blob: c43ce4fd6d9a2ceac55f478d61232f5ef0f27fbb [file] [log] [blame]
.. _cond:
Control Flow - Cond
====================
`torch.cond` is a structured control flow operator. It can be used to specify if-else like control flow
and can logically be seen as implemented as follows.
.. code-block:: python
def cond(
pred: Union[bool, torch.Tensor],
true_fn: Callable,
false_fn: Callable,
operands: Tuple[torch.Tensor]
):
if pred:
return true_fn(*operands)
else:
return false_fn(*operands)
Its unique power lies in its ability of expressing **data-dependent control flow**: it lowers to a conditional
operator (`torch.ops.higher_order.cond`), which preserves predicate, true function and false functions.
This unlocks great flexibility in writing and deploying models that change model architecture based on
the **value** or **shape** of inputs or intermediate outputs of tensor operations.
.. warning::
`torch.cond` is a prototype feature in PyTorch. It has limited support for input and output types and
doesn't support training currently. Please look forward to a more stable implementation in a future version of PyTorch.
Read more about feature classification at: https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype
Examples
~~~~~~~~
Below is an example that uses cond to branch based on input shape:
.. code-block:: python
import torch
def true_fn(x: torch.Tensor):
return x.cos() + x.sin()
def false_fn(x: torch.Tensor):
return x.sin()
class DynamicShapeCondPredicate(torch.nn.Module):
"""
A basic usage of cond based on dynamic shape predicate.
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
def true_fn(x: torch.Tensor):
return x.cos()
def false_fn(x: torch.Tensor):
return x.sin()
return torch.cond(x.shape[0] > 4, true_fn, false_fn, (x,))
dyn_shape_mod = DynamicShapeCondPredicate()
We can eagerly run the model and expect the results vary based on input shape:
.. code-block:: python
inp = torch.randn(3)
inp2 = torch.randn(5)
assert torch.equal(dyn_shape_mod(inp), false_fn(inp))
assert torch.equal(dyn_shape_mod(inp2), true_fn(inp2))
We can export the model for further transformations and deployment:
.. code-block:: python
inp = torch.randn(4, 3)
dim_batch = torch.export.Dim("batch", min=2)
ep = torch.export.export(DynamicShapeCondPredicate(), (inp,), {}, dynamic_shapes={"x": {0: dim_batch}})
print(ep)
This gives us an exported program as shown below:
.. code-block::
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 3]):
sym_size: Sym(s0) = torch.ops.aten.sym_size.int(arg0_1, 0)
gt: Sym(s0 > 4) = sym_size > 4; sym_size = None
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[s0, 3] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1]); gt = true_graph_0 = false_graph_0 = arg0_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 3]):
cos: f32[s0, 3] = torch.ops.aten.cos.default(arg0_1)
sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
add: f32[s0, 3] = torch.ops.aten.add.Tensor(cos, sin); cos = sin = None
return add
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 3]):
sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
return sin
Notice that `torch.cond` is lowered to `torch.ops.higher_order.cond`, its predicate becomes a Symbolic expression over the shape of input,
and branch functions becomes two sub-graph attributes of the top level graph module.
Here is another example that showcases how to express a data-dependent control flow:
.. code-block:: python
class DataDependentCondPredicate(torch.nn.Module):
"""
A basic usage of cond based on data dependent predicate.
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.cond(x.sum() > 4.0, true_fn, false_fn, (x,))
The exported program we get after export:
.. code-block::
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 3]):
sum_1: f32[] = torch.ops.aten.sum.default(arg0_1)
gt: b8[] = torch.ops.aten.gt.Scalar(sum_1, 4.0); sum_1 = None
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
conditional: f32[s0, 3] = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [arg0_1]); gt = true_graph_0 = false_graph_0 = arg0_1 = None
return (conditional,)
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 3]):
cos: f32[s0, 3] = torch.ops.aten.cos.default(arg0_1)
sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
add: f32[s0, 3] = torch.ops.aten.add.Tensor(cos, sin); cos = sin = None
return add
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: f32[s0, 3]):
sin: f32[s0, 3] = torch.ops.aten.sin.default(arg0_1); arg0_1 = None
return sin
Invariants of torch.ops.higher_order.cond
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several useful invariants for `torch.ops.higher_order.cond`:
- For predicate:
- Dynamicness of predicate is preserved (e.g. `gt` shown in the above example)
- If the predicate in user-program is constant (e.g. a python bool constant), the `pred` of the operator will be a constant.
- For branches:
- The input and output signature will be a flattened tuple.
- They are `torch.fx.GraphModule`.
- Closures in original function becomes explicit inputs. No closures.
- No mutations on inputs or globals are allowed.
- For operands:
- It will also be a flat tuple.
- Nesting of `torch.cond` in user program becomes nested graph modules.
API Reference
-------------
.. autofunction:: torch._higher_order_ops.cond.cond