| .. _torch-library-docs: |
| |
| torch.library |
| =================================== |
| .. py:module:: torch.library |
| .. currentmodule:: torch.library |
| |
| torch.library is a collection of APIs for extending PyTorch's core library |
| of operators. It contains utilities for testing custom operators, creating new |
| custom operators, and extending operators defined with PyTorch's C++ operator |
| registration APIs (e.g. aten operators). |
| |
| For a detailed guide on effectively using these APIs, please see |
| Please see :ref:`custom-ops-landing-page` |
| for more details on how to effectively use these APIs. |
| |
| Testing custom ops |
| ------------------ |
| |
| Use :func:`torch.library.opcheck` to test custom ops for incorrect usage of the |
| Python torch.library and/or C++ TORCH_LIBRARY APIs. Also, if your operator supports |
| training, use :func:`torch.autograd.gradcheck` to test that the gradients are |
| mathematically correct. |
| |
| .. autofunction:: opcheck |
| |
| Creating new custom ops in Python |
| --------------------------------- |
| |
| Use :func:`torch.library.custom_op` to create new custom ops. |
| |
| .. autofunction:: custom_op |
| |
| Extending custom ops (created from Python or C++) |
| ------------------------------------------------- |
| |
| Use the register.* methods, such as :func:`torch.library.register_kernel` and |
| func:`torch.library.register_fake`, to add implementations |
| for any operators (they may have been created using :func:`torch.library.custom_op` or |
| via PyTorch's C++ operator registration APIs). |
| |
| .. autofunction:: register_kernel |
| .. autofunction:: register_autograd |
| .. autofunction:: register_fake |
| .. autofunction:: register_vmap |
| .. autofunction:: impl_abstract |
| .. autofunction:: get_ctx |
| .. autofunction:: register_torch_dispatch |
| .. autofunction:: infer_schema |
| .. autoclass:: torch._library.custom_ops.CustomOpDef |
| |
| .. automethod:: set_kernel_enabled |
| |
| Low-level APIs |
| -------------- |
| |
| The following APIs are direct bindings to PyTorch's C++ low-level |
| operator registration APIs. |
| |
| .. warning:: |
| The low-level operator registration APIs and the PyTorch Dispatcher are a |
| complicated PyTorch concept. We recommend you use the higher level APIs above |
| (that do not require a torch.library.Library object) when possible. |
| This blog post <http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/>`_ |
| is a good starting point to learn about the PyTorch Dispatcher. |
| |
| A tutorial that walks you through some examples on how to use this API is available on `Google Colab <https://colab.research.google.com/drive/1RRhSfk7So3Cn02itzLWE9K4Fam-8U011?usp=sharing>`_. |
| |
| .. autoclass:: torch.library.Library |
| :members: |
| |
| .. autofunction:: fallthrough_kernel |
| |
| .. autofunction:: define |
| |
| .. autofunction:: impl |