| # mypy: allow-untyped-defs |
| from __future__ import annotations |
| |
| import functools |
| import inspect |
| import math |
| import sys |
| import typing |
| import warnings |
| from typing import ( |
| Any, |
| Callable, |
| List, |
| Literal, |
| NoReturn, |
| Optional, |
| Sequence, |
| Set, |
| Tuple, |
| Union, |
| ) |
| |
| import torch |
| import torch._C._onnx as _C_onnx |
| from torch import _C |
| |
| # Monkey-patch graph manipulation methods on Graph, used for the ONNX symbolics |
| from torch.onnx import _constants, _type_utils, errors, utils |
| from torch.onnx._globals import GLOBALS |
| from torch.onnx._internal import _beartype, jit_utils |
| from torch.types import Number |
| |
| |
| # --------------------------------------------------------------------------------- |
| # Helper functions |
| # --------------------------------------------------------------------------------- |
| |
| _ValueDescriptor = Literal[ |
| "v", |
| "i", |
| "is", |
| "f", |
| "fs", |
| "b", |
| "s", |
| "t", |
| "none", |
| ] |
| |
| |
| @_beartype.beartype |
| def _parse_arg( |
| value, |
| desc: _ValueDescriptor, |
| arg_name: Optional[str] = None, |
| node_name: Optional[str] = None, |
| ): |
| if desc == "none": |
| return value |
| if desc == "v" or not _is_value(value): |
| return value |
| |
| node = value.node() |
| if node.mustBeNone(): |
| return None |
| if node.kind() == "onnx::Constant": |
| node_val = _node_get(node, "value") |
| if desc == "i": |
| return int(node_val) |
| elif desc == "f": |
| return float(node_val) |
| elif desc == "b": |
| return bool(node_val) |
| elif desc == "s": |
| return str(node_val) |
| elif desc == "t": |
| return node_val |
| elif desc == "is": |
| return [int(v) for v in node_val] |
| elif desc == "fs": |
| return [float(v) for v in node_val] |
| else: |
| raise errors.SymbolicValueError( |
| f"ONNX symbolic does not understand the Constant node '{node}' " |
| f"specified with descriptor '{desc}'.", |
| value, |
| ) |
| elif node.kind() == "prim::ListConstruct": |
| if desc == "is": |
| for v in node.inputs(): |
| element_node = v.node() |
| if element_node.kind() != "onnx::Constant": |
| raise errors.SymbolicValueError( |
| f"Failed to export a node '{element_node}' " |
| f"(in list node {node}) " |
| f"because it is not constant. " |
| f"Please try to make things (e.g. kernel sizes) static if possible.", |
| value, |
| ) |
| return [int(_node_get(v.node(), "value")) for v in value.node().inputs()] |
| else: |
| raise errors.SymbolicValueError( |
| f"ONNX symbolic does not know how to unpack the ListConstruct node that " |
| f"is not a list of integers: '{node}'", |
| value, |
| ) |
| |
| if arg_name is None or node_name is None: |
| raise errors.SymbolicValueError( |
| f"Expected node type 'onnx::Constant', got '{node.kind()}'.", |
| value, |
| ) |
| |
| raise errors.SymbolicValueError( |
| "Expected node type 'onnx::Constant' " |
| f"for argument '{arg_name}' of node '{node_name}', got '{node.kind()}'.", |
| value, |
| ) |
| |
| |
| @_beartype.beartype |
| def _node_get(node: _C.Node, key: str): |
| """Gets attributes of a node which is polymorphic over return type.""" |
| assert isinstance(node, _C.Node) |
| sel = node.kindOf(key) |
| return getattr(node, sel)(key) |
| |
| |
| @_beartype.beartype |
| def _is_onnx_constant(value: _C.Value): |
| """Whether a Value is an ONNX constant.""" |
| return value.node().kind() == "onnx::Constant" |
| |
| |
| @_beartype.beartype |
| def _maybe_get_const( |
| value: Optional[Union[_C.Value, torch.Tensor, Number, Sequence]], |
