| """ |
| Python implementation of ``__torch_function__`` |
| |
| While most of the torch API and handling for ``__torch_function__`` happens |
| at the C++ level, some of the torch API is written in Python so we need |
| python-level handling for ``__torch_function__`` overrides as well. The main |
| developer-facing functionality in this file are handle_torch_function and |
| has_torch_function. See torch/functional.py and test/test_overrides.py |
| for usage examples. |
| |
| Note |
| ---- |
| heavily inspired by NumPy's ``__array_function__`` (see: |
| https://github.com/pytorch/pytorch/issues/24015 and |
| https://www.numpy.org/neps/nep-0018-array-function-protocol.html |
| ) |
| |
| If changing this file in a way that can affect ``__torch_function__`` overhead, |
| please report the benchmarks in ``benchmarks/overrides_benchmark``. See the |
| instructions in the ``README.md`` in that directory. |
| """ |
| |
| import __future__ # noqa: F404 |
| |
| import collections |
| import contextlib |
| import functools |
| import types |
| import warnings |
| from functools import wraps |
| from typing import Any, Callable, Dict, Iterable, List, Set, Tuple, Type |
| |
| import torch |
| from torch._C import ( |
| _add_docstr, |
| _get_function_stack_at, |
| _has_torch_function, |
| _has_torch_function_unary, |
| _has_torch_function_variadic, |
| _is_torch_function_mode_enabled, |
| _len_torch_function_stack, |
| _pop_torch_function_stack, |
| _push_on_torch_function_stack, |
| ) |
| |
| |
| __all__ = [ |
| "get_ignored_functions", |
| "get_overridable_functions", |
| "get_testing_overrides", |
| "handle_torch_function", |
| "has_torch_function", |
| "resolve_name", |
| "is_tensor_like", |
| "is_tensor_method_or_property", |
| "wrap_torch_function", |
| "enable_reentrant_dispatch", |
| ] |
| |
| |
| def _disable_user_warnings( |
| func: Callable, |
| regex: str = ".*is deprecated, please use.*", |
| module: str = "torch", |
| ) -> Callable: |
| """ |
| Decorator that temporarily disables ``UserWarning``s for the given ``module`` if the warning message matches the |
| given ``regex`` pattern. |
| |
| Arguments |
| --------- |
| func : function |
| Function to disable the warnings for. |
| regex : str |
| A regex pattern compilable by ``re.compile``. This is used to match the ``UserWarning`` message. |
| module : str |
| The python module to which the filtering should be restricted. |
| |
| Returns |
| ------- |
| function |
| The wrapped function. |
| """ |
| |
| @wraps(func) |
| def wrapper(*args, **kwargs): |
| with warnings.catch_warnings(): |
| warnings.filterwarnings( |
| "ignore", category=UserWarning, message=regex, module=module |
| ) |
| return func(*args, **kwargs) |
| |
| return wrapper |
| |
| |
| @functools.lru_cache(None) |
| @_disable_user_warnings |
| def get_ignored_functions() -> Set[Callable]: |
| """ |
| Return public functions that cannot be overridden by ``__torch_function__``. |
| |
| Returns |
| ------- |
| Set[Callable] |
| A tuple of functions that are publicly available in the torch API but cannot |
| be overridden with ``__torch_function__``. Mostly this is because none of the |
| arguments of these functions are tensors or tensor-likes. |
| |
| Examples |
| -------- |
| >>> torch.Tensor.as_subclass in torch.overrides.get_ignored_functions() |
| True |
| >>> torch.add in torch.overrides.get_ignored_functions() |
| False |
| """ |
| Tensor = torch.Tensor |
| return { |
| torch.typename, |
| torch.is_tensor, |
| torch.is_storage, |
| torch.set_default_tensor_type, |
| torch.set_default_device, |
| torch.get_default_device, |
| torch.set_rng_state, |
| torch.get_rng_state, |
| torch.manual_seed, |
| torch.initial_seed, |
| torch.seed, |
| torch.save, |
| torch.load, |
| torch.set_printoptions, |
| torch.fork, |
| torch.get_default_dtype, |
| torch.get_num_interop_threads, |
| torch.get_num_threads, |
| torch.init_num_threads, |
| torch.import_ir_module, |
| torch.import_ir_module_from_buffer, |
| torch.is_anomaly_enabled, |
| torch.is_anomaly_check_nan_enabled, |
| torch.is_grad_enabled, |
| torch.merge_type_from_type_comment, |
| torch.parse_ir, |
| torch.parse_schema, |
| torch.parse_type_comment, |
| torch.set_anomaly_enabled, |
| torch.set_flush_denormal, |
| torch.set_num_interop_threads, |
| torch.set_num_threads, |
| torch.wait, |
| torch.as_tensor, |
| torch.from_numpy, |
| torch.get_device, |
| torch.tensor, |
| torch.default_generator, |
| torch.has_cuda, |
| torch.has_cudnn, |
| torch.has_lapack, |
| torch.device, |
| torch.dtype, |
| torch.finfo, |
| torch.has_mkl, |
| torch.has_mps, |
| torch.has_mkldnn, |
| torch.has_openmp, |
| torch.iinfo, |
| torch.memory_format, |
| torch.qscheme, |
| torch.set_grad_enabled, |
| torch.no_grad, |
| torch.enable_grad, |
| torch.inference_mode, |
| torch.is_inference_mode_enabled, |
| torch.layout, |
| torch.align_tensors, |
| torch.arange, |
| torch.as_strided, |
| torch.bartlett_window, |
| torch.blackman_window, |
| torch.broadcast_shapes, |
| torch.can_cast, |
| torch.compile, |
| torch.cudnn_affine_grid_generator, |
| torch.cudnn_batch_norm, |
| torch.cudnn_convolution, |
| torch.cudnn_convolution_transpose, |
| torch.cudnn_convolution_relu, |
| torch.cudnn_convolution_add_relu, |
| torch.cudnn_grid_sampler, |
| torch.cudnn_is_acceptable, |
| torch.empty, |
| torch.empty_permuted, |
| torch.empty_strided, |
| torch.empty_quantized, |
| torch.export.export, |
| torch.export.load, |
| torch.export.register_dataclass, |
| torch.export.save, |
| torch.eye, |
| torch.fft.fftfreq, |
| torch.fft.rfftfreq, |
| torch.from_file, |
| torch.full, |
| torch.fill, |
| torch.hamming_window, |
| torch.hann_window, |
| torch.kaiser_window, |
| torch.linspace, |
| torch.logspace, |
| torch.mkldnn_adaptive_avg_pool2d, |
| torch.mkldnn_convolution, |
| torch.mkldnn_max_pool2d, |
| torch.mkldnn_max_pool3d, |
| torch.mkldnn_linear_backward_weights, |
| torch.mkldnn_rnn_layer, |
| torch.normal, |
| torch.ones, |
| torch.promote_types, |
| torch.rand, |
| torch.randn, |
| torch.randint, |
| torch.randperm, |
| torch.range, |
| torch.result_type, |
| torch.scalar_tensor, |
| torch.sparse_coo_tensor, |
| torch.sparse_compressed_tensor, |
| torch.sparse_csr_tensor, |
| torch.sparse_csc_tensor, |
| torch.sparse_bsr_tensor, |
| torch.sparse_bsc_tensor, |
| torch.sym_constrain_range, |
| torch.sym_constrain_range_for_size, |
| torch.tril_indices, |
| torch.triu_indices, |
| torch.vander, |
| torch.zeros, |
| torch._jit_internal.boolean_dispatch, |
| torch.nn.functional.assert_int_or_pair, |
| torch.nn.functional.upsample, |
| torch.nn.functional.upsample_bilinear, |
| torch.nn.functional.upsample_nearest, |
| torch.nn.functional.has_torch_function, |
| torch.nn.functional.has_torch_function_unary, |
| torch.nn.functional.has_torch_function_variadic, |
| torch.nn.functional.handle_torch_function, |
| torch.nn.functional.sigmoid, |
| torch.nn.functional.hardsigmoid, |
| torch.nn.functional.tanh, |
| torch.nn.functional._canonical_mask, |
| torch.nn.functional._none_or_dtype, |
| # Doesn't actually take or return tensor arguments |
| torch.nn.init.calculate_gain, |
| # These are deprecated; don't test them |
| torch.nn.init.uniform, |
| torch.nn.init.normal, |
| torch.nn.init.constant, |
| torch.nn.init.eye, |
| torch.nn.init.dirac, |
| torch.nn.init.xavier_uniform, |
| torch.nn.init.xavier_normal, |
| torch.nn.init.kaiming_uniform, |
| torch.nn.init.kaiming_normal, |
| torch.nn.init.orthogonal, |
| torch.nn.init.sparse, |
| torch.nested.to_padded_tensor, |
| has_torch_function, |
| handle_torch_function, |
| torch.set_autocast_enabled, |
| torch.is_autocast_enabled, |
| torch.set_autocast_dtype, |
| torch.get_autocast_dtype, |
| torch.clear_autocast_cache, |
| torch.set_autocast_cpu_enabled, |
| torch.is_autocast_cpu_enabled, |
| torch.set_autocast_xla_enabled, |
| torch.is_autocast_xla_enabled, |
| torch.set_autocast_ipu_enabled, |
| torch.is_autocast_ipu_enabled, |
| torch.set_autocast_cpu_dtype, |
| torch.get_autocast_cpu_dtype, |
| torch.set_autocast_ipu_dtype, |
| torch.get_autocast_ipu_dtype, |
| torch.get_autocast_gpu_dtype, |
| torch.set_autocast_gpu_dtype, |
| torch.get_autocast_xla_dtype, |
| torch.set_autocast_xla_dtype, |
| torch.autocast_increment_nesting, |
| torch.autocast_decrement_nesting, |
| torch.is_autocast_cache_enabled, |
| torch.set_autocast_cache_enabled, |
| torch.nn.functional.hardswish, |
| torch.is_vulkan_available, |
| torch.are_deterministic_algorithms_enabled, |
| torch.use_deterministic_algorithms, |
| torch.is_deterministic_algorithms_warn_only_enabled, |
| torch.set_deterministic_debug_mode, |
| torch.get_device_module, |
| torch.get_deterministic_debug_mode, |
| torch.set_float32_matmul_precision, |
| torch.get_float32_matmul_precision, |
| torch.unify_type_list, |
| torch.is_warn_always_enabled, |
| torch.set_warn_always, |
| torch.vitals_enabled, |
| torch.set_vital, |
| torch.read_vitals, |
| torch.vmap, |
| torch.cond, |
| torch.frombuffer, |
| torch.asarray, |
| torch._functional_sym_constrain_range, |
| torch._make_dep_token, |
| Tensor.__delitem__, |
| Tensor.__dir__, |
| Tensor.__getattribute__, |
| Tensor.__init__, |
| Tensor.__iter__, |
| Tensor.__init_subclass__, |
| Tensor.__delattr__, |
| Tensor.__setattr__, |
| Tensor.__torch_function__, |
| Tensor.__torch_dispatch__, |
| Tensor.__new__, |
| Tensor.__class__, |
| Tensor.__subclasshook__, |
| Tensor.__hash__, |
| Tensor.as_subclass, |
| Tensor.eig, |
| Tensor.lstsq, |
| Tensor.reinforce, |
| Tensor.new, |
| Tensor.new_tensor, |
| Tensor.new_empty, |
| Tensor.new_empty_strided, |
| Tensor.new_zeros, |
| Tensor.new_ones, |
| Tensor.new_full, |
| Tensor._make_subclass, |
| Tensor.solve, |
| Tensor.symeig, |
| Tensor.stride, |
| Tensor.unflatten, |
| Tensor.to_sparse_coo, |
| Tensor.to_sparse_csr, |
| Tensor.to_sparse_csc, |
| Tensor.to_sparse_bsr, |
| Tensor.to_sparse_bsc, |
| Tensor._to_sparse, |
| Tensor._to_sparse_csr, |
| Tensor._to_sparse_csc, |
| Tensor._to_sparse_bsr, |
| Tensor._to_sparse_bsc, |
| Tensor._typed_storage, |
| Tensor._reduce_ex_internal, |
| Tensor._fix_weakref, |
| Tensor._view_func, |
| Tensor._view_func_unsafe, |
| Tensor._rev_view_func_unsafe, |
| Tensor._make_wrapper_subclass, |
| Tensor._python_dispatch.__get__, |
| Tensor._has_symbolic_sizes_strides.__get__, |
| Tensor._conj, |
| Tensor._conj_physical, |
| Tensor._lazy_clone, |
| Tensor._neg_view, |
| Tensor._is_zerotensor, |
| Tensor._is_all_true, |
| Tensor._is_any_true, |
| Tensor._addmm_activation, |
| Tensor.to_padded_tensor, |
| Tensor._use_count, |
| } |
| |
| |
| @functools.lru_cache(None) |
| def get_default_nowrap_functions() -> Set[Callable]: |
| """ |
| Return public functions that do not wrap in a subclass when invoked by |
| the default ``Tensor.__torch_function__`` that preserves subclasses. Typically, |
| these functions represent field accesses (i.e., retrieving a Tensor that |
| is stored somewhere on the Tensor) as opposed to computation. Users of |
| these functions expect object identity to be preserved over multiple accesses |
| (e.g., ``a.grad is a.grad``) which cannot be upheld if we're wrapping on |
| the fly every time (furthermore, the tensor stored here might already be |
| the subclass, in which case wrapping really ought not to happen). |
| |
| Not ALL property accessors have this property; for example ``Tensor.T`` actually |
| just creates a new transposed tensor on the fly, and so we SHOULD interpose on |
| these calls (you need to check the implementation of the function to see if |
| this is the case or not). Additionally, if a property accessor doesn't return a Tensor, |
| it doesn't have to be on this list (though it is harmless if it is). |
| """ |
| Tensor = torch.Tensor |
| return { |
