observer, weight=default_weight_observer) |
| """ |
| Default qconfig configuration. |
| """ |
| |
| default_debug_qconfig = QConfig( |
| weight=default_weight_observer, activation=default_debug_observer |
| ) |
| """ |
| Default qconfig configuration for debugging. |
| """ |
| |
| default_per_channel_qconfig = QConfig( |
| activation=default_observer, weight=default_per_channel_weight_observer |
| ) |
| """ |
| Default qconfig configuration for per channel weight quantization. |
| """ |
| |
| default_dynamic_qconfig = QConfig( |
| activation=default_dynamic_quant_observer, weight=default_weight_observer |
| ) |
| """ |
| Default dynamic qconfig. |
| """ |
| |
| float16_dynamic_qconfig = QConfig( |
| activation=PlaceholderObserver.with_args(dtype=torch.float16, is_dynamic=True), |
| weight=PlaceholderObserver.with_args(dtype=torch.float16), |
| ) |
| """ |
| Dynamic qconfig with weights quantized to `torch.float16`. |
| """ |
| |
| float16_static_qconfig = QConfig( |
| activation=PlaceholderObserver.with_args(dtype=torch.float16), |
| weight=PlaceholderObserver.with_args(dtype=torch.float16), |
| ) |
| """ |
| Dynamic qconfig with both activations and weights quantized to `torch.float16`. |
| """ |
| |
| per_channel_dynamic_qconfig = QConfig( |
| activation=default_dynamic_quant_observer, |
| weight=default_per_channel_weight_observer, |
| ) |
| """ |
| Dynamic qconfig with weights quantized per channel. |
| """ |
| |
| float_qparams_weight_only_qconfig = QConfig( |
| activation=default_placeholder_observer, weight=default_float_qparams_observer |
| ) |
| """ |
| Dynamic qconfig with weights quantized with a floating point zero_point. |
| """ |
| |
| float_qparams_weight_only_qconfig_4bit = QConfig( |
| activation=default_placeholder_observer, weight=default_float_qparams_observer_4bit |
| ) |
| |
| default_qat_qconfig = QConfig( |
| activation=default_fake_quant, weight=default_weight_fake_quant |
| ) |
| """ |
| Default qconfig for QAT. |
| """ |
| |
| default_dynamic_qat_qconfig = QConfig( |
| activation=default_dynamic_fake_quant, weight=default_weight_fake_quant |
| ) |
| """ |
| Default qconfig for dynamic QAT. |
| """ |
| |
| default_weight_only_qconfig = QConfig( |
| activation=torch.nn.Identity, weight=default_weight_fake_quant |
| ) |
| """ |
| Default qconfig for quantizing weights only. |
| """ |
| |
| default_activation_only_qconfig = QConfig( |
| activation=default_fake_quant, weight=torch.nn.Identity |
| ) |
| """ |
| Default qconfig for quantizing activations only. |
| """ |
| |
| # QAT config that uses a fused observer + fake quant modules for optimized training performance. |
| # to modify the activation/weight observers, the default entries in fake_quantize.py can be modified. |
| default_qat_qconfig_v2 = QConfig( |
| activation=default_fused_act_fake_quant, weight=default_fused_wt_fake_quant |
| ) |
| """ |
| Fused version of `default_qat_config`, has performance benefits. |
| """ |
| |
| default_reuse_input_qconfig = QConfig( |
| activation=default_reuse_input_observer, weight=NoopObserver |
| ) |
| """ |
| Default qconfig for operators that reuse the observers from input Tensor, e.g. reshape |
| """ |
| |
| |
| def get_default_qconfig(backend="x86", version=0): |
| """ |
| Returns the default PTQ qconfig for the specified backend. |
| |
| Args: |
| * `backend` (str): a string representing the target backend. Currently supports |
| `x86` (default), `fbgemm`, `qnnpack` and `onednn`. |
| |
| Return: |
| qconfig |
| """ |
| supported_backends = ["fbgemm", "x86", "qnnpack", "onednn"] |