| descriptor: _ValueDescriptor, |
| ): |
| # NOTE: prim::Constant at this stage usually means something not compatible in ONNX, |
| # otherwise it'd be converted to onnx::Constant |
| # TODO(justinchuby): Replace insinstance with _is_value once we figure out mypy |
| if isinstance(value, _C.Value) and _is_onnx_constant(value): |
| return _parse_arg(value, descriptor) |
| return value |
| |
| |
| @_beartype.beartype |
| def _maybe_get_scalar(value): |
| value_t = _maybe_get_const(value, "t") |
| if isinstance(value_t, torch.Tensor) and value_t.shape == (): |
| return value_t |
| return value |
| |
| |
| @_beartype.beartype |
| def _get_const(value, desc, arg_name): |
| if not _is_constant(value): |
| raise errors.SymbolicValueError( |
| f"ONNX symbolic expected a constant value of the '{arg_name}' argument, " |
| f"got '{value}'", |
| value, |
| ) |
| return _parse_arg(value, desc) |
| |
| |
| @_beartype.beartype |
| def _unpack_list(list_value: _C.Value) -> List[_C.Value]: |
| list_node = list_value.node() |
| if list_node.kind() != "prim::ListConstruct": |
| raise errors.SymbolicValueError( |
| f"ONNX symbolic expected node type prim::ListConstruct, " |
| f"got '{list_node}'.", |
| list_value, |
| ) |
| return list(list_node.inputs()) |
| |
| |
| @_beartype.beartype |
| def _unpack_tuple(tuple_value: _C.Value) -> Tuple[_C.Value, ...]: |
| tuple_node = tuple_value.node() |
| if not _is_tuple_construct(tuple_value): |
| raise errors.SymbolicValueError( |
| f"ONNX symbolic expected node type 'prim::TupleConstruct', " |
| f"got '{tuple_node.kind()}'.", |
| tuple_value, |
| ) |
| return tuple(tuple_node.inputs()) |
| |
| |
| @_beartype.beartype |
| def _unpack_quantized_tensor(tuple_value: _C.Value) -> Tuple[_C.Value, ...]: |
| """Unpacks a quantized tensor into a tuple of tensor and scale/zero_point. |
| Args: |
| tuple_value: A tuple of tensor, scale, zero_point, and optionally axis. |
| Returns: |
| A tuple of tensor, scale, zero_point, and optionally axis. |
| """ |
| tuple_node = tuple_value.node() |
| # A quantized tensor is represented as tuple of the form (tensor, scale, zero_point, <axis>) |
| if not _is_tuple_construct(tuple_value): |
| raise errors.SymbolicValueError( |
| f"ONNX symbolic expected the output of `{tuple_node}` to be a quantized " |
| f"tensor. Is this likely due to missing support for quantized " |
| f"`{tuple_node.kind()}`. Please create an issue on {_constants.PYTORCH_GITHUB_ISSUES_URL}", |
| tuple_value, |
| ) |
| unpacked = tuple(tuple_node.inputs()) |
| assert len(unpacked) == 3 or len(unpacked) == 4 |
| return unpacked |
| |
| |
| # Check if list_value is output from prim::ListConstruct |
| # This is usually called before _unpack_list to ensure the list can be unpacked. |
| @_beartype.beartype |
| def _is_packed_list(list_value: Any) -> bool: |
| return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct" |
| |
| |
| @_beartype.beartype |
| def parse_args(*arg_descriptors: _ValueDescriptor): |
| """A decorator which converts args from torch._C.Value to built-in types. |
| |
| For example: |
| |
| ``` |
| @parse_args('v', 'i', 'fs') |
| foo(g, a, b, c): |
| assert isinstance(a, torch._C.Value) |
| assert isinstance(b, int) |
| assert isinstance(c, list) |
| assert isinstance(c[0], float) |
| ``` |
| |
| Args: |
| arg_descriptors: list of str, where each element is |
| a string that specifies the type to convert to. Valid descriptors: |
| "v": no conversion, keep torch._C.Value. |
| "i": int |
| "is": list of int |
| "f": float |
| "fs": list of float |
| "b": bool |
| "s": str |