| Tensor._base.__get__, |
| Tensor.grad.__get__, |
| Tensor._grad.__get__, |
| } |
| |
| |
| @functools.lru_cache(None) |
| @_disable_user_warnings |
| def get_testing_overrides() -> Dict[Callable, Callable]: |
| """Return a dict containing dummy overrides for all overridable functions |
| |
| Returns |
| ------- |
| Dict[Callable, Callable] |
| A dictionary that maps overridable functions in the PyTorch API to |
| lambda functions that have the same signature as the real function |
| and unconditionally return -1. These lambda functions are useful |
| for testing API coverage for a type that defines ``__torch_function__``. |
| |
| Examples |
| -------- |
| >>> import inspect |
| >>> my_add = torch.overrides.get_testing_overrides()[torch.add] |
| >>> inspect.signature(my_add) |
| <Signature (input, other, out=None)> |
| """ |
| # Every function in the PyTorchAPI that can be overriden needs an entry |
| # in this dict. |
| # |
| # Optimally we would use inspect to get the function signature and define |
| # the lambda function procedurally but that is blocked by generating |
| # function signatures for native kernels that can be consumed by inspect. |
| # See Issue #28233. |
| Tensor = torch.Tensor |
| ret: Dict[Callable, Callable] = { |
| torch.abs: lambda input, out=None: -1, |
| torch.absolute: lambda input, out=None: -1, |
| torch.adaptive_avg_pool1d: lambda input, output_size: -1, |
| torch.adaptive_max_pool1d: lambda inputs, output_size: -1, |
| torch.acos: lambda input, out=None: -1, |
| torch.adjoint: lambda input: -1, |
| torch.arccos: lambda input, out=None: -1, |
| torch.acosh: lambda input, out=None: -1, |
| torch.arccosh: lambda input, out=None: -1, |
| torch.add: lambda input, other, out=None: -1, |
| torch.addbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1, |
| torch.addcdiv: lambda input, tensor1, tensor2, value=1, out=None: -1, |
| torch.addcmul: lambda input, tensor1, tensor2, value=1, out=None: -1, |
| torch.addmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1, |
| torch.addmv: lambda input, mat, vec, beta=1, alpha=1, out=None: -1, |
| torch.addr: lambda input, vec1, vec2, beta=1, alpha=1, out=None: -1, |
| torch.affine_grid_generator: lambda theta, size, align_corners: -1, |
| torch.all: lambda input, dim=None: -1, |
| torch.allclose: lambda input, other, trol=1e-05, atol=1e-08, equal_nan=False: -1, |
| torch.alpha_dropout: lambda input, p, train, inplace=False: -1, |
| torch.amax: lambda input, dim=None: -1, |
| torch.amin: lambda input, dim=None: -1, |
| torch.aminmax: lambda input, dim=None, keepdim=False, out=None: -1, |
| torch.angle: lambda input, out=None: -1, |
| torch.any: lambda input, dim=None, keepdim=False, out=None: -1, |
| torch.argmax: lambda input: -1, |
| torch.argmin: lambda input: -1, |
| torch.argsort: lambda input, dim=None: -1, |
| torch.asin: lambda input, out=None: -1, |
| torch._assert_async: lambda input, msg: -1, |
| torch.arcsin: lambda input, out=None: -1, |
| torch.asinh: lambda input, out=None: -1, |
| torch.arcsinh: lambda input, out=None: -1, |
| torch.atan: lambda input, out=None: -1, |
| torch.arctan: lambda input, out=None: -1, |
| torch.atan2: lambda input, other, out=None: -1, |
| torch.arctan2: lambda input, other, out=None: -1, |
| torch.atanh: lambda input, out=None: -1, |
| torch.arctanh: lambda input, out=None: -1, |
| torch.atleast_1d: lambda *tensors: -1, |
| torch.atleast_2d: lambda *tensors: -1, |
| torch.atleast_3d: lambda *tensors: -1, |
| torch.avg_pool1d: lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True: -1, |
| torch.baddbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1, |
| torch.batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled: -1, |
| torch.batch_norm_backward_elemt: lambda grad_out, input, mean, invstd, weight, sum_dy, sum_dy_xmu, count_tensor: -1, |
| torch.batch_norm_backward_reduce: lambda grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g: -1, |
| torch.batch_norm_elemt: lambda input, weight, bias, mean, invstd, eps: -1, |
| torch.batch_norm_gather_stats: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1, |
| torch.batch_norm_gather_stats_with_counts: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1, |
| torch.batch_norm_stats: lambda input, eps: -1, |
| torch.batch_norm_update_stats: lambda input, running_mean, running_var, momentum: -1, |
| torch.bernoulli: lambda input, generator=None, out=None: -1, |
| torch.bilinear: lambda input1, input2, weight, bias: -1, |
| torch.binary_cross_entropy_with_logits: ( |
| lambda input, target, weight=None, size_average=None, reduce=None, reduction="mean", pos_weight=None: -1 |
| ), |
| torch.bincount: lambda input, weights=None, minlength=0: -1, |
| torch.binomial: lambda count, prob, generator=None: -1, |
| torch.bitwise_and: lambda input, other, out=None: -1, |
| torch.bitwise_not: lambda input, out=None: -1, |
| torch.bitwise_or: lambda input, other, out=None: -1, |
| torch.bitwise_xor: lambda input, other, out=None: -1, |
| torch.bitwise_left_shift: lambda input, other, out=None: -1, |
| torch.bitwise_right_shift: lambda input, other, out=None: -1, |
| torch.block_diag: lambda *tensors: -1, |
| torch.bmm: lambda input, mat2, out=None: -1, |
| torch.broadcast_tensors: lambda *tensors: -1, |
| torch.broadcast_to: lambda self, size: -1, |
| torch.bucketize: lambda input, boundaries, out_int32=False, right=False, out=None: -1, |
| torch.cartesian_prod: lambda *tensors: -1, |
| torch.cat: lambda tensors, dim=0, out=None: -1, |
| torch.concat: lambda tensors, dim=0, out=None: -1, # alias for torch.cat |
| torch.concatenate: lambda tensors, dim=0, out=None: -1, # alias for torch.concatenate |
| torch.cdist: lambda x1, x2, p=2.0, compute_mode="use_mm_for_euclid_dist_if_necessary": -1, |
| torch.ceil: lambda input, out=None: -1, |
| torch.celu: lambda input, alpha=1.0, inplace=False: -1, |
| torch.chain_matmul: lambda *matrices, out=None: -1, |
| torch.channel_shuffle: lambda input, groups: -1, |
| torch.cholesky: lambda input, upper=False, out=None: -1, |
| torch.linalg.cholesky: lambda input, out=None: -1, |
| torch.linalg.cholesky_ex: lambda input, check_errors=False, out=None: -1, |
| torch.cholesky_inverse: lambda input, upper=False, out=None: -1, |
| torch.cholesky_solve: lambda input1, input2, upper=False, out=None: -1, |
| torch.choose_qparams_optimized: lambda input, numel, n_bins, ratio, bit_width: -1, |
| torch.chunk: lambda input, chunks, dim=0: -1, |
| torch.clamp: lambda input, min=None, max=None, out=None: -1, |
| torch.clip: lambda input, min=None, max=None, out=None: -1, |
| torch.clamp_min: lambda input, min, out=None: -1, |
| torch.clamp_max: lambda input, max, out=None: -1, |
| torch.column_stack: lambda tensors, out=None: -1, |
| torch.cov: lambda input, correction=1, fweights=None, aweights=None: -1, |
| torch.clone: lambda input: -1, |
| torch.combinations: lambda input, r=2, with_replacement=False: -1, |
| torch.complex: lambda real, imag: -1, |
| torch.copysign: lambda input, other, out=None: -1, |
| torch.polar: lambda abs, ang: -1, |
| torch.linalg.cond: lambda input, ord=None: -1, |
| torch.conj: lambda input, out=None: -1, |
| torch.conj_physical: lambda input, out=None: -1, |
| torch.resolve_conj: lambda input, out=None: -1, |
| torch.resolve_neg: lambda input, out=None: -1, |
| torch.constant_pad_nd: lambda input, pad, value=0: -1, |
| torch.conv1d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1, |
| torch.conv2d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1, |
| torch.conv3d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1, |
| torch.convolution: lambda input, weight, bias, stride, padding, dilation, transposed, output_adding, groups: -1, |
| torch.conv_tbc: lambda input, weight, bias, pad=0: -1, |
| torch.conv_transpose1d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1, |
| torch.conv_transpose2d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1, |
| torch.conv_transpose3d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1, |
| torch.corrcoef: lambda input: -1, |
| torch.cos: lambda input, out=None: -1, |
| torch.cosine_embedding_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction="mean": -1, |
| torch.cosh: lambda input, out=None: -1, |
| torch.cosine_similarity: lambda x1, x2, dim=1, eps=1e-8: -1, |
| torch.count_nonzero: lambda input: -1, |
| torch.cross: lambda input, other, dim=None, out=None: -1, |
| torch.linalg.cross: lambda input, other, dim=-1, out=None: -1, |
| torch.ctc_loss: ( |
| lambda log_probs, targets, input_lengths, target_lengths, blank=0, reduction="mean", zero_infinity=False: -1 |
| ), |
| torch.cummax: lambda input, dim, out=None: -1, |
| torch.cummin: lambda input, dim, out=None: -1, |
| torch.cumprod: lambda input, dim, out=None, dtype=None: -1, |
| torch.cumsum: lambda input, dim, out=None, dtype=None: -1, |
| torch.cumulative_trapezoid: lambda y, x=None, dim=-1: -1, |
| torch.logcumsumexp: lambda input, dim, out=None: -1, |
| torch.deg2rad: lambda input, out=None: -1, |
| torch.dequantize: lambda input: -1, |
| torch.det: lambda input: -1, |
| torch.linalg.det: lambda input: -1, # alias for torch.det # type: ignore[attr-defined] |
| torch.detach: lambda input: -1, |
| torch.diag: lambda input, diagonal=0, out=None: -1, |
| torch.diag_embed: lambda input, diagonal=0, out=None: -1, |
| torch.diagflat: lambda input, offset=0: -1, |
| torch.diff: lambda input, n=1, dim=-1, prepend=None, append=None, out=None: -1, |
| torch.diagonal: lambda input, offset=0, dim1=0, dim2=1: -1, |
| torch.linalg.diagonal: lambda input, offset=0, dim1=-2, dim2=-1: -1, |
| torch.diagonal_scatter: lambda input, src, offset=0, dim1=0, dim2=1: -1, |
| torch.as_strided_scatter: lambda self, src, size, stride, storage_offset=None: -1, |
| torch.digamma: lambda input, out=None: -1, |
| torch.dist: lambda input, other, p=2: -1, |
| torch.div: lambda input, other, rounding_mode=None, out=None: -1, |
| torch.divide: lambda input, other, rounding_mode=None, out=None: -1, |
| torch.dot: lambda input, other, out=None: -1, |
| torch.dropout: lambda input, p, train, inplace=False: -1, |
| torch.dsmm: lambda input, mat2: -1, |
| torch.hsmm: lambda mat1, mat2: -1, |
| torch.dsplit: lambda input, indices_or_sections: -1, |
| torch.dstack: lambda tensors, out=None: -1, |
| torch.linalg.eig: lambda input, out=None: -1, |
| torch.linalg.eigvals: lambda input, out=None: -1, |
| torch.linalg.eigh: lambda input, UPLO="L", out=None: -1, |
| torch.linalg.eigvalsh: lambda input, UPLO="L", out=None: -1, |
| torch.einsum: lambda equation, *operands: -1, |
| torch.embedding: ( |
| lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False: -1 # noqa: B950 |
| ), |
| torch.embedding_bag: ( |
| lambda input, weight, offsets, max_norm=None, norm_type=2, scale_grad_by_freq=False, mode="mean", sparse=False, per_sample_weights=None, padding_idx=None: -1 # noqa: B950 |
| ), |
| torch.empty_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, |
| torch.eq: lambda input, other, out=None: -1, |
| torch.equal: lambda input, other: -1, |
| torch.erf: lambda input, out=None: -1, |
| torch.erfc: lambda input, out=None: -1, |
| torch.erfinv: lambda input, out=None: -1, |
| torch.exp: lambda input, out=None: -1, |
| torch.exp2: lambda input, out=None: -1, |
| torch.expm1: lambda input, out=None: -1, |
| torch.fake_quantize_per_channel_affine: lambda input, scale, zero_point, axis, quant_min, quant_max: -1, |
| torch.fake_quantize_per_tensor_affine: lambda input, scale, zero_point, quant_min, quant_max: -1, |
| torch.fused_moving_avg_obs_fake_quant: ( |
| lambda x, observer_on, fake_quant_on, averaging_const, running_min, running_max, scale, zero_point, quant_min, quant_max, ch_axis, per_row_fake_quant=False, symmetric_quant=False: -1 # noqa: B950 |
