| from dataclasses import dataclass |
| from functools import partial |
| import torch |
| from torch.multiprocessing.reductions import StorageWeakRef |
| |
| import torch.utils._pytree as pytree |
| |
| from torch._C import DispatchKey, DispatchKeySet, ExcludeDispatchKeyGuard |
| from torch._functorch.eager_transforms import _unwrap_all_tensors_from_functional, _wrap_all_tensors_to_functional, functionalize |
| from torch._ops import PyOperator |
| from torch._subclasses.fake_tensor import FakeTensorMode |
| from torch.fx.experimental.proxy_tensor import ( |
| disable_proxy_modes_tracing, |
| ProxyTorchDispatchMode, |
| make_fx, |
| track_tensor_tree, |
| unwrap_proxy, |
| ) |
| from torch.fx.passes.shape_prop import _extract_tensor_metadata |
| from torch.utils._python_dispatch import ( |
| _get_current_dispatch_mode, |
| _pop_mode_temporarily, |
| ) |
| from torch.utils._pytree import tree_flatten |
| |
| |
| @dataclass |
| class UnsupportedAliasMutationException(RuntimeError): |
| reason: str |
| |
| |
| """ |
| We're going to define a `cond` operation. |
| In order to do this, we need implementations for each of the dispatch keys. |
| """ |
| cond = PyOperator("cond") |
| |
| |
| def trace_cond(proxy_mode, func_overload, pred, true_fn, false_fn, operands): |
| assert isinstance(operands, (list, tuple)), "Cond operands must be a list or tuple of tensors" |
| assert all(isinstance(o, torch.Tensor) for o in operands), "Cond operands must be a list of tensors" |
| |
| with disable_proxy_modes_tracing(): |
| true_graph = make_fx(true_fn)(*operands) |
| false_graph = make_fx(false_fn)(*operands) |
| |
| true_outs = [] |
| false_outs = [] |
| for node in true_graph.graph.nodes: |
| if node.op == 'output': |
| true_outs.extend(node.args) |
| |
| for node in false_graph.graph.nodes: |
| if node.op == 'output': |
| false_outs.extend(node.args) |
| |
| flat_true_outs, _ = pytree.tree_flatten(true_outs) |
| flat_false_outs, _ = pytree.tree_flatten(false_outs) |
| assert(len(flat_true_outs) == len(flat_false_outs)) |
| |
| for i in range(0, len(flat_true_outs)): |
| true_out = flat_true_outs[i] |
| false_out = flat_false_outs[i] |
| assert true_out.meta['tensor_meta'] == false_out.meta['tensor_meta'] |
| |
| # There are probably better ways - I know that create_arg has some self incrementing name |
| # magic to it, but since we explicitly have to get the name for register_module, |
| # I was not sure how to do that. This kinda simulates it. |
| next_name = None |
| i = 0 |
| while not next_name: |
| candidate = f"true_graph_{i}" |
| if hasattr(proxy_mode.tracer.root, candidate): |
| i += 1 |
| else: |
| next_name = candidate |
| |
| true_name = next_name |
| false_name = f"false_graph_{i}" |
| assert(not hasattr(proxy_mode.tracer.root, false_name)) |
| |
| proxy_mode.tracer.root.register_module(true_name, true_graph) |
| proxy_mode.tracer.root.register_module(false_name, false_graph) |
| |
| args = (pred, true_graph, false_graph, operands) |
| |
| proxy_args = pytree.tree_map(partial(unwrap_proxy, proxy_mode), args) |
| |
| out_proxy = proxy_mode.tracer.create_proxy('call_function', func_overload, proxy_args, {}, |
| name="conditional") |
| |
| # At this point, we're *guaranteed* that whether an output came from the |
| # true or false branch is indistinguishable. So, as this is just for tracing |
| # purposes, choose the true branch. |
| |
| # TODO: Uhh.... it shouldn't matter, but changing this to true_fn results in |
| # a FakeTensorMode error : |
| # `Current active mode <class 'torch._subclasses.fake_tensor.FakeTensorMode'> not registered` |
| out = false_fn(*operands) |
| |
| return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer) |
| |
| |
| @cond.py_impl(DispatchKey.CUDA) |
| @cond.py_impl(DispatchKey.CPU) |
| def cond_dense(pred, true_fn, false_fn, operands): |
| mode = _get_current_dispatch_mode() |
| assert (mode is None), "Mode should never be enabled for CPU/CUDA key" |
| if pred: |
| return true_fn(*operands) |
| else: |
| return false_fn(*operands) |
| |
| |
| @cond.py_impl(DispatchKey.AutogradCUDA) |
| @cond.py_impl(DispatchKey.AutogradCPU) |
| def cond_autograd(pred, true_fn, false_fn, *operands): |
| # TODO: support autograd |
| flat_operands, _ = tree_flatten([true_fn, false_fn] + [operands]) |
| assert all([not f.requires_grad for f in flat_operands |
| if isinstance(f, torch.Tensor)]) |
| |
| guard = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.AutogradCPU)) |
| return cond(pred, true_fn, false_fn, *operands) |
| |
| |
| @cond.py_impl(ProxyTorchDispatchMode) |
| def inner(pred, true_fn, false_fn, operands): |
| mode = _get_current_dispatch_mode() |