| "t": torch.Tensor |
| "none": the variable is unused |
| """ |
| |
| def decorator(fn): |
| fn._arg_descriptors = arg_descriptors |
| |
| @functools.wraps(fn) |
| def wrapper(g, *args, **kwargs): |
| # some args may be optional, so the length may be smaller |
| FILE_BUG_MSG = ( |
| "If you believe this is not due to custom symbolic implementation within your code or " |
| "an external library, please file an issue at " |
| "https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml to report this bug." |
| ) |
| assert len(arg_descriptors) >= len(args), ( |
| f"A mismatch between the number of arguments ({len(args)}) and " |
| f"their descriptors ({len(arg_descriptors)}) was found at symbolic function '{fn.__name__}'. " |
| f"{FILE_BUG_MSG}" |
| ) |
| |
| try: |
| sig = inspect.signature(fn) |
| arg_names = list(sig.parameters.keys())[1:] |
| fn_name = fn.__name__ |
| except Exception: |
| # FIXME(justinchuby): Avoid catching Exception. |
| # Catch a more specific exception instead. |
| arg_names = [None] * len(args) # type: ignore[list-item] |
| fn_name = None |
| args = [ |
| _parse_arg(arg, arg_desc, arg_name, fn_name) # type: ignore[method-assign] |
| for arg, arg_desc, arg_name in zip(args, arg_descriptors, arg_names) |
| ] |
| # only support _outputs in kwargs |
| assert len(kwargs) <= 1, ( |
| f"Symbolic function {fn.__name__}'s '**kwargs' can contain a single " |
| f"key/value entry. " |
| f"{FILE_BUG_MSG}" |
| ) |
| |
| if len(kwargs) == 1: |
| assert "_outputs" in kwargs, ( |
| f"Symbolic function {fn.__name__}'s '**kwargs' can only contain " |
| f"'_outputs' key at '**kwargs'. " |
| f"{FILE_BUG_MSG}" |
| ) |
| return fn(g, *args, **kwargs) |
| |
| return wrapper |
| |
| return decorator |
| |
| |
| @_beartype.beartype |
| def quantized_args( |
| *arg_q_descriptors: bool, |
| scale: Optional[float] = None, |
| zero_point: Optional[int] = None, |
| quantize_output: bool = True, |
| ): |
| """A decorator which extends support for quantized version of the base operator. |
| |
| Quantization is detected by examining the arguments that are annotated by |
| `arg_q_descriptors`. |
| |
| If quantization is detected, the base operator symbolic function will be wrapped with |
| argument de-quantization and output quantization. |
| |
| Otherwise, only the base symbolic function will be invoked. |
| |
| For example: |
| |
| ``` |
| @quantized_args(True, False) |
| def foo(g, x, y): |
| return x + y |
| ``` |
| |
| is equivalent to |
| |
| ``` |
| def q_foo(g, x, y): |
| if is_quantized_tensor(x): |
| x = dequantize(x) |
| out = foo(g, x, y) |
| return quantize(out) |
| else: |
| return foo(g, x, y) |
| ``` |
| |
| Args: |
| arg_q_descriptors: A sequence of bool, where each element represents if the |
| argument is QTensor for quantized version of this operator. It defaults |
| to False for unspecified (variable length) arguments. |
| scale: Quantized output scale. If None, derive from |
| the first quantized input scale. |
| zero_point: Quantized output zero point. If None, |
| derive from the first quantized input zero point. |
| quantize_output: If True, quantize the output of the base operator. Default is True |
| """ |
| |
| def decorator(fn): |
| @functools.wraps(fn) |
| def wrapper(g, *args, **kwargs): |
| nonlocal scale |
| nonlocal zero_point |
| if scale is not None: |
| _scale = g.op("Constant", value_t=torch.tensor(scale)) |
| else: |
| _scale = None |
| if zero_point is not None: |
| _zero_point = g.op("Constant", value_t=torch.tensor(zero_point)) |
| else: |
| _zero_point = None |
| |