| ), |
| torch.fbgemm_linear_fp16_weight: lambda input, packed_weight, bias: -1, |
| torch.fbgemm_linear_fp16_weight_fp32_activation: lambda input, packed_weight, bias: -1, |
| torch.fbgemm_linear_int8_weight: lambda input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias: -1, # noqa: B950 |
| torch.fbgemm_linear_int8_weight_fp32_activation: ( |
| lambda input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias: -1 |
| ), |
| torch.fbgemm_linear_quantize_weight: lambda input: -1, |
| torch.fbgemm_pack_gemm_matrix_fp16: lambda input: -1, |
| torch.fbgemm_pack_quantized_matrix: lambda input, a, b: -1, |
| torch.feature_alpha_dropout: lambda input, p, train: -1, |
| torch.feature_dropout: lambda input, p, train: -1, |
| torch.fft.ifft: lambda input, n=None, dim=-1, norm=None: -1, |
| torch.fft.rfft: lambda input, n=None, dim=-1, norm=None: -1, |
| torch.fft.irfft: lambda input, n=None, dim=-1, norm=None: -1, |
| torch.fft.hfft: lambda input, n=None, dim=-1, norm=None: -1, |
| torch.fft.ihfft: lambda input, n=None, dim=-1, norm=None: -1, |
| torch.fft.hfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, |
| torch.fft.ihfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, |
| torch.fft.hfftn: lambda input, s=None, dim=-1, norm=None: -1, |
| torch.fft.ihfftn: lambda input, s=None, dim=-1, norm=None: -1, |
| torch.fft.fftn: lambda input, s=None, dim=None, norm=None: -1, |
| torch.fft.ifftn: lambda input, s=None, dim=None, norm=None: -1, |
| torch.fft.rfftn: lambda input, s=None, dim=None, norm=None: -1, |
| torch.fft.irfftn: lambda input, s=None, dim=None, norm=None: -1, |
| torch.fft.fft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, |
| torch.fft.ifft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, |
| torch.fft.rfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, |
| torch.fft.irfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, |
| torch.fft.fftshift: lambda input, dim=None: -1, |
| torch.fft.ifftshift: lambda input, dim=None: -1, |
| torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1, |
| torch.fix: lambda input, out=None: -1, |
| torch.flatten: lambda input, start_dim=0, end_dim=-1: -1, |
| torch.flip: lambda input, dims: -1, |
| torch.fliplr: lambda input: -1, |
| torch.flipud: lambda input: -1, |
| torch.frobenius_norm: lambda input, dim=None, keepdim=False, out=None: -1, |
| torch.floor: lambda input, out=None: -1, |
| torch.floor_divide: lambda input, other: -1, |
| torch.float_power: lambda input, exponent, out=None: -1, |
| torch.fmod: lambda input, other, out=None: -1, |
| torch.frac: lambda input, out=None: -1, |
| torch.frexp: lambda input, out=None: -1, |
| torch.full_like: lambda input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1, # noqa: B950 |
| torch._functional_assert_async: lambda input, msg, dep_token: -1, |
| torch.lu_unpack: lambda LU_data, LU_pivots, unpack_data=True, unpack_pivots=True: -1, |
| torch.gather: lambda input, dim, index, out=None, sparse_grad=False: -1, |
| torch.gcd: lambda input, other, out=None: -1, |
| torch.ge: lambda input, other, out=None: -1, |
| torch.greater_equal: lambda input, other, out=None: -1, |
| torch.geqrf: lambda input, out=None: -1, |
| torch.i0: lambda input, out=None: -1, |
| torch.inner: lambda input, other, out=None: -1, |
| torch.outer: lambda input, vec2, out=None: -1, |
| torch.ger: lambda input, vec2, out=None: -1, # alias for torch.outer |
| torch.gradient: lambda input, spacing=None, dim=None, edge_order=1: -1, |
| torch.grid_sampler: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1, |
| torch.grid_sampler_2d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1, |
| torch.grid_sampler_3d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1, |
| torch.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05, cudnn_enabled=True: -1, |
| torch.gru: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1, |
| torch.gru_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, |
| torch.gt: lambda input, other, out=None: -1, |
| torch.greater: lambda input, other, out=None: -1, |
| torch.hardshrink: lambda input, lambd=0.5: -1, |
| torch.heaviside: lambda input, values, out=None: -1, |
| torch.hinge_embedding_loss: lambda input, target, margin=1.0, size_average=None, reduce=None, reduction="mean": -1, # noqa: B950 |
| torch.histc: lambda input, bins=100, min=0, max=0, out=None: -1, |
| torch.histogram: lambda input, bins=100, min=None, max=None, weight=None, density=False, out=None: -1, |
| torch.histogramdd: lambda input, bins, range=None, weight=None, density=False: -1, |
| torch.linalg.householder_product: lambda input, tau: -1, |
| torch.hspmm: lambda mat1, mat2, out=None: -1, |
| torch.hsplit: lambda input, indices_or_sections: -1, |
| torch.hstack: lambda tensors, out=None: -1, |
| torch.hypot: lambda input, other, out=None: -1, |
| torch.igamma: lambda input, other, out=None: -1, |
| torch.igammac: lambda input, other, out=None: -1, |
| torch.imag: lambda input, out=None: -1, |
| torch.index_add: lambda input, dim, index, source: -1, |
| torch.index_copy: lambda input, dim, index, source: -1, |
| torch.index_put: lambda input, indices, values, accumulate=False: -1, |
| torch.index_select: lambda input, dim, index, out=None: -1, |
| torch.index_fill: lambda input, dim, index, value: -1, |
| torch.index_reduce: lambda input, dim, index, source, reduce, include_input=True: -1, |
| torch.isfinite: lambda tensor: -1, |
| torch.isin: lambda e, te, assume_unique=False, invert=False: -1, |
| torch.isinf: lambda tensor: -1, |
| torch.isreal: lambda tensor: -1, |
| torch.isposinf: lambda input, out=None: -1, |
| torch.isneginf: lambda input, out=None: -1, |
| torch.instance_norm: ( |
| lambda input, running_mean, running_var, weight, bias, use_input_stats, momentum, eps, cudnn_enabled: -1 |
| ), |
| torch.int_repr: lambda input: -1, |
| torch.inverse: lambda input, out=None: -1, |
| torch.linalg.inv: lambda input, out=None: -1, |
| torch.linalg.inv_ex: lambda input, check_errors=False, out=None: -1, |
| torch.is_complex: lambda input: -1, |
| torch.is_conj: lambda input: -1, |
| torch.is_neg: lambda input: -1, |
| torch.is_distributed: lambda input: -1, |
| torch.is_inference: lambda input: -1, |
| torch.is_floating_point: lambda input: -1, |
| torch.is_nonzero: lambda input: -1, |
| torch.is_same_size: lambda input, other: -1, |
| torch.is_signed: lambda input: -1, |
| torch.isclose: lambda input, other, rtol=1e-05, atol=1e-08, equal_nan=False: -1, |
| torch.isnan: lambda input: -1, |
| torch.istft: ( |
| lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True, normalized=False, onesided=None, length=None, return_complex=False: -1 # noqa: B950 |
| ), |
| torch.kl_div: lambda input, target, size_average=None, reduce=None, reduction="mean", log_target=False: -1, |
| torch.kron: lambda input, other: -1, |
| torch.kthvalue: lambda input, k, dim=None, keepdim=False, out=None: -1, |
| torch.linalg.ldl_factor_ex: lambda input, hermitian=False, check_errors=False, out=None: -1, |
| torch.linalg.ldl_factor: lambda input, hermitian=False, out=None: -1, |
| torch.linalg.ldl_solve: lambda LD, pivots, B, hermitian=False, out=None: -1, |
| torch.layer_norm: lambda input, normalized_shape, weight=None, bias=None, esp=1e-05, cudnn_enabled=True: -1, |
| torch.lcm: lambda input, other, out=None: -1, |
| torch.ldexp: lambda input, other, out=None: -1, |
| torch.le: lambda input, other, out=None: -1, |
| torch.less_equal: lambda input, other, out=None: -1, |
| torch.lerp: lambda input, end, weight, out=None: -1, |
| torch.lgamma: lambda input, out=None: -1, |
| torch.lobpcg: lambda input, k=None, B=None, X=None, n=None, iK=None, niter=None, tol=None, largest=None, method=None, tracker=None, ortho_iparams=None, ortho_fparams=None, ortho_bparams=None: -1, # noqa: B950 |
| torch.log: lambda input, out=None: -1, |
| torch.log_softmax: lambda input, dim, dtype=None: -1, |
| torch.log10: lambda input, out=None: -1, |
| torch.log1p: lambda input, out=None: -1, |
| torch.log2: lambda input, out=None: -1, |
| torch.logaddexp: lambda input, other, out=None: -1, |
| torch.logaddexp2: lambda input, other, out=None: -1, |
| torch.logdet: lambda input: -1, |
| torch.xlogy: lambda x, y, out=None: -1, |
| torch.logical_and: lambda input, other, out=None: -1, |
| torch.logical_not: lambda input, out=None: -1, |
| torch.logical_or: lambda input, other, out=None: -1, |
| torch.logical_xor: lambda input, other, out=None: -1, |
| torch.logit: lambda input, eps=None: -1, |
| torch.logsumexp: lambda input, names, keepdim=False, out=None: -1, |
| torch.lstm: lambda data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional: -1, |
| torch.lstm_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, |
| torch.lt: lambda input, other, out=None: -1, |
| torch.less: lambda input, other, out=None: -1, |
| torch.lu: lambda A, pivot=True, get_infos=False, out=None: -1, |
| torch.lu_solve: lambda b, LU_data, LU_pivots, out=None: -1, |
| torch.margin_ranking_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction="mean": -1, # type: ignore[attr-defined] # noqa: B950 |
| torch.masked_fill: lambda input, mask, value: -1, |
| torch.masked_scatter: lambda input, mask, source: -1, |
| torch.masked_select: lambda input, mask, out=None: -1, |
| torch.matmul: lambda input, other, out=None: -1, |
| torch.linalg.lu: lambda input, pivot=True, out=None: -1, |
| torch.linalg.lu_factor: lambda input, pivot=True, out=None: -1, |
| torch.linalg.lu_factor_ex: lambda input, pivot=True, check_errors=False, out=None: -1, |
| torch.linalg.lu_solve: lambda LU, pivots, B, left=True, adjoint=False, out=None: -1, |
| torch.linalg.matmul: lambda input, other, out=None: -1, # alias for torch.matmul |
| torch.matrix_power: lambda input, n: -1, |
| torch.linalg.matrix_power: lambda input, n, out=None: -1, |
| torch.linalg.matrix_rank: lambda input, tol=None, hermitian=False: -1, |
| torch.linalg.multi_dot: lambda tensors, out=None: -1, |
| torch.matrix_exp: lambda input: -1, |
| torch.linalg.matrix_exp: lambda input: -1, |
| torch.max: lambda input, out=None: -1, |
| torch.maximum: lambda input, other, out=None: -1, |
| torch.fmax: lambda input, other, out=None: -1, |
| torch.max_pool1d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1, |
| torch.max_pool2d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1, |
| torch.max_pool3d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1, |
| torch.max_pool1d_with_indices: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1 |
| ), |
| torch.mean: lambda input, dim=None: -1, |
| torch.nanmean: lambda input, dim=None, keepdim=False, dtype=None, out=None: -1, |
| torch.median: lambda input, dim=None: -1, |
| torch.nanmedian: lambda input, dim=None: -1, |
| torch.meshgrid: lambda *tensors, **kwargs: -1, |
| torch.min: lambda input, out=None: -1, |
| torch.minimum: lambda input, other, out=None: -1, |
| torch.fmin: lambda input, other, out=None: -1, |
| torch.miopen_batch_norm: ( |
| lambda input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon: -1 |
| ), |
| torch.miopen_convolution: lambda input, weight, bias, padding, stride, dilation, groups, benchmark, deterministic: -1, # noqa: B950 |
| torch.miopen_convolution_add_relu: lambda input, weight, z, alpha, bias, stride, padding, dilation, groups: -1, |
| torch.miopen_convolution_relu: lambda input, weight, bias, stride, padding, dilation, groups: -1, |
| torch.miopen_convolution_transpose: ( |
| lambda input, weight, bias, padding, output_padding, stride, dilation, groups, benchmark, deterministic: -1 |
| ), |
| torch.miopen_depthwise_convolution: ( |
| lambda input, weight, bias, padding, stride, dilation, groups, benchmark, deterministic: -1 |
| ), |
| torch.miopen_rnn: ( |
