| from functools import partial |
| |
| import torch |
| import torch.utils._pytree as pytree |
| from torch._C import DispatchKey, DispatchKeySet, ExcludeDispatchKeyGuard |
| from torch._functorch.eager_transforms import _unwrap_all_tensors_from_functional, _wrap_all_tensors_to_functional, functionalize |
| from torch._ops import PyOperator |
| from torch._subclasses.fake_tensor import FakeTensorMode |
| from torch.fx.experimental.proxy_tensor import ( |
| disable_proxy_modes_tracing, |
| make_fx, |
| ProxyTorchDispatchMode, |
| track_tensor_tree, |
| unwrap_proxy, |
| ) |
| from torch.utils._python_dispatch import ( |
| _get_current_dispatch_mode, |
| _pop_mode_temporarily, |
| ) |
| from torch.utils._pytree import tree_flatten |
| from ._cond import _has_potential_branch_input_alias, _has_potential_branch_input_mutation, UnsupportedAliasMutationException |
| |
| |
| map = PyOperator("map") |
| |
| |
| def trace_map(proxy_mode, func_overload, f, xs, *args): |
| if not isinstance(xs, torch.Tensor): |
| raise ValueError("map() must loop over a tensor") |
| if len(xs.shape) == 0 or xs.shape[0] == 0: |
| raise ValueError("map() cannot be traced with scalar tensors or zero dimension tensors") |
| if not all(isinstance(o, torch.Tensor) for o in args): |
| raise ValueError("map() operands must be a list of tensors or modules") |
| |
| with disable_proxy_modes_tracing(): |
| body_graph = make_fx(f)(xs[0], *args) |
| |
| next_name = None |
| i = 0 |
| while not next_name: |
| candidate = f"body_graph_{i}" |
| if hasattr(proxy_mode.tracer.root, candidate): |
| i += 1 |
| else: |
| next_name = candidate |
| |
| proxy_mode.tracer.root.register_module(next_name, body_graph) |
| node_args = (body_graph, xs, *args) |
| proxy_args = pytree.tree_map(partial(unwrap_proxy, proxy_mode), node_args) |
| out_proxy = proxy_mode.tracer.create_proxy('call_function', func_overload, proxy_args, {}, |
| name="map") |
| outs = [body_graph(x, *args) for x in xs] |
| # Implementation notes: we need to use new_empty() + copy_() here instead of stack() directly |
| # because stack([...]) takes a fixed size list which will specialize dynamic shape here. |
| # Meanwhile we want to preserve the looped over dimension as symbolic shape, such that: |
| # ys: Tensor[s0, ...] = map(xs: Tensor[s0, ...], *args) |
| out = outs[0].new_empty([xs.shape[0], *outs[0].shape]) |
| out.copy_(torch.stack(outs)) |
| return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer) |
| |
| |
| @map.py_impl(DispatchKey.CUDA) |
| @map.py_impl(DispatchKey.CPU) |
| def map_cpu(f, xs, *args): |
| mode = _get_current_dispatch_mode() |
| assert (mode is None), "Mode should never be enabled for CPU/CUDA key" |
| return torch.stack([f(x, *args) for x in xs]) |
| |
| |
| @map.py_impl(DispatchKey.AutogradCUDA) |
| @map.py_impl(DispatchKey.AutogradCPU) |
| def map_autograd(f, xs, *args): |
| # TODO: support autograd |
| flat_operands, _ = tree_flatten([f, xs, args]) |
| assert all([not f.requires_grad for f in flat_operands |
| if isinstance(f, torch.Tensor)]) |
| |
| _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.AutogradCPU)) |
| return map(f, xs, *args) |
| |
| |
| @map.py_impl(ProxyTorchDispatchMode) |
| def map_proxy_torch_dispatch_mode(f, xs, *args): |
| mode = _get_current_dispatch_mode() |
| assert (mode is not None), "Mode should always be enabled for python fallback key" |
| with _pop_mode_temporarily() as mode: |
| res = trace_map(mode, map, f, xs, *args) |
| return res |
| |
| |
| @map.py_impl(FakeTensorMode) |
| def map_fake_tensor_mode(f, xs, *args): |
| outs = [f(x, *args) for x in xs] |
| return outs[0].new_empty([xs.shape[0], *outs[0].shape]) |
| |
| # We cannot directly call fallthrough here due to issue #89037. |
| @map.py_impl(DispatchKey.PythonDispatcher) |
| def map_python_dispatcher(*args): |
| _ = ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.PythonDispatcher)) |
| return map(*args) |
| |
| @map.py_impl(torch._C._functorch.TransformType.Functionalize) |
| def map_functionalize(interpreter, f, xs, *args): |
| """ |
| Functionalization implementation for torch.map. Currently: |
| 1. We don't allow any input mutation inside the map function |
| 2. Our check for above condition is not exhaustive |
| """ |
| reapply_views = interpreter.functionalize_add_back_views() |
| mode = 'mutations_and_views' if reapply_views else 'mutations' |
| # At this point, we will see functionalized tensors, so need to unwrap them first |
| unwrapped_xs = _unwrap_all_tensors_from_functional(xs, reapply_views=reapply_views) |
| unwrapped_args = _unwrap_all_tensors_from_functional(args, reapply_views=reapply_views) |
| |
| functional_map_fn = functionalize(f, remove=mode) |
| |
| with interpreter.lower(): |
| inputs = (unwrapped_xs,) + unwrapped_args |
| if _has_potential_branch_input_mutation(functional_map_fn, inputs): |
| raise UnsupportedAliasMutationException( |
| "torch.map is mutating the input!" |
| ) |
| |
| if _has_potential_branch_input_alias(functional_map_fn, inputs): |
| raise UnsupportedAliasMutationException( |
| "torch.map is aliasing the input!" |
| ) |
| |
| map_return = map(functional_map_fn, unwrapped_xs, *unwrapped_args) |
| return _wrap_all_tensors_to_functional(map_return, level=interpreter.level()) |
| |
| # TODO(voz) Make this automatic for keys, this is very ugly atm |
| map.fallthrough(DispatchKey.PythonTLSSnapshot) |
| map.fallthrough(DispatchKey.ADInplaceOrView) |
| map.fallthrough(DispatchKey.BackendSelect) |
| map.fallthrough(DispatchKey.AutocastCPU) |