blob: 7838f255c8c3a6560f4f131f19fb11103c1568e0 [file] [log] [blame]
# Generates ViewFuncs.h/cpp
#
# NOTE: If any changes are being made to the ViewFunc codegen please also check
# if updates are needed in torch/csrc/autograd/autograd_not_implemented_fallback.cpp
# The fallback is expected to mimic this codegen, so we should keep the two in sync.
from __future__ import annotations
from typing import TYPE_CHECKING
import torchgen.api.dispatcher as dispatcher
from torchgen.api.translate import translate
from torchgen.api.types import (
BaseCType,
Binding,
NamedCType,
SymIntT,
tensorT,
VectorCType,
)
from torchgen.code_template import CodeTemplate
from torchgen.model import Argument, NativeFunction, OptionalType
from torchgen.utils import FileManager
from .gen_inplace_or_view_type import (
CALL_DISPATCH,
extract_bindings,
get_view_info,
modifies_arguments,
use_derived,
)
if TYPE_CHECKING:
from torchgen.api.autograd import NativeFunctionWithDifferentiabilityInfo
FUNCTION_DECLARATION = CodeTemplate(
"""\
#define ${uppercase_op}_AVAILABLE
struct ${op} : public ${superclass} {
${op}(${constructor_args}) ${initializer_list}
{};
virtual ~${op}() override {};
virtual std::vector<c10::SymInt> get_symints() const override;
virtual size_t num_symints() const override;
virtual std::vector<at::Tensor> get_tensors() const override;
virtual size_t num_tensors() const override;
virtual at::Tensor operator()(const at::Tensor&) const override;
virtual std::unique_ptr<ViewFunc> clone_and_set(
std::optional<std::vector<c10::SymInt>> = c10::nullopt,
std::optional<std::vector<at::Tensor>> = c10::nullopt) const override;
protected:
virtual void set_symints(std::vector<c10::SymInt>) override;
virtual void set_tensors(std::vector<at::Tensor>) override;
private:
${state}
};
"""
)
FUNCTION_DEFINITION = CodeTemplate(
"""\
std::vector<c10::SymInt> ${op}::get_symints() const {
${get_symints}
}
size_t ${op}::num_symints() const {
return static_cast<size_t>(${num_symints});
}
void ${op}::set_symints(std::vector<c10::SymInt> ${symints_vec}) {
TORCH_INTERNAL_ASSERT(${symints_vec}.size() == num_symints());
${set_symints}
}
std::vector<at::Tensor> ${op}::get_tensors() const {
${get_tensors}
}
size_t ${op}::num_tensors() const {
return static_cast<size_t>(${num_tensors});
}
void ${op}::set_tensors(std::vector<at::Tensor> ${tensors_vec}) {
TORCH_INTERNAL_ASSERT(${tensors_vec}.size() == num_tensors());
${set_tensors}
}
at::Tensor ${op}::operator()(const at::Tensor& ${call_input_name}) const {
return ${op_call};
}
std::unique_ptr<ViewFunc> ${op}::clone_and_set(
std::optional<std::vector<c10::SymInt>> ${symints_vec},
std::optional<std::vector<at::Tensor>> ${tensors_vec}) const {
auto output = std::make_unique<${op}>(${clone_args});
if (${symints_vec}.has_value()) {
output->set_symints(std::move(*(${symints_vec})));
}
if (${tensors_vec}.has_value()) {
output->set_tensors(std::move(*(${tensors_vec})));
}
return output;
}
"""
)
# e.g. as_strided -> AsStridedViewFunc for camel case or
# as_strided_view_func otherwise
def view_func_name(
f: NativeFunction, include_namespace: bool = False, camel_case: bool = True
) -> str:
name = f.func.name.unambiguous_name()
view_func_name = f"{name.replace('.', '_')}_view_func"
if camel_case:
is_private = view_func_name.startswith("_")
view_func_name = "".join(
[p.title() for p in view_func_name.replace(".", "_").split("_")]
)
if is_private:
# put the leading underscore back in
view_func_name = f"_{view_func_name}"
namespace = "torch::autograd::generated::" if include_namespace else ""
return f"{namespace}{view_func_name}"
def is_symint_or_tensor(arg: Argument) -> bool:
return arg.type.is_tensor_like() or arg.type.is_symint_like()
def remove_const_ref(binding: Binding) -> Binding:
return Binding(
name=binding.name,
nctype=binding.nctype.remove_const_ref(),
argument=binding.argument,
default=binding.default,
)
def returns_multi_tensor(fn: NativeFunction) -> bool:
returns = fn.func.returns
assert len(returns) == 1
returns_list_like = returns[0].type.is_list_like() is not None
returns_tensor_like = returns[0].type.is_tensor_like()
return returns_list_like and returns_tensor_like
# Generates strings with logic for getting / setting state of a particular type.
#
# Args:
# bindings (list): List of state bindings of interest (may be empty)
# state_vec_type (NamedCType): Type of vector to either return or copy from
#
# Returns:
# tuple: (list of getter logic strings, list of setter logic strings, string
# with num items expression)
def generate_state_getter_setter(
bindings: list[Binding],
state_vec_type: NamedCType,
) -> tuple[list[str], list[str], str]:
getter_logic = []
setter_logic = []
state_vec = state_vec_type.name
getter_logic.append(f"{state_vec_type.cpp_type()} {state_vec};")
if len(bindings) > 0:
setter_logic.append("auto i = 0;")
num_exprs = []
for i, b in enumerate(bindings):
assert isinstance(b.argument, Argument)
if b.argument.type.is_list_like():