| lambda input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state: -1 # noqa: B950 |
| ), |
| torch.mm: lambda input, mat2, out=None: -1, |
| torch.mode: lambda input, dim=-1, keepdim=False, out=None: -1, |
| torch.movedim: lambda input, source, destination: -1, |
| torch.moveaxis: lambda input, source, destination: -1, |
| torch.msort: lambda input, descending=False, out=None: -1, |
| torch.mul: lambda input, other, out=None: -1, |
| torch.multiply: lambda input, other, out=None: -1, |
| torch.multinomial: lambda input, num_samples, replacement=False, out=None: -1, |
| torch.mv: lambda input, vec, out=None: -1, |
| torch.mvlgamma: lambda input, p: -1, |
| torch.narrow: lambda input, dim, start, length: -1, |
| torch.nan_to_num: lambda input, nan=0.0, posinf=None, neginf=None, out=None: -1, |
| torch.native_batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps: -1, |
| torch._native_batch_norm_legit: lambda input, weight, bias, training, momentum, eps: -1, |
| torch.native_dropout: lambda input, p, train: -1, |
| torch.native_layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1, |
| torch.native_group_norm: lambda input, weight, bias, N, C, HxW, group, eps: -1, |
| torch.native_norm: lambda input, p=2, dim=None, keepdim=False, dtype=None: -1, |
| torch.native_channel_shuffle: lambda input, groups: -1, |
| torch.ne: lambda input, other, out=None: -1, |
| torch.not_equal: lambda input, other, out=None: -1, |
| torch.neg: lambda input, out=None: -1, |
| torch.negative: lambda input, out=None: -1, |
| torch.nextafter: lambda input, other, out=None: -1, |
| torch.nn.functional.adaptive_avg_pool2d: lambda input, output_size: -1, |
| torch.nn.functional.adaptive_avg_pool3d: lambda input, output_size: -1, |
| torch.nn.functional.adaptive_max_pool1d: lambda input, output_size, return_indices=False: -1, |
| torch.nn.functional.adaptive_max_pool1d_with_indices: lambda input, output_size, return_indices=False: -1, |
| torch.nn.functional.adaptive_max_pool2d: lambda input, output_size, return_indices=False: -1, |
| torch.nn.functional.adaptive_max_pool2d_with_indices: lambda input, output_size, return_indices=False: -1, |
| torch.nn.functional.adaptive_max_pool3d: lambda input, output_size, return_indices=False: -1, |
| torch.nn.functional.adaptive_max_pool3d_with_indices: lambda input, output_size, return_indices=False: -1, |
| torch.nn.functional.affine_grid: lambda theta, size, align_corners=None: -1, |
| torch.nn.functional.alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1, |
| torch.nn.functional.avg_pool2d: ( |
| lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.avg_pool3d: ( |
| lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.batch_norm: ( |
| lambda input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-05: -1 |
| ), |
| torch.nn.functional.bilinear: lambda input1, input2, weight, bias=None: -1, |
| torch.nn.functional.binary_cross_entropy: ( |
| lambda input, target, weight=None, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.binary_cross_entropy_with_logits: ( |
| lambda input, target, weight=None, size_average=None, reduce=None, reduction="mean", pos_weight=None: -1 |
| ), |
| torch.nn.functional.celu: lambda input, alpha=1.0, inplace=False: -1, |
| torch.nn.functional.cosine_embedding_loss: ( |
| lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.cross_entropy: ( |
| lambda input, target, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction="mean", label_smoothing=0.0: -1 # noqa: B950 |
| ), |
| torch.nn.functional.ctc_loss: ( |
| lambda log_probs, targets, input_lengths, target_lengths, blank=0, reduction="mean", zero_infinity=False: -1 |
| ), |
| torch.nn.functional.dropout: lambda input, p=0.5, training=True, inplace=False: -1, |
| torch.nn.functional.dropout1d: lambda input, p=0.5, training=True, inplace=False: -1, |
| torch.nn.functional.dropout2d: lambda input, p=0.5, training=True, inplace=False: -1, |
| torch.nn.functional.dropout3d: lambda input, p=0.5, training=True, inplace=False: -1, |
| torch.nn.functional.elu: lambda input, alpha=1.0, inplace=False: -1, |
| torch.nn.functional.embedding: ( |
| lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False: -1 # noqa: B950 |
| ), |
| torch.nn.functional.embedding_bag: ( |
| lambda input, weight, offsets=None, max_norm=None, norm_type=2, scale_grad_by_freq=False, mode="mean", sparse=False, per_sample_weights=None, include_last_offset=False, padding_idx=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.feature_alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1, |
| torch.nn.functional.fold: lambda input, output_size, kernel_size, dilation=1, padding=0, stride=1: -1, |
| torch.nn.functional.fractional_max_pool2d: ( |
| lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.fractional_max_pool2d_with_indices: ( |
| lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.fractional_max_pool3d: ( |
| lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.fractional_max_pool3d_with_indices: ( |
| lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None: -1 # noqa: B950 |
| ), |
| torch.nn.functional.gaussian_nll_loss: lambda input, target, var, full=False, eps=1e-06, reduction="mean": -1, |
| torch.nn.functional.gelu: lambda input, approximate="none": -1, |
| torch.nn.functional.glu: lambda input, dim=-1: -1, |
| torch.nn.functional.grid_sample: lambda input, grid, mode="bilinear", padding_mode="zeros", align_corners=None: -1, # noqa: B950 |
| torch.nn.functional.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05: -1, |
| torch.nn.functional.gumbel_softmax: lambda logits, tau=1, hard=False, eps=1e-10, dim=-1: -1, |
| torch.nn.functional.hardshrink: lambda input, lambd=0.5: -1, |
| torch.nn.functional.hardtanh: lambda input, min_val=-1.0, max_val=1.0, inplace=False: -1, |
| torch.nn.functional.hinge_embedding_loss: ( |
| lambda input, target, margin=1.0, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.instance_norm: ( |
| lambda input, running_mean=None, running_var=None, weight=None, bias=None, use_input_stats=True, momentum=0.1, eps=1e-05: -1 # noqa: B950 |
| ), |
| torch.nn.functional.interpolate: ( |
| lambda input, size=None, scale_factor=None, mode="nearest", align_corners=None, recompute_scale_factor=None, antialias=False: -1 # noqa: B950 |
| ), |
| torch.nn.functional.kl_div: lambda input, target, size_average=None, reduce=None, reduction="mean", log_target=False: -1, # noqa: B950 |
| torch.nn.functional.l1_loss: lambda input, target, size_average=None, reduce=None, reduction="mean": -1, |
| torch.nn.functional.layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1, |
| torch.nn.functional.leaky_relu: lambda input, negative_slope=0.01, inplace=False: -1, |
| torch.nn.functional.linear: lambda input, weight, bias=None: -1, |
| torch.nn.functional.local_response_norm: lambda input, size, alpha=0.0001, beta=0.75, k=1.0: -1, |
| torch.nn.functional.log_softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1, |
| torch.nn.functional.logsigmoid: lambda input: -1, |
| torch.nn.functional.lp_pool1d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1, |
| torch.nn.functional.lp_pool2d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1, |
| torch.nn.functional.lp_pool3d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1, |
| torch.nn.functional.margin_ranking_loss: ( |
| lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.max_pool1d: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False: -1 |
| ), |
| torch.nn.functional.max_pool1d_with_indices: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1 |
| ), |
| torch.nn.functional.max_pool2d: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False: -1 |
| ), |
| torch.nn.functional.max_pool2d_with_indices: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1 |
| ), |
| torch.nn.functional.max_pool3d: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1 |
| ), |
| torch.nn.functional.max_pool3d_with_indices: ( |
| lambda input, kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False: -1 |
| ), |
| torch.nn.functional.max_unpool1d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1, # noqa: B950 |
| torch.nn.functional.max_unpool2d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1, # noqa: B950 |
| torch.nn.functional.max_unpool3d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1, # noqa: B950 |
| torch.nn.functional.mse_loss: lambda input, target, size_average=None, reduce=None, reduction="mean": -1, |
| torch.nn.functional.multi_head_attention_forward: ( |
| lambda query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=True, key_padding_mask=None, need_weights=True, attn_mask=None, use_separate_proj_weight=False, q_proj_weight=None, k_proj_weight=None, v_proj_weight=None, static_k=None, static_v=None, average_attn_weights=None, is_causal=False: -1 # noqa: B950 |
| ), |
| torch.nn.functional.multi_margin_loss: ( |
| lambda input, target, p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.multilabel_margin_loss: ( |
| lambda input, target, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.multilabel_soft_margin_loss: ( |
| lambda input, target, weight=None, size_average=None, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.nll_loss: ( |
| lambda input, target, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction="mean": -1 |
| ), |
| torch.nn.functional.normalize: lambda input, p=2, dim=1, eps=1e-12, out=None: -1, |
| torch.nn.functional.one_hot: lambda tensor, num_classes=-1: -1, |
| torch.nn.functional.pad: lambda input, pad, mode="constant", value=0: -1, |
| torch.nn.functional.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1, |
| torch.nn.functional.poisson_nll_loss: ( |
| lambda input, target, log_input=True, full=False, size_average=None, eps=1e-08, reduce=None, reduction="mean": -1 # noqa: B950 |
| ), |
| torch.nn.functional.prelu: lambda input, weight: -1, |
| torch.nn.functional.relu: lambda input, inplace=False: -1, |
| torch.nn.functional.relu6: lambda input, inplace=False: -1, |
| torch.nn.functional.rms_norm: lambda input, normalized_shape, weight=None, eps=1e-6: -1, |
| torch.nn.functional.rrelu: lambda input, lower=0.125, upper=0.3333333333333333, training=False, inplace=False: -1, # noqa: B950 |
| torch.nn.functional.selu: lambda input, inplace=False: -1, |
| torch.nn.functional.silu: lambda input, inplace=False: -1, |
| torch.nn.functional.mish: lambda input, inplace=False: -1, |
| torch.nn.functional.scaled_dot_product_attention: lambda query, key, value, attn_mask=None, dropout_p=0.0: -1, |
| torch.nn.functional.smooth_l1_loss: lambda input, target, size_average=None, reduce=None, reduction="mean", beta=1.0: -1, # noqa: B950 |
| torch.nn.functional.huber_loss: lambda input, target, reduction="mean", delta=1.0: -1, |
| torch.nn.functional.soft_margin_loss: lambda input, target, size_average=None, reduce=None, reduction="mean": -1, # noqa: B950 |
| torch.nn.functional.softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1, |
| torch.nn.functional.softmin: lambda input, dim=None, _stacklevel=3, dtype=None: -1, |
| torch.nn.functional.softplus: lambda input, beta=1, threshold=20: -1, |
| torch.nn.functional.softshrink: lambda input, lambd=0.5: -1, |
| torch.nn.functional.softsign: lambda input: -1, |
| torch.nn.functional.tanhshrink: lambda input: -1, |
| torch.nn.functional.threshold: lambda input, threshold, value, inplace=False: -1, |
| torch.nn.functional.triplet_margin_loss: ( |
| lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, size_average=None, reduce=None, reduction="mean": -1 # noqa: B950 |
| ), |
| torch.nn.functional.triplet_margin_with_distance_loss: ( |
| lambda anchor, positive, negative, *, distance_function=None, margin=1.0, swap=False, reduction="mean": -1 |