| assert (mode is not None), "Mode should always be enabled for python fallback key" |
| with _pop_mode_temporarily() as mode: |
| res = trace_cond(mode, cond, pred, true_fn, false_fn, operands) |
| return res |
| |
| |
| @cond.py_impl(FakeTensorMode) |
| def cond_fake_tensor_mode(pred, true_fn, false_fn, operands): |
| true_outs = true_fn(*operands) |
| flat_true_outs, _ = pytree.tree_flatten(true_outs) |
| flat_false_outs, _ = pytree.tree_flatten(false_fn(*operands)) |
| if len(flat_true_outs) != len(flat_false_outs): |
| raise RuntimeError("Unmatched number of outputs from cond() branches.") |
| |
| for true_out, false_out in zip(flat_true_outs, flat_false_outs): |
| true_meta = _extract_tensor_metadata(true_out) |
| false_meta = _extract_tensor_metadata(false_out) |
| if true_meta != false_meta: |
| raise RuntimeError( |
| f"Unmatched tensor metadata from cond() branches.\ntrue branch: {true_meta}, false branch: {false_meta}") |
| return true_outs |
| |
| |
| # We cannot directly call fallthrough here due to issue #89037. |
| @cond.py_impl(DispatchKey.PythonDispatcher) |
| def cond_python_dispatcher(*args): |
| _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.PythonDispatcher)) |
| return cond(*args) |
| |
| |
| def _has_potential_branch_input_mutation(branch, inputs): |
| """ |
| Dispatch-trace the branch with inputs and check if |
| producing graph has mutable op on the input. This is |
| bit restrictive as the branch must be traceable. |
| """ |
| try: |
| gm = make_fx(branch)(*inputs) |
| except UnsupportedAliasMutationException: |
| # this can happen when nested cond is |
| # functionalized |
| return True |
| except Exception as e: |
| raise e |
| |
| input_nodes = set() |
| for node in gm.graph.nodes: |
| if node.op == "placeholder": |
| input_nodes.add(node) |
| if node.op == "call_function": |
| target = node.target |
| if isinstance(target, torch._ops.OpOverload) and target._schema.is_mutable: |
| for arg in node.args: |
| if arg in input_nodes: |
| return True |
| |
| return False |
| |
| def _has_potential_branch_input_alias(branch, inputs): |
| """ |
| Dispatch-trace the branch with inputs and check if |
| producing graph has output aliasing the branch input. This is |
| bit restrictive as the branch must be traceable. |
| """ |
| try: |
| gm = make_fx(branch)(*inputs) |
| except UnsupportedAliasMutationException: |
| # this can happen when nested cond is |
| # functionalized |
| return True |
| except Exception as e: |
| raise e |
| |
| input_storages = set() |
| for node in gm.graph.nodes: |
| if node.op == "placeholder": |
| input_storages.add(StorageWeakRef(node.meta['val']._typed_storage())) |
| if node.op == "output": |
| for out in node.args: |
| out_storage = StorageWeakRef(out.meta["val"]._typed_storage()) |
| if out_storage in input_storages: |
| return True |
| |
| return False |
| |
| |
| |
| @cond.py_impl(torch._C._functorch.TransformType.Functionalize) |
| def cond_functionalize(interpreter, pred, true_fn, false_fn, inputs): |
| """ |
| Functionalization implementation for torch.cond. Currently: |
| 1. We don't allow any input mutation inside the branches |
| 2. Our check for above condition is not exhaustive |
| """ |
| reapply_views = interpreter.functionalize_add_back_views() |
| mode = 'mutations_and_views' if reapply_views else 'mutations' |
| # At this point, we will see functionalized tensors, so need to unwrap them first |
| unwrapped_inputs = _unwrap_all_tensors_from_functional(inputs, reapply_views=reapply_views) |
| unwrapped_pred = _unwrap_all_tensors_from_functional(pred, reapply_views=reapply_views) |
| |
| functional_true_fn = functionalize(true_fn, remove=mode) |
| functional_false_fn = functionalize(false_fn, remove=mode) |
| |
| with interpreter.lower(): |
| for branch in [functional_true_fn, functional_false_fn]: |
| if _has_potential_branch_input_mutation(branch, unwrapped_inputs): |
| raise UnsupportedAliasMutationException("One of torch.cond branch " |
| "might be modifying the input!") |
| for branch in [true_fn, false_fn]: |
| if _has_potential_branch_input_alias(branch, unwrapped_inputs): |
| raise UnsupportedAliasMutationException("One of torch.cond branch " |
| "might be aliasing the input!") |
| |
| cond_return = cond(unwrapped_pred, functional_true_fn, functional_false_fn, unwrapped_inputs) |
| return _wrap_all_tensors_to_functional(cond_return, level=interpreter.level()) |
| |
| # TODO(voz): Make this automatic for keys, this is very ugly atm |
| cond.fallthrough(DispatchKey.PythonTLSSnapshot) |
| cond.fallthrough(DispatchKey.ADInplaceOrView) |
| cond.fallthrough(DispatchKey.BackendSelect) |
| cond.fallthrough(DispatchKey.AutocastCPU) |