| if backend not in supported_backends: |
| raise AssertionError( |
| "backend: " |
| + str(backend) |
| + f" not supported. backend must be one of {supported_backends}" |
| ) |
| |
| if version == 0: |
| if backend == "fbgemm": |
| qconfig = QConfig( |
| activation=HistogramObserver.with_args(reduce_range=True), |
| weight=default_per_channel_weight_observer, |
| ) |
| elif backend == "qnnpack": |
| # TODO: make this compatible with xnnpack constraints |
| qconfig = QConfig( |
| activation=HistogramObserver.with_args(reduce_range=False), |
| weight=default_weight_observer, |
| ) |
| elif backend == "onednn": |
| if not torch.cpu._is_vnni_supported(): |
| warnings.warn( |
| "Default qconfig of oneDNN backend with reduce_range of false may have accuracy issues " |
| "on CPU without Vector Neural Network Instruction support." |
| ) |
| qconfig = QConfig( |
| activation=HistogramObserver.with_args(reduce_range=False), |
| weight=default_per_channel_weight_observer, |
| ) |
| elif backend == "x86": |
| qconfig = QConfig( |
| activation=HistogramObserver.with_args(reduce_range=True), |
| weight=default_per_channel_weight_observer, |
| ) |
| else: |
| # won't reach |
| qconfig = default_qconfig |
| else: |
| raise AssertionError( |
| "Version number: " |
| + str(version) |
| + " in get_default_qconfig is not supported. Version number must be 0" |
| ) |
| |
| return qconfig |
| |
| |
| """ |
| Default, symmetric PTQ qconfig for the specified backend. And a per_channel |
| variant of the same. |
| |
| Symmetric here applies to signed weights with zero point = 0, and additional |
| value restrictions. The activations are also signed 8-bit integers with this |
| qconfig. |
| |
| * Once this change is merged [as of 3/17/22], with backend or qengine = |
| 'qnnpack', some quantized operators with this symmetric qconfig may use |
| operators from xnnpack library. |
| |
| ** Support to use xnnpack ops with `qnnpack` backed for asymmetric |
| qconfig (returned by get_default_qconfig()) is not available yet. |
| |
| * This qconfig uses signed activations and weights. Weights have added |
| restrictions such as zero point is forced to be 0, making the weights |
| symmetric, hence the name. And the 8-bit quantized values are |
| restricting to to [-127, +127], excluding -128. |
| |
| * xnnpack has a requantization scale value restriction, 0x1p-32 <= |
| requantization_scale < 256.0 where, `requantization_scale = (input_scale |
| * kernel_scale) / (output_scale)`. Using this eps (w/ assumed max value |
| of 256) is to prevent requantization_scale to go below xnnpack lower |
| threshold. |
| """ |
| default_symmetric_qnnpack_qconfig = QConfig( |
| activation=HistogramObserver.with_args( |
| dtype=torch.qint8, reduce_range=False, eps=2**-12 |
| ), |
| weight=weight_observer_range_neg_127_to_127, |
| ) |
| |
| default_per_channel_symmetric_qnnpack_qconfig = QConfig( |
| activation=HistogramObserver.with_args( |
| dtype=torch.qint8, reduce_range=False, eps=2**-12 |
| ), |
| weight=per_channel_weight_observer_range_neg_127_to_127, |
| ) |
| |
| default_embedding_qat_qconfig = QConfig( |
| activation=NoopObserver.with_args(dtype=torch.float32), |
| weight=default_embedding_fake_quant, |
| ) |
| |
| default_embedding_qat_qconfig_4bit = QConfig( |
| activation=NoopObserver.with_args(dtype=torch.float32), |
| weight=default_embedding_fake_quant_4bit, |
| ) |
| |
| default_quint8_weight_qconfig = QConfig( |
| activation=HistogramObserver, weight=MinMaxObserver |
| ) |
| |
| |
| def get_default_qat_qconfig(backend="x86", version=1): |