| ), |
| torch.nn.functional.unfold: lambda input, kernel_size, dilation=1, padding=0, stride=1: -1, |
| torch.nn.init.uniform_: lambda tensor, a=0.0, b=1.0, generator=None: -1, |
| torch.nn.init.normal_: lambda tensor, mean=0.0, std=1.0, generator=None: -1, |
| torch.nn.init.constant_: lambda tensor, val: -1, |
| torch.nn.init.kaiming_uniform_: lambda tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", generator=None: -1, # noqa: B950 |
| torch.nonzero: lambda input, as_tuple=False: -1, |
| torch.nonzero_static: lambda input, *, size, fill_value=-1: -1, |
| torch.argwhere: lambda input: -1, |
| torch.norm: lambda input, p="fro", dim=None, keepdim=False, out=None, dtype=None: -1, |
| torch.linalg.norm: lambda input, ord=None, dim=None, keepdim=False, out=None, dtype=None: -1, |
| torch.linalg.vector_norm: lambda input, ord=2, dim=None, keepdim=False, out=None, dtype=None: -1, |
| torch.linalg.matrix_norm: lambda input, ord="fro", dim=( |
| -2, |
| -1, |
| ), keepdim=False, out=None, dtype=None: -1, |
| torch.norm_except_dim: lambda v, pow=2, dim=0: -1, |
| torch.nuclear_norm: lambda input, p="fro", dim=None, keepdim=False, out=None, dtype=None: -1, |
| torch.numel: lambda input: -1, |
| torch.orgqr: lambda input, tau: -1, |
| torch.ormqr: lambda input, input2, input3, left=True, transpose=False: -1, |
| torch.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1, |
| torch.permute: lambda self, dim: -1, |
| torch.pca_lowrank: lambda input, q=None, center=True, niter=2: -1, |
| torch.pdist: lambda input, p=2: -1, |
| torch.pinverse: lambda input, rcond=1e-15: -1, |
| torch.linalg.pinv: lambda input, rcond=1e-15, hermitian=False: -1, |
| torch.pixel_shuffle: lambda input, upscale_factor: -1, |
| torch.pixel_unshuffle: lambda input, downscale_factor: -1, |
| torch.poisson: lambda input, generator=None: -1, |
| torch.poisson_nll_loss: lambda input, target, log_input, full, eps, reduction: -1, |
| torch.polygamma: lambda input, n, out=None: -1, |
| torch.positive: lambda input, out=None: -1, |
| torch.prelu: lambda input, weight: -1, |
| torch.ones_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, |
| torch.pow: lambda input, exponent, out=None: -1, |
| torch.prod: lambda input, dtype=None: -1, |
| torch.put: lambda input, index, source, accumulate=False: -1, |
| torch.q_per_channel_axis: lambda input: -1, |
| torch.q_per_channel_scales: lambda input: -1, |
| torch.q_per_channel_zero_points: lambda input: -1, |
| torch.q_scale: lambda input: -1, |
| torch.q_zero_point: lambda input: -1, |
| torch.qr: lambda input, some=True, out=None: -1, |
| torch.linalg.qr: lambda input, mode="reduced", out=None: -1, |
| torch.quantile: lambda input, q, dim=None, keepdim=False, interpolation="linear", out=None: -1, |
| torch.nanquantile: lambda input, q, dim=None, keepdim=False, interpolation="linear", out=None: -1, |
| torch.quantize_per_channel: lambda input, scales, zero_points, axis, dtype: -1, |
| torch.quantize_per_tensor: lambda input, scale, zero_point, dtype: -1, |
| torch.quantize_per_tensor_dynamic: lambda input, dtype, reduce_range: -1, |
| torch.quantized_batch_norm: lambda input, weight, bias, mean, var, eps, output_scale, output_zero_point: -1, |
| torch.quantized_gru_cell: ( |
| lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1 # noqa: B950 |
| ), |
| torch.quantized_lstm_cell: ( |
| lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1 # noqa: B950 |
| ), |
| torch.quantized_max_pool1d: ( |
| lambda input, kernel_size, stride=(), padding=(0,), dilation=( |
| 1, |
| ), ceil_mode=False: -1 |
| ), |
| torch.quantized_max_pool2d: ( |
| lambda input, kernel_size, stride=(), padding=(0, 0), dilation=( |
| 1, |
| 1, |
| ), ceil_mode=False: -1 |
| ), |
| torch.quantized_max_pool3d: ( |
| lambda input, kernel_size, stride=(), padding=(0, 0, 0), dilation=( |
| 1, |
| 1, |
| 1, |
| ), ceil_mode=False: -1 |
| ), |
| torch.quantized_rnn_relu_cell: ( |
| lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1 # noqa: B950 |
| ), |
| torch.quantized_rnn_tanh_cell: ( |
| lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1 # noqa: B950 |
| ), |
| torch.rad2deg: lambda input, out=None: -1, |
| torch.rand_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, |
| torch.randint_like: lambda input, high, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1, |
| torch.randn_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, |
| torch.ravel: lambda input: -1, |
| torch.real: lambda input, out=None: -1, |
| torch.vdot: lambda input, other, out=None: -1, |
| torch.linalg.vecdot: lambda input, other, dim=-1, out=None: -1, |
| torch.view_as_real: lambda input: -1, |
| torch.view_as_complex: lambda input: -1, |
| torch.reciprocal: lambda input, out=None: -1, |
| torch.relu: lambda input, inplace=False: -1, |
| torch.remainder: lambda input, other, out=None: -1, |
| torch.renorm: lambda input, p, dim, maxnorm, out=None: -1, |
| torch.repeat_interleave: lambda input, dim=None: -1, |
| torch.reshape: lambda input, shape: -1, |
| torch.rms_norm: lambda input, normalized_shape, weight=None, eps=1e-6: -1, |
| torch.rnn_relu: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1, # noqa: B950 |
| torch.rnn_relu_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, |
| torch.rnn_tanh: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1, # noqa: B950 |
| torch.rnn_tanh_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, |
| torch.roll: lambda input, shifts, dims=None: -1, |
| torch.rot90: lambda input, k=1, dims=(0, 1): -1, |
| torch.round: lambda input, out=None: -1, |
| torch.row_stack: lambda tensors, out=None: -1, # alias for torch.vstack |
| torch._rowwise_prune: (lambda weight, mask, compressed_indices_dtype: -1), |
| torch.rrelu: lambda input, lower=1.0 / 8, upper=1.0 / 3, training=False, inplace=False: -1, |
| torch.rsqrt: lambda input, out=None: -1, |
| torch.rsub: lambda input, other, alpha=1: -1, |
| torch.saddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1, |
| torch.scatter: lambda input, dim, index, src: -1, |
| torch.scatter_add: lambda input, dim, index, src: -1, |
| torch.scatter_reduce: lambda input, dim, index, src, reduce, include_self=True: -1, |
| torch.searchsorted: lambda sorted_sequence, input, out_int32=False, right=False, out=None: -1, |
| torch._segment_reduce: lambda data, reduce="max", lengths=None, indices=None, offsets=None, axis=0, unsafe=False: -1, # noqa: B950 |
| torch.select: lambda input, dim, index: -1, |
| torch.select_scatter: lambda input, src, dim, index: -1, |
| torch.slice_inverse: lambda input, src, dim=0, start=None, end=None, step=1: -1, |
| torch.slice_scatter: lambda input, src, dim=0, start=None, end=None, step=1: -1, |
| torch.selu: lambda input, inplace=False: -1, |
| torch.sigmoid: lambda input, out=None: -1, |
| torch.sign: lambda input, out=None: -1, |
| torch.signbit: lambda input, out=None: -1, |
| torch.sgn: lambda input, out=None: -1, |
| torch.sin: lambda input, out=None: -1, |
| torch.sinc: lambda input, out=None: -1, |
| torch.sinh: lambda input, out=None: -1, |
| torch.slogdet: lambda input: -1, |
| torch.linalg.slogdet: lambda input: -1, |
| torch.smm: lambda input, mat2: -1, |
| torch.spmm: lambda input, mat2: -1, |
| torch.softmax: lambda input, dim, dtype=None: -1, |
| torch.linalg.solve: lambda A, B, left=True, out=None: -1, |
| torch.linalg.solve_ex: lambda A, B, left=True, check_errors=False, out=None: -1, |
| torch.sort: lambda input, dim=-1, descending=False, *, stable=False, out=None: -1, |
| torch.split: lambda tensor, split_size_or_sections, dim=0: -1, |
| torch.split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1, |
| torch.sqrt: lambda input, out=None: -1, |
| torch.square: lambda input, out=None: -1, |
| torch.squeeze: lambda input, dim=None, out=None: -1, |
| torch.sspaddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1, |
| torch.stack: lambda tensors, dim=0, out=None: -1, |
| torch.std: lambda input, dim=None: -1, |
| torch.std_mean: lambda input, dim=None: -1, |
| torch.stft: ( |
| lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True, pad_mode="reflect", normalized=False, onesided=True, return_complex=None: -1 # noqa: B950 |
| ), |
| torch.sub: lambda input, other, out=None: -1, |
| torch.subtract: lambda input, other, out=None: -1, |
| torch.sum: lambda input, dim=None: -1, |
| torch.sym_float: lambda input: -1, |
| torch.sym_int: lambda input: -1, |
| torch.sym_max: lambda a, b: -1, |
| torch.sym_min: lambda a, b: -1, |
| torch.sym_not: lambda input: -1, |
| torch.sym_ite: lambda a, b, c: -1, |
| torch._sym_sqrt: lambda input: -1, |
| torch._sym_cos: lambda input: -1, |
| torch._sym_cosh: lambda input: -1, |
| torch._sym_sin: lambda input: -1, |
| torch._sym_sinh: lambda input: -1, |
| torch._sym_tan: lambda input: -1, |
| torch._sym_tanh: lambda input: -1, |
| torch._sym_asin: lambda input: -1, |
| torch._sym_acos: lambda input: -1, |
| torch._sym_atan: lambda input: -1, |
| torch.nansum: lambda input, dim=None: -1, |
| torch.svd: lambda input, some=True, compute_uv=True, out=None: -1, |
| torch.svd_lowrank: lambda input, q=6, niter=2, M=None: -1, |
| torch.linalg.svd: lambda input, full_matrices=True, out=None: -1, |
| torch.linalg.svdvals: lambda input, out=None: -1, |
| torch.swapaxes: lambda input, dim0, dim1: -1, |
| torch.swapdims: lambda input, axis0, axis1: -1, |
| torch.special.airy_ai: lambda input: -1, |
| torch.special.bessel_j0: lambda input: -1, |
| torch.special.bessel_j1: lambda input: -1, |
| torch.special.bessel_y0: lambda input: -1, |
| torch.special.bessel_y1: lambda input: -1, |
| torch.special.chebyshev_polynomial_t: lambda input, n, out=None: -1, |
| torch.special.chebyshev_polynomial_u: lambda input, n, out=None: -1, |
| torch.special.chebyshev_polynomial_v: lambda input, n, out=None: -1, |
| torch.special.chebyshev_polynomial_w: lambda input, n, out=None: -1, |
| torch.special.digamma: lambda input: -1, |
| torch.special.entr: lambda input: -1, |
| torch.special.erf: lambda input: -1, |
| torch.special.erfc: lambda input: -1, |
| torch.special.erfcx: lambda input: -1, |
| torch.special.erfinv: lambda input: -1, |
| torch.special.exp2: lambda input: -1, |
| torch.special.expit: lambda input: -1, |
| torch.special.expm1: lambda input: -1, |
| torch.special.gammainc: lambda input, other, out=None: -1, |
| torch.special.gammaincc: lambda input, other, out=None: -1, |
| torch.special.gammaln: lambda input: -1, |
| torch.special.hermite_polynomial_h: lambda input, n, out=None: -1, |
| torch.special.hermite_polynomial_he: lambda input, n, out=None: -1, |
| torch.special.i0: lambda input: -1, |
| torch.special.i0e: lambda input: -1, |
| torch.special.i1: lambda input: -1, |
| torch.special.i1e: lambda input: -1, |
| torch.special.laguerre_polynomial_l: lambda input, n, out=None: -1, |
| torch.special.legendre_polynomial_p: lambda input, n, out=None: -1, |
| torch.special.log1p: lambda input: -1, |
| torch.special.log_ndtr: lambda input: -1, |
| torch.special.log_softmax: lambda input, dim, dtype=None: -1, |
| torch.special.logit: lambda input: -1, |
| torch.special.logsumexp: lambda input, dim, keepdim=False, out=None: -1, |
| torch.special.modified_bessel_i0: lambda input: -1, |
| torch.special.modified_bessel_i1: lambda input: -1, |
| torch.special.modified_bessel_k0: lambda input: -1, |
| torch.special.modified_bessel_k1: lambda input: -1, |
| torch.special.multigammaln: lambda input, p: -1, |
| torch.special.ndtr: lambda input: -1, |
| torch.special.ndtri: lambda input: -1, |
| torch.special.polygamma: lambda input, n, out=None: -1, |
| torch.special.psi: lambda input: -1, |
| torch.special.round: lambda input: -1, |
| torch.special.scaled_modified_bessel_k0: lambda input: -1, |