| # Support variable length arguments by marking unspecified ones as non-quantized |
| arg_q_descriptors_extended = arg_q_descriptors + (False,) * ( |
| len(args) - len(arg_q_descriptors) |
| ) |
| descriptor_args = tuple(zip(arg_q_descriptors_extended, args)) |
| |
| def _is_arg_quantized(descriptor, arg): |
| return descriptor and _is_value(arg) and _is_tuple_construct(arg) |
| |
| # Run regular symbolic function if none of the argument is QTensor. |
| is_quantized = [] |
| for descriptor, arg in descriptor_args: |
| # ListConstruct |
| if _is_packed_list(arg): |
| for arg_input in arg.node().inputs(): |
| is_quantized.append(_is_arg_quantized(descriptor, arg_input)) |
| else: |
| is_quantized.append(_is_arg_quantized(descriptor, arg)) |
| |
| if not any(is_quantized): |
| return fn(g, *args, **kwargs) |
| |
| # Dequantize arguments that are quantized |
| non_quantized_args = [] |
| for descriptor, arg in descriptor_args: |
| if _is_arg_quantized(descriptor, arg): |
| # Quantized arg is a tuple of (value, scale, zero_point) |
| dequantized_arg, arg_scale, arg_zero_point, _ = dequantize_helper( |
| g, arg |
| ) |
| non_quantized_args.append(dequantized_arg) |
| # Set scale and zero_point to the first quantized input if not already set |
| if _scale is None: |
| _scale = arg_scale |
| if _zero_point is None: |
| _zero_point = arg_zero_point |
| # ListConstruct |
| elif _is_packed_list(arg): |
| for arg_input in arg.node().inputs(): |
| if _is_arg_quantized(descriptor, arg_input): |
| # Quantized arg is a tuple of (value, scale, zero_point) |
| ( |
| dequantized_arg, |
| arg_scale, |
| arg_zero_point, |
| _, |
| ) = dequantize_helper(g, arg_input) |
| # Set scale and zero_point to the first quantized input if not already set |
| if _scale is None: |
| _scale = arg_scale |
| if _zero_point is None: |
| _zero_point = arg_zero_point |
| arg_input.replaceAllUsesWith(dequantized_arg) |
| non_quantized_args.append(arg) |
| else: |
| # Non-quantized arg |
| non_quantized_args.append(arg) |
| # TODO(justinchuby): Only single output is supported for now. We may want to |
| # support multiple outputs in the future. |
| output = fn(g, *non_quantized_args, **kwargs) |
| |
| assert _scale is not None, "Bug: Scale must be set for quantized operator" |
| assert ( |
| _zero_point is not None |
| ), "Bug: Zero point must be set for quantized operator" |
| |
| if quantize_output: |
| return quantize_helper(g, output, _scale, _zero_point) |
| return output |
| |
| return wrapper |
| |
| return decorator |
| |
| |
| @_beartype.beartype |
| def _scalar(x: Any) -> Optional[Number]: |
| """Convert a scalar tensor into a Python value.""" |
| if isinstance(x, torch.Tensor) and x.shape == (): |
| return x.item() |
| return None |
| |
| |
| @_beartype.beartype |
| def _if_scalar_type_as(self, tensor): |
| """ |
| Convert self into the same type of tensor, as necessary. |
| We only support implicit casting for scalars, so we never |
| actually need to insert an ONNX cast operator here; just |
| fix up the scalar. |
| """ |
| if isinstance(self, _C.Value): |
| return self |
| |
| scalar_type = _type_utils.JitScalarType.from_value( |
| tensor, _type_utils.JitScalarType.UNDEFINED |
| ) |
| if scalar_type != _type_utils.JitScalarType.UNDEFINED: |
| ty = scalar_type.scalar_name().lower() |
| return getattr(self, ty)() |
| return self |
| |
| |
| @_beartype.beartype |
| def _is_none(x: Any) -> bool: |
| return x is None or (x.node().mustBeNone() if isinstance(x, _C.Value) else False) |
| |
| |
| @_beartype.beartype |
| def _is_value(x: Any) -> bool: |