| """ |
| Returns the default QAT qconfig for the specified backend. |
| |
| Args: |
| * `backend` (str): a string representing the target backend. Currently supports |
| `x86` (default), `fbgemm`, `qnnpack` and `onednn`. |
| * `version`: version, for backwards compatibility. Can be `None` or `1`. |
| |
| Return: |
| qconfig |
| """ |
| supported_backends = ["fbgemm", "x86", "qnnpack", "onednn"] |
| if backend not in supported_backends: |
| raise AssertionError( |
| "backend: " |
| + str(backend) |
| + f" not supported. backend must be one of {supported_backends}" |
| ) |
| |
| # Histogram observer is too slow for quantization aware training |
| if version == 0: |
| if backend == "fbgemm": |
| qconfig = QConfig( |
| activation=FakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=0, |
| quant_max=255, |
| reduce_range=True, |
| ), |
| weight=default_per_channel_weight_fake_quant, |
| ) |
| elif backend == "qnnpack": |
| qconfig = QConfig( |
| activation=FakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=0, |
| quant_max=255, |
| reduce_range=False, |
| ), |
| weight=default_weight_fake_quant, |
| ) |
| elif backend == "onednn": |
| qconfig = QConfig( |
| activation=FakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255 |
| ), |
| weight=default_per_channel_weight_fake_quant, |
| ) |
| elif backend == "x86": |
| qconfig = QConfig( |
| activation=FakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=0, |
| quant_max=255, |
| reduce_range=True, |
| ), |
| weight=default_per_channel_weight_fake_quant, |
| ) |
| else: |
| qconfig = default_qat_qconfig |
| # Use the fused observe + fake_quant modules for doing QAT. |
| elif version == 1: |
| if backend == "fbgemm": |
| qconfig = QConfig( |
| activation=FusedMovingAvgObsFakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=0, |
| quant_max=255, |
| reduce_range=True, |
| ), |
| weight=default_fused_per_channel_wt_fake_quant, |
| ) |
| elif backend == "qnnpack": |
| # TODO: make this compatible with xnnpack constraints |
| qconfig = QConfig( |
| activation=FusedMovingAvgObsFakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=0, |
| quant_max=255, |
| reduce_range=False, |
| ), |
| weight=default_fused_wt_fake_quant, |
| ) |
| elif backend == "onednn": |
| qconfig = QConfig( |
| activation=FusedMovingAvgObsFakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, quant_min=0, quant_max=255 |
| ), |
| weight=default_fused_per_channel_wt_fake_quant, |
| ) |
| elif backend == "x86": |
| qconfig = QConfig( |
| activation=FusedMovingAvgObsFakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=0, |
| quant_max=255, |
| reduce_range=True, |
| ), |
| weight=default_fused_per_channel_wt_fake_quant, |
| ) |
| else: |
| qconfig = default_qat_qconfig_v2 |
| else: |
| raise AssertionError( |
| "Version number: " |
| + str(version) |
| + "in get_default_qat_qconfig is not supported. Version number must be 0 or 1" |
| ) |
| |
| return qconfig |
| |
| |
| """ |
| Default symmetric QAT qconfig for qnnpack. And its per channel weight variant. |
| """ |
| default_symmetric_qnnpack_qat_qconfig = QConfig( |
| activation=FusedMovingAvgObsFakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=-128, |
| quant_max=127, |
| dtype=torch.qint8, |
| reduce_range=False, |
| eps=2**-12, |
| ), |
| weight=fused_wt_fake_quant_range_neg_127_to_127, |
| ) |
| |
| default_per_channel_symmetric_qnnpack_qat_qconfig = QConfig( |
| activation=FusedMovingAvgObsFakeQuantize.with_args( |
| observer=MovingAverageMinMaxObserver, |
| quant_min=-128, |
| quant_max=127, |