# Handle list-likes.
num_expr = f"{b.name}.size()"
num_exprs.append(num_expr)
getter = f"{state_vec}.insert({state_vec}.end(), {b.name}.begin(), {b.name}.end());"
setter = f"std::copy({state_vec}.begin() + i, {state_vec}.begin() + i + {b.name}.size(), {b.name}.begin());"
elif isinstance(b.argument.type, OptionalType):
# Handle optionals.
num_expr = f"({b.name}.has_value() ? 1 : 0)"
num_exprs.append(num_expr)
conditional = f"if({b.name}.has_value())"
getter = (
f"{conditional} {state_vec}.insert({state_vec}.end(), *({b.name}));"
)
setter = f"{conditional} {b.name} = {state_vec}[i];"
else:
num_expr = "1"
num_exprs.append(num_expr)
getter = f"{state_vec}.push_back({b.name});"
setter = f"{b.name} = {state_vec}[i];"
getter_logic.append(getter)
setter_logic.append(setter)
if i < len(bindings) - 1:
setter_logic.append(f"i += {num_expr};")
# Reserve / assert based on the total number of items expression.
num_items = "0" if len(num_exprs) == 0 else " + ".join(num_exprs)
if len(bindings) > 0:
getter_logic.insert(1, f"{state_vec}.reserve({num_items});")
getter_logic.append(f"return {state_vec};")
return getter_logic, setter_logic, num_items
def process_function(fn: NativeFunction, template: CodeTemplate) -> str:
bindings = extract_bindings(fn)
non_self_bindings = [b for b in bindings if b.name != "self"]
non_self_args = fn.func.arguments.flat_all[1:]
non_self_value_bindings = [
dispatcher.argument(a, remove_non_owning_ref_types=True) for a in non_self_args
]
# Generate constructor / clone args for the generated struct.
constructor_args = [b.defn() for b in non_self_bindings]
clone_args = [b.name for b in non_self_bindings]
# Generate state variable declarations for the generated struct.
state_variables = [
f"{remove_const_ref(b).defn()};" for b in non_self_value_bindings
]
# Generate initializer list expressions for the generated struct.
# allow_expensive_conversions=True because we need to store e.g. SymIntArrayRefs as
# vector<SymInt>s.
init_exprs = translate(
non_self_bindings, non_self_value_bindings, allow_expensive_conversions=True
)
initializers = []
for b, init_expr in zip(non_self_bindings, init_exprs):
name = b.nctype.name
assert isinstance(name, str)
initializers.append(f"{name}({init_expr.expr})")
# Generate call to underlying view op
call_input_name = "input_base"
op_call_args = [call_input_name, *(b.name for b in non_self_bindings)]
op_call = CALL_DISPATCH.substitute(
unambiguous_name=fn.func.name.unambiguous_name(),
unpacked_args=op_call_args,
)
# Multi-output views additionally require a view_idx for disambiguation.
if returns_multi_tensor(fn):
view_idx_name = "view_idx"
view_idx_typename = "int64_t"
view_idx_decl = f"{view_idx_typename} {view_idx_name}"
constructor_args.append(view_idx_decl)
clone_args.append(view_idx_name)
state_variables.append(f"{view_idx_decl};")
initializers.append(f"{view_idx_name}({view_idx_name})")
op_call += f"[{view_idx_name}]"
# Generate initializer list for the generated struct.
initializer_list = f": {', '.join(initializers)}" if len(initializers) > 0 else ""
# Generate getter / setter logic for any symints.
symint_bindings = [
b
for b in non_self_bindings
if isinstance(b.argument, Argument) and b.argument.type.is_symint_like()
]
symints_vec_type = NamedCType("symints", VectorCType(BaseCType(SymIntT)))
get_symints, set_symints, num_symints = generate_state_getter_setter(
symint_bindings, symints_vec_type
)
# Generate getter / setter logic for any tensors.
tensor_bindings = [
b
for b in non_self_bindings
if isinstance(b.argument, Argument) and b.argument.type.is_tensor_like()
]
tensors_vec_type = NamedCType("tensors", VectorCType(BaseCType(tensorT)))
get_tensors, set_tensors, num_tensors = generate_state_getter_setter(
tensor_bindings, tensors_vec_type
)
return template.substitute(
op=view_func_name(fn),
uppercase_op=view_func_name(fn, camel_case=False).upper(),
superclass="torch::autograd::ViewFunc",
initializer_list=initializer_list,
state=state_variables,
constructor_args=constructor_args,
clone_args=clone_args,
symints_vec=symints_vec_type.name,
get_symints=get_symints,
set_symints=set_symints,
num_symints=num_symints,
tensors_vec=tensors_vec_type.name,
get_tensors=get_tensors,
set_tensors=set_tensors,
num_tensors=num_tensors,
call_input_name=call_input_name,
op_call=op_call,
)
def gen_view_funcs(
out: str,
fns_with_infos: list[NativeFunctionWithDifferentiabilityInfo],
template_path: str,
) -> None:
# don't need the info parts, just the function
fns = [fn.func for fn in fns_with_infos if use_derived(fn)]
# only want out-of-place views
view_fns = [
fn for fn in fns if get_view_info(fn) is not None and not modifies_arguments(fn)
]
declarations = [process_function(fn, FUNCTION_DECLARATION) for fn in view_fns]
definitions = [process_function(fn, FUNCTION_DEFINITION) for fn in view_fns]
ops_headers = [f"#include <ATen/ops/{fn.root_name}_ops.h>" for fn in view_fns]
file_basename = "ViewFuncs"
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
for suffix in [".h", ".cpp"]:
fname = file_basename + suffix
fm.write_with_template(
fname,
fname,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/"
+ fname,
"view_func_declarations": declarations,
"view_func_definitions": definitions,
"ops_headers": ops_headers,
},
)