| torch.special.scaled_modified_bessel_k1: lambda input: -1, |
| torch.special.shifted_chebyshev_polynomial_t: lambda input, n, out=None: -1, |
| torch.special.shifted_chebyshev_polynomial_u: lambda input, n, out=None: -1, |
| torch.special.shifted_chebyshev_polynomial_v: lambda input, n, out=None: -1, |
| torch.special.shifted_chebyshev_polynomial_w: lambda input, n, out=None: -1, |
| torch.special.sinc: lambda input: -1, |
| torch.special.softmax: lambda input, dim, dtype=None: -1, |
| torch.special.spherical_bessel_j0: lambda input: -1, |
| torch.special.xlog1py: lambda input, other, out=None: -1, |
| torch.special.xlogy: lambda input, other, out=None: -1, |
| torch.special.zeta: lambda self, other, out=None: -1, |
| torch.t: lambda input: -1, |
| torch.take: lambda input, index: -1, |
| torch.take_along_dim: lambda input, indices, dim=None, out=None: -1, |
| torch.tan: lambda input, out=None: -1, |
| torch.tanh: lambda input, out=None: -1, |
| torch.linalg.tensorinv: lambda a, ind=2: -1, |
| torch.linalg.tensorsolve: lambda a, b, dims=None: -1, |
| torch.tensordot: lambda a, b, dims=2, out=None: -1, |
| torch.tensor_split: lambda input, indices_or_sections, dim=0: -1, |
| torch.threshold: lambda input, threshold, value, inplace=False: -1, |
| torch.tile: lambda input, dims: -1, |
| torch.topk: lambda input, k, dim=-1, descending=False, out=None: -1, |
| torch.trace: lambda input: -1, |
| torch.transpose: lambda input, dim0, dim1: -1, |
| torch.trapz: lambda y, x=None, dim=-1: -1, |
| torch.trapezoid: lambda y, x=None, dim=-1: -1, |
| torch.triangular_solve: lambda input, A, upper=True, transpose=False, unitriangular=False: -1, |
| torch.linalg.solve_triangular: lambda input, B, upper, left=True, unitriangular=False: -1, |
| torch.tril: lambda input, diagonal=0, out=None: -1, |
| torch.triplet_margin_loss: ( |
| lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, size_average=None, reduce=None, reduction="mean": -1 # noqa: B950 |
| ), |
| torch.triu: lambda input, diagonal=0, out=None: -1, |
| torch.true_divide: lambda input, other: -1, |
| torch.trunc: lambda input, out=None: -1, |
| torch.unbind: lambda input, dim=0: -1, |
| torch.unflatten: lambda input, dim, sizes, names: -1, |
| torch.unique: lambda input, sorted=True, return_inverse=False, return_counts=False, dim=None: -1, |
| torch.unique_consecutive: lambda input, return_inverse=False, return_counts=False, dim=None: -1, |
| torch.unravel_index: lambda indices, shape: -1, |
| torch.unsafe_chunk: lambda input, chunks, dim=0: -1, |
| torch.unsafe_split: lambda tensor, split_size_or_sections, dim=0: -1, |
| torch.unsafe_split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1, |
| torch.unsqueeze: lambda input, dim, out=None: -1, |
| torch.linalg.vander: lambda x, N=None: -1, |
| torch.var: lambda input, dim=None: -1, |
| torch.var_mean: lambda input, dim=None: -1, |
| torch.vsplit: lambda input, indices_or_sections: -1, |
| torch.vstack: lambda tensors, out=None: -1, |
| torch.where: lambda condition, x=None, y=None: -1, |
| torch._wrapped_linear_prepack: lambda weight, weight_scale, weight_zero_point, bias : -1, |
| torch._wrapped_quantized_linear_prepacked: ( |
| lambda input, input_scale, input_zero_point, prepacked, out_scale, out_zero_point, out_channel : -1 # noqa: B950 |
| ), |
| torch.zeros_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, |
| torch._fw_primal_copy: lambda self, level: -1, |
| torch._make_dual_copy: lambda primal, tangent, level: -1, |
| torch.view_as_real_copy: lambda self: -1, |
| torch.view_as_complex_copy: lambda self: -1, |
| torch._conj_copy: lambda self: -1, |
| torch._neg_view_copy: lambda self: -1, |
| torch.as_strided_copy: lambda self, size, stride, storage_offset=None: -1, |
| torch._sparse_broadcast_to_copy: lambda self, size: -1, |
| torch.diagonal_copy: lambda self, offset=0, dim1=0, dim2=1: -1, |
| torch.expand_copy: lambda self, size, *, implicit=False: -1, |
| torch.narrow_copy: lambda self, dim, start, length: -1, |
| torch.permute_copy: lambda self, dims: -1, |
| torch._reshape_alias_copy: lambda self, size, stride: -1, |
| torch.select_copy: lambda self, dim, index: -1, |
| torch.detach_copy: lambda self: -1, |
| torch.slice_copy: lambda self, dim=0, start=None, end=None, step=1: -1, |
| torch.split_copy: lambda self, split_size, dim=0: -1, |
| torch.split_with_sizes_copy: lambda self, split_sizes, dim=0: -1, |
| torch.squeeze_copy: lambda self, dim: -1, |
| torch.t_copy: lambda self: -1, |
| torch.transpose_copy: lambda self, dim0, dim1: -1, |
| torch.unsqueeze_copy: lambda self, dim: -1, |
| torch._indices_copy: lambda self: -1, |
| torch._values_copy: lambda self: -1, |
| torch.indices_copy: lambda self: -1, |
| torch.values_copy: lambda self: -1, |
| torch.crow_indices_copy: lambda self: -1, |
| torch.col_indices_copy: lambda self: -1, |
| torch.ccol_indices_copy: lambda self: -1, |
| torch.row_indices_copy: lambda self: -1, |
| torch.unbind_copy: lambda self, dim=0: -1, |
| torch.view_copy: lambda self, dtype: -1, |
| torch.unfold_copy: lambda self, dimension, size, step: -1, |
| torch.alias_copy: lambda self: -1, |
| Tensor.__floordiv__: lambda self, other: -1, |
| Tensor.__rfloordiv__: lambda self, other: -1, |
| Tensor.__ifloordiv__: lambda self, other: -1, |
| Tensor.__truediv__: lambda self, other: -1, |
| Tensor.__rtruediv__: lambda self, other: -1, |
| Tensor.__itruediv__: lambda self, other: -1, |
| Tensor.__lshift__: lambda self, other: -1, |
| Tensor.__rlshift__: lambda self, other: -1, |
| Tensor.__ilshift__: lambda self, other: -1, |
| Tensor.__rshift__: lambda self, other: -1, |
| Tensor.__rrshift__: lambda self, other: -1, |
| Tensor.__irshift__: lambda self, other: -1, |
| Tensor.__and__: lambda self, other: -1, |
| Tensor.__or__: lambda self, other: -1, |
| Tensor.__xor__: lambda self, other: -1, |
| Tensor.__float__: lambda self: -1, |
| Tensor.__complex__: lambda self: -1, |
| Tensor.__array__: lambda self, dtype: -1, |
| Tensor.__bool__: lambda self: -1, |
| Tensor.__contains__: lambda self, other: -1, |
| Tensor.__neg__: lambda self: -1, |
| Tensor.__invert__: lambda self: -1, |
| Tensor.__mod__: lambda self, other: -1, |
| Tensor.__rmod__: lambda self, other: -1, |
| Tensor.__imod__: lambda self, other: -1, |
| Tensor.__array_wrap__: lambda self, array: -1, |
| Tensor.__getitem__: lambda self, idx: -1, |
| Tensor.__deepcopy__: lambda self, memo: -1, |
| Tensor.__int__: lambda self: -1, |
| Tensor.__long__: lambda self: -1, |
| Tensor.__index__: lambda self: -1, |
| Tensor.__len__: lambda self: -1, |
| Tensor.__format__: lambda self, format_spec: -1, |
| Tensor.__reduce_ex__: lambda self, proto: -1, |
| Tensor.__reversed__: lambda self: -1, |
| Tensor.__repr__: lambda self, *, tensor_contents=None: -1, |
| Tensor.__setitem__: lambda self, k, v: -1, |
| Tensor.__setstate__: lambda self, d: -1, |
| Tensor.T.__get__: lambda self: -1, |
| Tensor.H.__get__: lambda self: -1, |
| Tensor.mT.__get__: lambda self: -1, |
| Tensor.mH.__get__: lambda self: -1, |
| Tensor._backward_hooks.__get__: lambda self: -1, |
| Tensor._post_accumulate_grad_hooks.__get__: lambda self: -1, |
| Tensor._base.__get__: lambda self: -1, |
| Tensor._cdata.__get__: lambda self: -1, |
| Tensor.grad.__get__: lambda self: -1, |
| Tensor._grad.__get__: lambda self: -1, |
| Tensor._grad_fn.__get__: lambda self: -1, |
| Tensor.grad_fn.__get__: lambda self: -1, |
| Tensor._version.__get__: lambda self: -1, |
| Tensor._autocast_to_reduced_precision: lambda self, cuda_enabled, cpu_enabled, cuda_dtype, cpu_dtype: -1, |
| Tensor._autocast_to_full_precision: lambda self, cuda_enabled, cpu_enabled: -1, |
| Tensor.data.__get__: lambda self: -1, |
| Tensor.device.__get__: lambda self: -1, |
| Tensor.dtype.__get__: lambda self: -1, |
| Tensor.is_cuda.__get__: lambda self: -1, |
| Tensor.is_cpu.__get__: lambda self: -1, |
| Tensor.is_xla.__get__: lambda self: -1, |
| Tensor.is_xpu.__get__: lambda self: -1, |
| Tensor.is_ipu.__get__: lambda self: -1, |
| Tensor.is_leaf.__get__: lambda self: -1, |
| Tensor.retains_grad.__get__: lambda self: -1, |
| Tensor.is_meta.__get__: lambda self: -1, |
| Tensor.is_mps.__get__: lambda self: -1, |
| Tensor.is_mtia.__get__: lambda self: -1, |
| Tensor.is_nested.__get__: lambda self: -1, |
| Tensor.is_maia.__get__: lambda self: -1, |
| Tensor.is_mkldnn.__get__: lambda self: -1, |
| Tensor.is_quantized.__get__: lambda self: -1, |
| Tensor.is_sparse.__get__: lambda self: -1, |
| Tensor.is_sparse_csr.__get__: lambda self: -1, |
| Tensor.is_vulkan.__get__: lambda self: -1, |
| Tensor.itemsize.__get__: lambda self: -1, |
| Tensor.layout.__get__: lambda self: -1, |
| Tensor.name.__get__: lambda self: -1, |
| Tensor.names.__get__: lambda self: -1, |
| Tensor.nbytes.__get__: lambda self: -1, |
| Tensor.ndim.__get__: lambda self: -1, |
| Tensor.output_nr.__get__: lambda self: -1, |
| Tensor.requires_grad.__get__: lambda self: -1, |
| Tensor.shape.__get__: lambda self: -1, |
| Tensor.volatile.__get__: lambda self: -1, |
| Tensor.real.__get__: lambda self: -1, |
| Tensor.imag.__get__: lambda self: -1, |
| Tensor.__cuda_array_interface__.__get__: lambda self: -1, |
| Tensor.type: lambda self, dtype=None, non_blocking=False, **kwargs: -1, |
| Tensor._dimI: lambda self: -1, |
| Tensor._dimV: lambda self: -1, |
| Tensor._indices: lambda self: -1, |
| Tensor._is_view: lambda self: -1, |
| Tensor._nnz: lambda self: -1, |
| Tensor.crow_indices: lambda self: -1, |
| Tensor.col_indices: lambda self: -1, |
| Tensor.ccol_indices: lambda self: -1, |
| Tensor.row_indices: lambda self: -1, |
| Tensor._update_names: lambda self, names, inplace: -1, |
| Tensor._values: lambda self: -1, |
| Tensor.adjoint: lambda self: -1, |
| Tensor.align_as: lambda self, other: -1, |
| Tensor.align_to: lambda self, order, ellipsis_idx: -1, |
| Tensor.apply_: lambda self, callable: -1, |
| Tensor.as_strided: lambda self, size, stride: -1, |
| Tensor.as_strided_: lambda self, size, stride: -1, |
| Tensor.backward: lambda self, gradient=None, retain_graph=None, create_graph=False, inputs=None: -1, |
| Tensor.bfloat16: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.bool: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.byte: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.char: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.cauchy_: lambda self, median=0, sigma=1, *, generator=None: -1, |
| Tensor.coalesce: lambda self: -1, |
| Tensor._coalesced_: lambda self, coalesced: -1, |
| Tensor.contiguous: lambda self, memory_format=torch.contiguous_format: -1, |
| Tensor.copy_: lambda self, src, non_blocking=False: -1, |
| Tensor.cpu: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.cuda: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.mtia: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.xpu: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.ipu: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.data_ptr: lambda self: -1, |
| Tensor.dense_dim: lambda self: -1, |
| Tensor.diagonal_scatter: lambda self, src, offset=0, dim1=0, dim2=1: -1, |
| Tensor.dim: lambda self: -1, |
| Tensor.dim_order: lambda self: -1, |
| Tensor.double: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.cdouble: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.element_size: lambda self: -1, |
| Tensor.expand: lambda self, size: -1, |
| Tensor.expand_as: lambda self, other: -1, |
| Tensor.exponential_: lambda self, lambd=1, *, generator=None: -1, |
| Tensor.fill_: lambda self, value: -1, |
| Tensor.fill_diagonal_: lambda self, value: -1, |
| Tensor.float: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.cfloat: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.geometric_: lambda self, p, *, generator=None: -1, |
| Tensor.get_device: lambda self: -1, |