| return isinstance(x, _C.Value) |
| |
| |
| @_beartype.beartype |
| def _is_constant(value: Any) -> bool: |
| return not _is_value(value) or value.node().kind() in { |
| "onnx::Constant", |
| "prim::Constant", |
| } |
| |
| |
| @_beartype.beartype |
| def _is_tensor(x: _C.Value) -> bool: |
| return x.type().isSubtypeOf(_C.TensorType.get()) |
| |
| |
| # Note: _C.JitType is not exposed to Python and cannot be checked in runtime. |
| def _as_list_type(jit_type: _C.JitType) -> Optional[_C.ListType]: |
| if isinstance(jit_type, _C.ListType): |
| return jit_type |
| return None |
| |
| |
| @_beartype.beartype |
| def _is_list(x: _C.Value) -> bool: |
| return _as_list_type(x.type()) is not None |
| |
| |
| @_beartype.beartype |
| def _is_tensor_list(x: _C.Value) -> bool: |
| x_type = _as_list_type(x.type()) |
| if x_type is None: |
| return False |
| return isinstance(x_type.getElementType(), _C.TensorType) |
| |
| |
| @_beartype.beartype |
| def _is_scalar_list(x: _C.Value) -> bool: |
| """Checks if x is a scalar list, for example: List[float], List[int]. |
| |
| Besides checking the type is ListType, we also check if the data type is |
| a valid ONNX data type. |
| """ |
| x_type = _as_list_type(x.type()) |
| if x_type is None: |
| return False |
| scalar_type = _type_utils.JitScalarType.from_value(x) |
| return scalar_type.onnx_compatible() |
| |
| |
| @_beartype.beartype |
| def _is_tuple_construct(x: _C.Value) -> bool: |
| return x.node().kind() == "prim::TupleConstruct" |
| |
| |
| @_beartype.beartype |
| def is_complex_value(x: _C.Value) -> bool: |
| assert _is_value(x) |
| return _type_utils.JitScalarType.from_value( |
| x, _type_utils.JitScalarType.UNDEFINED |
| ) in { |
| _type_utils.JitScalarType.COMPLEX32, |
| _type_utils.JitScalarType.COMPLEX64, |
| _type_utils.JitScalarType.COMPLEX128, |
| } |
| |
| |
| @_beartype.beartype |
| def _get_tensor_rank(x: _C.Value) -> Optional[int]: |
| if not _is_tensor(x) or x.type() is None: |
| return None |
| x_type = x.type() |
| x_type = typing.cast(_C.TensorType, x_type) |
| return x_type.dim() |
| |
| |
| @_beartype.beartype |
| def _get_tensor_sizes(x: _C.Value, allow_nonstatic: bool = True): |
| if not _is_tensor(x) or x.type() is None: |
| return None |
| x_type = x.type() |
| x_type = typing.cast(_C.TensorType, x_type) |
| if allow_nonstatic: |
| # Each individual symbol is returned as None. |
| # e.g. [1, "a", "b"] -> [1, None, None] |
| return x_type.varyingSizes() |
| # returns None, if exists any symbol in sizes. |
| # e.g. [1, "a", "b"] -> None |
| return x_type.sizes() |
| |
| |
| @_beartype.beartype |
| def _get_tensor_dim_size(x: _C.Value, dim: int) -> Optional[int]: |
| sizes = _get_tensor_sizes(x) |
| return sizes[dim] if sizes else None |
| |
| |
| @_beartype.beartype |
| def _get_dim_for_cross(x: _C.Value, dim: Optional[int]): |
| if dim == -1: |
| tensor_rank = _get_tensor_rank(x) |
| assert tensor_rank is not None |
| return dim + tensor_rank |
| # If dim is not given, it defaults to the first dimension found with the size 3 |
| if dim is None: |
| sizes = _get_tensor_sizes(x) |
| assert sizes is not None |
| for index, size in enumerate(sizes): |
| if size is not None and size == 3: |
| return index |
| return dim |
| |
| |
| @_beartype.beartype |
| def _unimplemented(op: str, msg: str, value: Optional[_C.Value] = None) -> None: |
| # For BC reasons, the behavior for Caffe2 does not raise exception for unimplemented operators |
| if GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX: |
| _onnx_unsupported(f"{op}, {msg}", value) |
| |
| |