| dtype=torch.qint8, |
| reduce_range=False, |
| eps=2**-12, |
| ), |
| weight=fused_per_channel_wt_fake_quant_range_neg_127_to_127, |
| ) |
| |
| _default_fp32_placeholder_qconfig = QConfig( |
| activation=PlaceholderObserver.with_args(dtype=torch.float32), |
| weight=PlaceholderObserver.with_args(dtype=torch.float32), |
| ) |
| |
| _default_quint8_placeholder_qconfig = QConfig( |
| activation=PlaceholderObserver.with_args(dtype=torch.quint8), |
| # operators using this qconfig doesn't have weights |
| weight=None, |
| ) |
| |
| |
| @deprecated( |
| "`torch.ao.quantization.get_default_qconfig_dict` is deprecated and will be removed in " |
| "a future version. Please use `torch.ao.quantization.get_default_qconfig_mapping` instead.", |
| category=FutureWarning, |
| ) |
| def get_default_qconfig_dict(backend="x86", version=0): |
| return torch.ao.quantization.get_default_qconfig_mapping(backend, version).to_dict() |
| |
| |
| @deprecated( |
| "`torch.ao.quantization.get_default_qat_qconfig_dict` is deprecated and will be removed in " |
| "a future version. Please use `torch.ao.quantization.get_default_qat_qconfig_mapping` instead.", |
| category=FutureWarning, |
| ) |
| def get_default_qat_qconfig_dict(backend="x86", version=1): |
| return torch.ao.quantization.get_default_qat_qconfig_mapping( |
| backend, version |
| ).to_dict() |
| |
| |
| def _assert_valid_qconfig(qconfig: Optional[QConfig], mod: torch.nn.Module) -> None: |
| """ |
| Verifies that this `qconfig` is valid. |
| """ |
| if qconfig is None: |
| return |
| is_conv_transpose_mod = isinstance( |
| mod, |
| (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d), |
| ) |
| if is_conv_transpose_mod: |
| if qconfig.weight is None: |
| # for now, we assume that any qconfig for ConvTranspose without a weight is valid |
| return |
| example_observer = qconfig.weight() |
| is_per_channel = isinstance( |
| example_observer, |
| ( |
| torch.ao.quantization.PerChannelMinMaxObserver, |
| torch.ao.quantization.MovingAveragePerChannelMinMaxObserver, |
| ), |
| ) |
| assert ( |
| not is_per_channel |
| ), "Per channel weight observer is not supported yet for ConvTranspose{n}d." |
| |
| |
| QConfigAny = Optional[QConfig] |
| QConfigAny.__module__ = "torch.ao.quantization.qconfig" |
| |
| |
| def _add_module_to_qconfig_obs_ctr( |
| qconfig: QConfigAny, module: Optional[nn.Module] |
| ) -> Any: |
| r"""This is a helper function for use in quantization prepare that updates a qconfig so that |
| the constructors stored in the qconfig will create observers on the same device that |
| 'module' is on. This is intended to be used when the qconfigs are propagated to each |
| module in order to avoid potential device alignment issues. |
| |
| Args: |
| qconfig: QConfig with obs constructors stored in activation and weight |
| module: module which the qconfig is related to |
| |
| Return: |
| qconfig: configured so that obs constructors set to construct on the same device as module |
| """ |
| |
| if module is None or qconfig is None or qconfig._fields != ("activation", "weight"): |
| return qconfig |
| |
| def get_factory_kwargs_based_on_module_device(): |
| assert isinstance(module, torch.nn.Module) |
| devices = {p.device for p in module.parameters()} | { |
| p.device for p in module.buffers() |
| } |
| device = next(iter(devices)) if len(devices) > 0 else None |
| return None if device is None else {"device": device} |
| |
| def configure_constructor_to_put_obs_on_module_device(original_constructor): |
| try: |
| # check if constructor can accept factory_kwargs |