| Tensor.half: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.chalf: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.has_names: lambda self: -1, |
| Tensor.indices: lambda self: -1, |
| Tensor.int: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.is_coalesced: lambda self: -1, |
| Tensor.is_contiguous: lambda self: -1, |
| Tensor.is_inference: lambda self: -1, |
| Tensor.is_pinned: lambda self: -1, |
| Tensor.is_set_to: lambda self, tensor: -1, |
| Tensor.is_shared: lambda self: -1, |
| Tensor.item: lambda self: -1, |
| Tensor.log_normal_: lambda self, mean=1, std=2, *, generator=None: -1, |
| Tensor.log_softmax: lambda self, dim: -1, |
| Tensor.long: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.map_: lambda self, tensor, callable: -1, |
| Tensor.map2_: lambda self, x, y, callable: -1, |
| Tensor.mm: lambda self, mat2: -1, |
| Tensor.module_load: lambda self, other, assign=False: -1, |
| Tensor.narrow_copy: lambda self, dimension, start, length: -1, |
| Tensor.ndimension: lambda self: -1, |
| Tensor.nelement: lambda self: -1, |
| Tensor._nested_tensor_size: lambda self: -1, |
| Tensor._nested_tensor_storage_offsets: lambda self: -1, |
| Tensor._nested_tensor_strides: lambda self: -1, |
| Tensor.normal_: lambda self: -1, |
| Tensor.numpy: lambda self: -1, |
| Tensor.permute: lambda self, dim: -1, |
| Tensor.pin_memory: lambda self: -1, |
| Tensor.put_: lambda self, indices, tensor, accumulate=False: -1, |
| Tensor.qscheme: lambda self: -1, |
| Tensor.random_: lambda self, from_=0, to=None, *, generator=None: -1, |
| Tensor.record_stream: lambda self, stream: -1, |
| Tensor.refine_names: lambda self, names: -1, |
| Tensor.register_hook: lambda self, hook: -1, |
| Tensor.register_post_accumulate_grad_hook: lambda self, hook: -1, |
| Tensor.rename: lambda self, name: -1, |
| Tensor.repeat: lambda self, *size: -1, |
| Tensor.requires_grad_: lambda self, requires_grad=True: -1, |
| Tensor.reshape_as: lambda self, other: -1, |
| Tensor.resize: lambda self, *size: -1, |
| Tensor.resize_: lambda self, size: -1, |
| Tensor.resize_as: lambda self, other: -1, |
| Tensor.resize_as_sparse_: lambda self, other: -1, |
| Tensor.retain_grad: lambda self: -1, |
| Tensor.set_: lambda self, source=None, storage_offset=0, size=None, stride=None: -1, |
| Tensor.select_scatter: lambda self, src, dim, index: -1, |
| Tensor.share_memory_: lambda self: -1, |
| Tensor.short: lambda self, memory_format=torch.preserve_format: -1, |
| Tensor.size: lambda self: -1, |
| Tensor.slice_scatter: lambda self, src, dim=0, start=None, end=None, step=1: -1, |
| Tensor.sparse_dim: lambda self: -1, |
| Tensor.sparse_mask: lambda self, mask: -1, |
| Tensor._sparse_mask_projection: lambda self, mask, accumulate_matches=False: -1, |
| Tensor.sparse_resize_: lambda self, size1, size2, dense_dim: -1, |
| Tensor.sparse_resize_and_clear_: lambda self, size1, size2, dense_dim: -1, |
| Tensor.sspaddmm: lambda self, mat1, mat2, beta=1, alpha=1, out=None: -1, |
| Tensor.storage: lambda self: -1, |
| Tensor.untyped_storage: lambda self: -1, |
| Tensor.storage_offset: lambda self: -1, |
| Tensor.storage_type: lambda self: -1, |
| Tensor.sum_to_size: lambda self, size: -1, |
| Tensor.tile: lambda self, *reps: -1, |
| Tensor.to: lambda self, dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format: -1, |
| Tensor.to_dense: lambda self, dtype=None, *, masked_grad=None: -1, |
| Tensor._to_dense: lambda self, dtype=None, masked_grad=None: -1, |
| Tensor.to_sparse: lambda self: -1, |
| Tensor.tolist: lambda self: -1, |
| Tensor.to_mkldnn: lambda self: -1, |
| Tensor.type_as: lambda self, other: -1, |
| Tensor.unfold: lambda self, dimension, size, step: -1, |
| Tensor.uniform_: lambda self, from_=0, to=1: -1, |
| Tensor.values: lambda self: -1, |
| Tensor.view: lambda self, shape: -1, |
| Tensor.view_as: lambda self, other: -1, |
| Tensor.zero_: lambda self: -1, |
| Tensor.__dlpack__: lambda self, stream=None: -1, |
| Tensor.__dlpack_device__: lambda self: -1, |
| torch.linalg.lstsq: lambda self, b, cond=None, driver=None: -1, |
| } # fmt: skip |
| |
| privateuse1_backend_name = ( |
| torch.utils.backend_registration._privateuse1_backend_name |
| ) |
| if hasattr(Tensor, privateuse1_backend_name): |
| ret[getattr(Tensor, privateuse1_backend_name)] = ( |
| lambda self, device=None, non_blocking=False, **kwargs: -1 |
| ) |
| ret[getattr(Tensor, f"is_{privateuse1_backend_name}").__get__] = lambda self: -1 |
| |
| ret2 = {} |
| ignored = get_ignored_functions() |
| |
| for k, v in ret.items(): |
| # Generate methods like __add__ and add_ by default from add |
| names = [ |
| k.__name__, # Default method |
| k.__name__ + "_", # Inplace variant |
| "__" + k.__name__ + "__", # Dunder method |
| "__i" + k.__name__ + "__", # Inplace dunder method |
| "__r" + k.__name__ + "__", # Reverse dunder method |
| ] |
| |
| if k.__name__.startswith("bitwise_"): |
| # bitwise_<op> have dunder methods of the form __<op>__ |
| # And so on. |
| subname = k.__name__[len("bitwise_") :] |
| names.extend( |
| ["__" + subname + "__", "__i" + subname + "__", "__r" + subname + "__"] |
| ) |
| |
| for name in names: |
| func = getattr(Tensor, name, None) |
| if callable(func) and func not in ret and func not in ignored: |
| ret2[func] = v |
| |
| ret.update(ret2) |
| return ret |
| |
| |
| def wrap_torch_function(dispatcher: Callable): |
| """Wraps a given function with ``__torch_function__`` -related functionality. |
| |
| Parameters |
| ---------- |
| dispatcher: Callable |
| A callable that returns an iterable of Tensor-likes passed into the function. |
| |
| Note |
| ---- |
| This decorator may reduce the performance of your code. Generally, it's enough to express |
| your code as a series of functions that, themselves, support __torch_function__. If you |
| find yourself in the rare situation where this is not the case, e.g. if you're wrapping a |
| low-level library and you also need it to work for Tensor-likes, then this function is available. |
| |
| Examples |
| -------- |
| >>> def dispatcher(a): # Must have the same signature as func |
| ... return (a,) |
| >>> @torch.overrides.wrap_torch_function(dispatcher) |
| >>> def func(a): # This will make func dispatchable by __torch_function__ |
| ... return a + 0 |
| """ |
| |
| def inner(func): |
| @functools.wraps(func) |
| def wrapped(*args, **kwargs): |
| relevant_args = dispatcher(*args, **kwargs) |
| if has_torch_function(relevant_args): |
| return handle_torch_function(wrapped, relevant_args, *args, **kwargs) |
| |
| return func(*args, **kwargs) |
| |
| return wrapped |
| |
| return inner |
| |
| |
| def _get_overloaded_args( |
| relevant_args: Iterable[Any], |
| get_type_fn: Callable[[Any], Type] = None, |
| ) -> List[Any]: |
| """Returns a list of arguments on which to call __torch_function__. |
| |
| Checks arguments in relevant_args for __torch_function__ implementations, |
| storing references to the arguments and their types in overloaded_args and |
| overloaded_types in order of calling precedence. Only distinct types are |
| considered. If a type is a subclass of another type it will have higher |
| precedence, otherwise the precedence order is the same as the order of |
| arguments in relevant_args, that is, from left-to-right in the argument list. |
| |
| The precedence-determining algorithm implemented in this function is |
| described in `NEP-0018`_. |
| |
| See torch::append_overloaded_arg for the equivalent function in the C++ |
| implementation. |
| |
| Parameters |
| ---------- |
| relevant_args : iterable of array-like |
| Iterable of array-like arguments to check for __torch_function__ |
| methods. |
| |
| get_type_fn : callable, optional |
| Function to call on each argument in relevant_args to get its type. |
| |
| Returns |
| ------- |
| overloaded_args : list |
| Arguments from relevant_args on which to call __torch_function__ |
| methods, in the order in which they should be called. |
| |
| .. _NEP-0018: |
| https://numpy.org/neps/nep-0018-array-function-protocol.html |
| """ |
| if get_type_fn is None: |
| get_type_fn = type |
| |
| # If torch function is not enabled, there are no overloaded types |
| if not torch._C._is_torch_function_enabled(): |
| return [] |
| # Runtime is O(num_arguments * num_unique_types) |
| overloaded_types: Set[Type] = set() |
| overloaded_args: List[Any] = [] |
| for arg in relevant_args: |
| arg_type = get_type_fn(arg) |
| # We only collect arguments if they have a unique type, which ensures |
| # reasonable performance even with a long list of possibly overloaded |
| # arguments. |
| # |
| # NB: Important to exclude _disabled_torch_function_impl, otherwise |
| # https://github.com/pytorch/pytorch/issues/64687 |
| if ( |
| arg_type not in overloaded_types |
| and hasattr(arg_type, "__torch_function__") |
| and arg_type.__torch_function__ != torch._C._disabled_torch_function_impl |
| ): |
| # Create lists explicitly for the first type (usually the only one |
| # done) to avoid setting up the iterator for overloaded_args. |
| if overloaded_types: |
| overloaded_types.add(arg_type) |
| # By default, insert argument at the end, but if it is |
| # subclass of another argument, insert it before that argument. |
| # This ensures "subclasses before superclasses". |
| index = len(overloaded_args) |
| for i, old_arg in enumerate(overloaded_args): |
| if issubclass(arg_type, get_type_fn(old_arg)): |
| index = i |
| break |
| overloaded_args.insert(index, arg) |
| else: |
| overloaded_types = {arg_type} |
| overloaded_args = [arg] |
| return overloaded_args |
| |
| |
| def handle_torch_function( |
| public_api: Callable, |
| relevant_args: Iterable[Any], |
| *args, |
| **kwargs, |
| ) -> Any: |
| """Implement a function with checks for ``__torch_function__`` overrides. |
| |
| See torch::autograd::handle_torch_function for the equivalent of this |
| function in the C++ implementation. |
| |
| Arguments |
| --------- |
| public_api : function |
| Function exposed by the public torch API originally called like |
| ``public_api(*args, **kwargs)`` on which arguments are now being |
| checked. |
| relevant_args : iterable |
| Iterable of arguments to check for __torch_function__ methods. |
| args : tuple |
| Arbitrary positional arguments originally passed into ``public_api``. |
| kwargs : tuple |
| Arbitrary keyword arguments originally passed into ``public_api``. |
| |
| Returns |
| ------- |
| object |
| Result from calling ``implementation`` or an ``__torch_function__`` |
| method, as appropriate. |
| |
| Raises |
| ------ |
| TypeError : if no implementation is found. |
| |
| Example |
| ------- |
| >>> def func(a): |
| ... if has_torch_function_unary(a): |
| ... return handle_torch_function(func, (a,), a) |
| ... return a + 0 |
| """ |
| # Check for __torch_function__ methods. |
| overloaded_args = _get_overloaded_args(relevant_args) |
| # overloaded_args already have unique types. |
| types = tuple(map(type, overloaded_args)) |
| |
| # Check for __torch_function__ mode. |
| if _is_torch_function_mode_enabled(): |
| # if we're here, the mode must be set to a TorchFunctionStackMode |
| # this unsets it and calls directly into TorchFunctionStackMode's torch function |
| with _pop_mode_temporarily() as mode: |
| result = mode.__torch_function__(public_api, types, args, kwargs) |
| if result is not NotImplemented: |
| return result |
| |
| # Call overrides |
| for overloaded_arg in overloaded_args: |
| # This call needs to become a classmethod call in the future. |
| # See https://github.com/pytorch/pytorch/issues/63767 |
| torch_func_method = overloaded_arg.__torch_function__ |
| if ( |
| hasattr(torch_func_method, "__self__") |
| and torch_func_method.__self__ is overloaded_arg |