| @_beartype.beartype |
| def _onnx_unsupported(op_name: str, value: Optional[_C.Value] = None) -> NoReturn: |
| message = ( |
| f"Unsupported: ONNX export of operator {op_name}. " |
| f"Please feel free to request support or submit a pull request " |
| f"on PyTorch GitHub: {_constants.PYTORCH_GITHUB_ISSUES_URL}" |
| ) |
| if isinstance(value, _C.Value): |
| raise errors.SymbolicValueError( |
| message, |
| value, |
| ) |
| raise errors.OnnxExporterError(message) |
| |
| |
| @_beartype.beartype |
| def _onnx_opset_unsupported( |
| op_name: str, |
| current_opset: int, |
| supported_opset: int, |
| value: Optional[_C.Value] = None, |
| ) -> NoReturn: |
| message = ( |
| f"Unsupported: ONNX export of {op_name} in opset {current_opset}. " |
| f"Please try opset version {supported_opset}." |
| ) |
| if isinstance(value, _C.Value): |
| raise errors.SymbolicValueError( |
| message, |
| value, |
| ) |
| raise errors.OnnxExporterError(message) |
| |
| |
| @_beartype.beartype |
| def _onnx_opset_unsupported_detailed( |
| op_name: str, |
| current_opset: int, |
| supported_opset: int, |
| reason: str, |
| value: Optional[_C.Value] = None, |
| ) -> NoReturn: |
| message = ( |
| f"Unsupported: ONNX export of {op_name} in " |
| f"opset {current_opset}. {reason}. Please try opset version {supported_opset}." |
| ) |
| if isinstance(value, _C.Value): |
| raise errors.SymbolicValueError( |
| message, |
| value, |
| ) |
| raise errors.OnnxExporterError(message) |
| |
| |
| @_beartype.beartype |
| def _block_list_in_opset(name: str): |
| def symbolic_fn(*args, **kwargs): |
| raise errors.OnnxExporterError( |
| f"ONNX export failed on {name}, which is not implemented for opset " |
| f"{GLOBALS.export_onnx_opset_version}. " |
| "Try exporting with other opset versions." |
| ) |
| |
| return symbolic_fn |
| |
| |
| @_beartype.beartype |
| def _try_get_scalar_type(*args) -> Optional[_type_utils.JitScalarType]: |
| for arg in args: |
| scalar_type = _type_utils.JitScalarType.from_value( |
| arg, _type_utils.JitScalarType.UNDEFINED |
| ) |
| if scalar_type != _type_utils.JitScalarType.UNDEFINED: |
| return scalar_type |
| return None |
| |
| |
| @_beartype.beartype |
| def _type_promote_from_values(*args) -> _type_utils.JitScalarType: |
| undef = _type_utils.JitScalarType.UNDEFINED |
| jit_types = [_try_get_scalar_type(arg) for arg in args] |
| if len(jit_types) == 0: |
| return undef |
| if len(jit_types) == 1: |
| return jit_types[0] |
| new_dtype = jit_types[0].dtype() |
| for t in jit_types: |
| new_dtype = torch.promote_types(new_dtype, t.dtype()) |
| return _type_utils.JitScalarType.from_dtype(new_dtype) |
| |
| |
| @_beartype.beartype |
| def _maybe_cast_to_type( |
| g: jit_utils.GraphContext, value, jit_type: _type_utils.JitScalarType |
| ): |
| if ( |
| _type_utils.JitScalarType.from_value(value, _type_utils.JitScalarType.UNDEFINED) |
| != jit_type |
| ): |
| return g.op( |
| "Cast", |
| value, |
| to_i=jit_type.onnx_type(), |
| ) |
| return value |
| |
| |
| @_beartype.beartype |
| def _select_helper(g: jit_utils.GraphContext, self, dim, index, apply_reshape=True): |
| index_const = _maybe_get_scalar(index) |
| index_dim = _get_tensor_rank(index) |
| if not _is_value(index_const): |
| # Index is a constant scalar. Make it a size 1 constant tensor. |
| index = g.op("Constant", value_t=torch.LongTensor([index_const])) |
| elif index_dim is not None and apply_reshape: |
| if index_dim == 0: |
| # Index is a scalar. Reshape it to a size 1 tensor. |
| index = _reshape_helper( |
| g, index, g.op("Constant", value_t=torch.LongTensor([1])) |