| check = original_constructor.with_args(factory_kwargs=None) |
| check() |
| return original_constructor.with_callable_args( |
| factory_kwargs=get_factory_kwargs_based_on_module_device |
| ) |
| except AttributeError: # qconfig doesn't have activation or weight |
| return original_constructor |
| except TypeError: # the class doesn't accept factory_kwargs argument |
| return original_constructor |
| |
| activation = configure_constructor_to_put_obs_on_module_device(qconfig.activation) |
| weight = configure_constructor_to_put_obs_on_module_device(qconfig.weight) |
| |
| return QConfig(activation, weight) |
| |
| |
| _ObserverOrFakeQuantizeConstructor = Union[ |
| _PartialWrapper, Type[ObserverBase], Type[FakeQuantizeBase] |
| ] |
| |
| |
| def _obs_or_fq_ctr_equals( |
| obs_or_fq1: _ObserverOrFakeQuantizeConstructor, |
| obs_or_fq2: _ObserverOrFakeQuantizeConstructor, |
| ): |
| if isinstance(obs_or_fq1, _PartialWrapper) and isinstance( |
| obs_or_fq2, _PartialWrapper |
| ): |
| return _partial_wrapper_equals(obs_or_fq1, obs_or_fq2) |
| return obs_or_fq1 == obs_or_fq2 |
| |
| |
| def _partial_wrapper_equals(obs_or_fq1: _PartialWrapper, obs_or_fq2: _PartialWrapper): |
| """ |
| Return whether the two partial wrappers are equal, |
| """ |
| # functools.partial has no __eq__ operator defined so '==' defaults to 'is' |
| obs_or_fq1_keywords = copy.copy(obs_or_fq1.p.keywords) |
| obs_or_fq2_keywords = copy.copy(obs_or_fq2.p.keywords) |
| keywords_equal = True |
| # compare observer constructor with _obs_or_fq_ctr_equals since direct compare would fail |
| if "observer" in obs_or_fq1_keywords and "observer" in obs_or_fq2_keywords: |
| keywords_equal = keywords_equal and _obs_or_fq_ctr_equals( |
| obs_or_fq1_keywords["observer"], obs_or_fq2_keywords["observer"] |
| ) |
| obs_or_fq1_keywords.pop("observer") |
| obs_or_fq2_keywords.pop("observer") |
| keywords_equal = keywords_equal and obs_or_fq1_keywords == obs_or_fq2_keywords |
| return ( |
| obs_or_fq1.p.func == obs_or_fq2.p.func |
| and obs_or_fq1.p.args == obs_or_fq2.p.args |
| and keywords_equal |
| ) |
| |
| |
| def qconfig_equals(q1: QConfigAny, q2: QConfigAny): |
| """ |
| Returns `True` if `q1` equals `q2`, and `False` otherwise. |
| """ |
| if q1 is None or q2 is None: |
| return q1 == q2 |
| else: |
| assert q1 is not None and q2 is not None |
| try: |
| # Qconfig weight and activation can be either a partial wrapper, |
| # or an observer class. Special handling is required (above) for |
| # comparing partial wrappers. |
| activation_same = _obs_or_fq_ctr_equals(q1.activation, q2.activation) |
| weight_same = _obs_or_fq_ctr_equals(q1.weight, q2.weight) |
| return activation_same and weight_same |
| except AttributeError: |
| return q1 == q2 |
| |
| |
| def _activation_is_memoryless(qconfig: QConfig): |
| """ |
| Return whether the observer for activations defined in the given QConfig is memoryless. |
| This means a MovingAverage observer with averaging constant equal to 1. |
| """ |
| |
| def _is_memoryless(observer): |
| return ( |
| hasattr(observer, "averaging_constant") and observer.averaging_constant == 1 |
| ) |
| |
| act = qconfig.activation() |
| if isinstance(act, FakeQuantizeBase) and hasattr(act, "activation_post_process"): |
| return _is_memoryless(act.activation_post_process) |
| else: |
| return _is_memoryless(act) |
| |
| |
| def _is_reuse_input_qconfig(qconfig: Optional[QConfig]): |
| return ( |
| qconfig is not None |
| and isinstance(qconfig.activation(), ReuseInputObserver) |
| and isinstance(qconfig.weight(), NoopObserver) |
| ) |