| and torch_func_method is not torch._C._disabled_torch_function_impl |
| ): |
| warnings.warn( |
| "Defining your `__torch_function__ as a plain method is deprecated and " |
| "will be an error in future, please define it as a classmethod.", |
| DeprecationWarning, |
| ) |
| |
| # Use `public_api` instead of `implementation` so __torch_function__ |
| # implementations can do equality/identity comparisons. |
| result = torch_func_method(public_api, types, args, kwargs) |
| |
| if result is not NotImplemented: |
| return result |
| |
| func_name = f"{public_api.__module__}.{public_api.__name__}" |
| msg = ( |
| f"no implementation found for '{func_name}' on types that implement " |
| f"__torch_function__: {[type(arg) for arg in overloaded_args]}" |
| ) |
| if _is_torch_function_mode_enabled(): |
| msg += f" nor in mode {_get_current_function_mode()}" |
| raise TypeError(msg) |
| |
| |
| has_torch_function = _add_docstr( |
| _has_torch_function, |
| r"""Check for __torch_function__ implementations in the elements of an iterable |
| or if a __torch_function__ mode is enabled. Considers exact ``Tensor`` s |
| and ``Parameter`` s non-dispatchable. Use this to guard a call to |
| :func:`handle_torch_function`; don't use it to test if something |
| is Tensor-like, use :func:`is_tensor_like` instead. |
| Arguments |
| --------- |
| relevant_args : iterable |
| Iterable or arguments to check for __torch_function__ methods. |
| Returns |
| ------- |
| bool |
| True if any of the elements of relevant_args have __torch_function__ |
| implementations, False otherwise. |
| See Also |
| ________ |
| torch.is_tensor_like |
| Checks if something is a Tensor-like, including an exact ``Tensor``. |
| """, |
| ) |
| |
| has_torch_function_unary = _add_docstr( |
| _has_torch_function_unary, |
| r"""Special case of `has_torch_function` for single inputs. |
| Instead of: |
| `has_torch_function((t,))` |
| call: |
| `has_torch_function_unary(t)` |
| which skips unnecessary packing and unpacking work. |
| """, |
| ) |
| |
| has_torch_function_variadic = _add_docstr( |
| _has_torch_function_variadic, |
| r"""Special case of `has_torch_function` that skips tuple creation. |
| |
| This uses the METH_FASTCALL protocol introduced in Python 3.7 |
| |
| Instead of: |
| `has_torch_function((a, b))` |
| call: |
| `has_torch_function_variadic(a, b)` |
| which skips unnecessary packing and unpacking work. |
| """, |
| ) |
| |
| |
| @functools.lru_cache(None) |
| def _get_overridable_functions() -> ( |
| Tuple[Dict[Any, List[Callable]], Dict[Callable, str]] |
| ): |
| overridable_funcs = collections.defaultdict(list) |
| index = {} |
| tested_namespaces = [ |
| ("torch", torch, torch.__all__), |
| ("torch.functional", torch.functional, torch.functional.__all__), |
| ("torch.nn.functional", torch.nn.functional, dir(torch.nn.functional)), |
| ("torch.nn.init", torch.nn.init, dir(torch.nn.init)), |
| ("torch.Tensor", torch.Tensor, dir(torch.Tensor)), |
| ("torch.linalg", torch.linalg, dir(torch.linalg)), |
| ("torch.fft", torch.fft, dir(torch.fft)), |
| ("torch.special", torch.special, dir(torch.special)), |
| ] |
| for namespace_str, namespace, ns_funcs in tested_namespaces: |
| for func_name in ns_funcs: |
| ignore = False |
| # ignore private functions or functions that are deleted in torch.__init__ |
| if namespace is not torch.Tensor: |
| if func_name.startswith("__"): |
| continue |
| elif func_name.startswith("_"): |
| ignore = True |
| elif func_name.endswith("_"): |
| ignore = True |
| elif not func_name[0].islower(): |
| ignore = True |
| elif func_name == "unique_dim": |
| continue |
| else: |
| func = getattr(namespace, func_name) |
| if getattr(object, func_name, None) == func: |
| continue |
| if func_name == "__weakref__": |
| continue |
| func = getattr(namespace, func_name) |
| if namespace is torch.Tensor and getattr(object, func_name, None) == func: |
| continue |
| # ignore re-exported modules |
| if isinstance(func, types.ModuleType): |
| continue |
| # ignore __future__ imports |
| if isinstance(func, __future__._Feature): |
| continue |
| |
| if not callable(func) and hasattr(func, "__get__"): |
| index[func.__get__] = f"{namespace_str}.{func_name}.__get__" |
| index[func.__set__] = f"{namespace_str}.{func_name}.__set__" |
| if ignore: |
| continue |
| if func.__get__ in get_ignored_functions(): |
| msg = ( |
| "{}.{} is in the tuple returned by torch._overrides.get_ignored_functions " |
| "but still has an explicit override" |
| ) |
| assert func.__get__ not in get_testing_overrides(), msg.format( |
| namespace, func.__name__ |
| ) |
| continue |
| else: |
| overridable_funcs[func].append(func.__get__) |
| continue |
| |
| if not callable(func): |
| continue |
| |
| index[func] = f"{namespace_str}.{func_name}" |
| |
| if ignore: |
| continue |
| |
| # cannot be overriden by __torch_function__ |
| if func in get_ignored_functions(): |
| msg = ( |
| "{}.{} is in the tuple returned by torch._overrides.get_ignored_functions " |
| "but still has an explicit override" |
| ) |
| assert func not in get_testing_overrides(), msg.format( |
| namespace, func.__name__ |
| ) |
| continue |
| overridable_funcs[namespace].append(func) |
| return overridable_funcs, index |
| |
| |
| @_disable_user_warnings |
| def get_overridable_functions() -> Dict[Any, List[Callable]]: |
| """List functions that are overridable via __torch_function__ |
| |
| Returns |
| ------- |
| Dict[Any, List[Callable]] |
| A dictionary that maps namespaces that contain overridable functions |
| to functions in that namespace that can be overridden. |
| """ |
| return _get_overridable_functions()[0] |
| |
| |
| @_disable_user_warnings |
| def resolve_name(f): |
| """Get a human readable string name for a function passed to |
| __torch_function__ |
| |
| Arguments |
| --------- |
| f : Callable |
| Function to resolve the name of. |
| |
| Returns |
| ------- |
| str |
| Name of the function; if eval'ed it should give back the input |
| function. |
| """ |
| if isinstance(f, (torch._ops.OpOverload, torch._ops.OpOverloadPacket)): |
| return str(f) |
| return _get_overridable_functions()[1].get(f) |
| |
| |
| @functools.lru_cache(None) |
| def _get_tensor_methods() -> Set[Callable]: |
| """Returns a set of the overridable methods on ``torch.Tensor``""" |
| overridable_funcs = get_overridable_functions() |
| methods = set(overridable_funcs[torch.Tensor]) |
| return methods |
| |
| |
| @_disable_user_warnings |
| def is_tensor_method_or_property(func: Callable) -> bool: |
| """ |
| Returns True if the function passed in is a handler for a |
| method or property belonging to ``torch.Tensor``, as passed |
| into ``__torch_function__``. |
| |
| .. note:: |
| For properties, their ``__get__`` method must be passed in. |
| |
| This may be needed, in particular, for the following reasons: |
| |
| 1. Methods/properties sometimes don't contain a `__module__` slot. |
| 2. They require that the first passed-in argument is an instance |
| of ``torch.Tensor``. |
| |
| Examples |
| -------- |
| >>> is_tensor_method_or_property(torch.Tensor.add) |
| True |
| >>> is_tensor_method_or_property(torch.add) |
| False |
| """ |
| return func in _get_tensor_methods() or func.__name__ == "__get__" |
| |
| |
| def is_tensor_like(inp): |
| """ |
| Returns ``True`` if the passed-in input is a Tensor-like. |
| |
| Currently, this occurs whenever there's a ``__torch_function__`` |
| attribute on the type of the input. |
| |
| Examples |
| -------- |
| A subclass of tensor is generally a Tensor-like. |
| |
| >>> class SubTensor(torch.Tensor): ... |
| >>> is_tensor_like(SubTensor([0])) |
| True |
| |
| Built-in or user types aren't usually Tensor-like. |
| |
| >>> is_tensor_like(6) |
| False |
| >>> is_tensor_like(None) |
| False |
| >>> class NotATensor: ... |
| >>> is_tensor_like(NotATensor()) |
| False |
| |
| But, they can be made Tensor-like by implementing __torch_function__. |
| |
| >>> class TensorLike: |
| ... @classmethod |
| ... def __torch_function__(cls, func, types, args, kwargs): |
| ... return -1 |
| >>> is_tensor_like(TensorLike()) |
| True |
| """ |
| return type(inp) is torch.Tensor or hasattr(inp, "__torch_function__") |
| |
| |
| class TorchFunctionMode: |
| """ |
| A ``TorchFunctionMode`` allows you to override the meaning of all |
| ``__torch_function__`` overrideable functions within a dynamic scope, |
| without having to actually create a tensor subclass or manually |
| monkey-patch functions in the PyTorch API. Some common situations |
| where you should use a mode: |
| |
| * You want to override the meaning of factory functions, or other |
| functions that do not otherwise take a tensor as an argument |
| (these cannot be overridden with tensor subclasses). |
| |
| * You want to override the behavior of all functions without needing |
| to wrap your inputs in tensor subclasses; e.g., if you are just |
| interested in logging intermediate computations. |
| |
| * You want to control the order of execution of various tensor |
| subclasses explicitly, rather than implicitly via the return of |
| ``NotImplemented``. |
| |
| Independent subclasses of :class:`TorchFunctionMode` are compositional: |
| modes can be pushed onto a stack using ``with MyMode():``. |
| When you call functions in the PyTorch API inside your |
| ``__torch_function__`` implementation, by default, they will forward on to |
| the next mode on the mode stack. If you want recursively call back into |
| your current ``__torch_function__`` implementation, either explicitly |
| invoke ``self.__torch_function__(...)``, or use the context manager |
| ``enable_torch_function_mode(self, replace=self.inner)`` to make PyTorch |
| API self-referential (beware of infinite loops, in this case!) |
| """ |
| |
| inner: "TorchFunctionMode" |
| |
| # Force metaclass to generate constructor at the base of the hierarchy |
| def __init__(self) -> None: |
| pass |
| |
| def __torch_function__(self, func, types, args=(), kwargs=None): |
| raise NotImplementedError |
| |
| def __enter__(self): |
| _push_mode(self) |
| return self |
| |
| def __exit__(self, exc_type, exc_val, exc_tb): |
| _pop_mode() |
| |
| @classmethod |
| def push(cls, *args, **kwargs): |
| warnings.warn( |
| "`Mode.push()` is no longer necessary and can be replaced with just `with Mode()`" |
| ) |
| instance = cls(*args, **kwargs) |
| return instance |
| |
| |
| def _get_current_function_mode(): |
| stack_len = _len_torch_function_stack() |
| return _get_function_stack_at(stack_len - 1) if stack_len > 0 else None |
| |
| |
| def _get_current_function_mode_stack(): |
| stack_len = _len_torch_function_stack() |
| return [_get_function_stack_at(i) for i in range(stack_len)] |
| |
| |
| def _push_mode(mode): |
| _push_on_torch_function_stack(mode) |
| |
| |
| def _pop_mode(): |
| old = _pop_torch_function_stack() |
| return old |
| |
| |
| @contextlib.contextmanager |
| def _pop_mode_temporarily(): |
| old = _pop_mode() |
| try: |
| yield old |
| finally: |
| _push_mode(old) |
| |
| |
| class BaseTorchFunctionMode(TorchFunctionMode): |
| def __torch_function__(self, func, types, args=(), kwargs=None): |
| if kwargs is None: |
| kwargs = {} |
| return func(*args, **kwargs) |
| |
| |
| @contextlib.contextmanager |
| def enable_reentrant_dispatch(): |
| # NB: this can't simply be |
| # `enable_reentrant_dispatch = torch._C._RestorePythonTLSSnapshot` |
| # because: |
| # 1. torch._C._RestorePythonTLSSnapshot is unavailable when this file |
| # initially gets imported. Probably an import order thing. |
| # 2. enable_reentrant_dispatch is technically public API; assigning |
| # it the object would change the __module__ to look private. |
| with torch._C._RestorePythonTLSSnapshot(): |
| try: |
| yield |
| finally: |
| pass |