| ) |
| |
| index_scalar_type = _type_utils.JitScalarType.from_value( |
| index, _type_utils.JitScalarType.UNDEFINED |
| ) |
| if index_scalar_type not in { |
| _type_utils.JitScalarType.INT64, |
| _type_utils.JitScalarType.INT, |
| }: |
| index = g.op("Cast", index, to_i=_C_onnx.TensorProtoDataType.INT64) |
| return g.op("Gather", self, index, axis_i=dim) |
| |
| |
| @_beartype.beartype |
| def _slice_helper( |
| g: jit_utils.GraphContext, |
| input, |
| axes, |
| starts, |
| ends, |
| steps=None, |
| ): |
| if g.opset <= 9: |
| from torch.onnx.symbolic_opset9 import _slice as _slice9 |
| |
| return _slice9(g, input, axes, starts, ends) |
| else: |
| from torch.onnx.symbolic_opset10 import _slice as _slice10 |
| |
| return _slice10(g, input, axes, starts, ends, steps) |
| |
| |
| @_beartype.beartype |
| def _is_fp(value) -> bool: |
| return _type_utils.JitScalarType.from_value( |
| value, _type_utils.JitScalarType.UNDEFINED |
| ) in { |
| _type_utils.JitScalarType.FLOAT, |
| _type_utils.JitScalarType.DOUBLE, |
| _type_utils.JitScalarType.HALF, |
| _type_utils.JitScalarType.BFLOAT16, |
| } |
| |
| |
| @_beartype.beartype |
| def _is_bool(value) -> bool: |
| return _type_utils.JitScalarType.from_value( |
| value, _type_utils.JitScalarType.UNDEFINED |
| ) in {_type_utils.JitScalarType.BOOL} |
| |
| |
| @_beartype.beartype |
| def _generate_wrapped_number(g: jit_utils.GraphContext, scalar): |
| """Creates a wrapped number based on https://github.com/pytorch/pytorch/issues/9515. |
| |
| A Tensor is a considered a "wrapped number" if it is |
| auto-wrapped from a C++ or Python number type. Integer types are |
| wrapped as 0-dim int64 tensors and floating-point types are |
| wrapped as 0-dim double tensors. |
| |
| The input to this function is constant value. If the data type |
| is a floating point type, it is converted to a 0-dim double |
| tensor, else it is converted to a 0-dim tensor of its original type |
| """ |
| assert not isinstance(scalar, torch.Tensor) |
| if isinstance(scalar, float): |
| return g.op("Constant", value_t=torch.tensor(scalar, dtype=torch.double)) |
| return g.op("Constant", value_t=torch.tensor(scalar)) |
| |
| |
| @_beartype.beartype |
| def _sort_helper(g: jit_utils.GraphContext, input, dim, decending=True, out=None): |
| if out is not None: |
| _unimplemented("Sort", "Out parameter is not supported") |
| shape_ = g.op("Shape", input) |
| dim_size_ = g.op( |
| "Gather", |
| shape_, |
| g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64)), |
| ) |
| if g.opset <= 10: |
| if not decending: |
| _unimplemented("Sort", "Ascending is not supported") |
| return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2) |
| else: |
| return g.op( |
| "TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2 |
| ) |
| |
| |
| @_beartype.beartype |
| def _topk_helper( |
| g: jit_utils.GraphContext, input, k, dim, largest=True, sorted=False, out=None |
| ): |
| if out is not None: |
| _unimplemented("TopK", "Out parameter is not supported") |
| if not _is_value(k): |
| k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64)) |
| else: |
| k = _reshape_helper(g, k, g.op("Constant", value_t=torch.tensor([1]))) |
| if _try_get_scalar_type(k) != _type_utils.JitScalarType.INT64: |
| k = g.op("Cast", k, to_i=_C_onnx.TensorProtoDataType.INT64) |
| if g.opset <= 10: |
| if not largest: |
| _unimplemented("TopK", "Ascending is not supported") |
| return g.op("TopK", input, k, axis_i=dim, outputs=2) |
| else: |
| return g.op( |
| "TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2 |
| ) |
| |
| |
| @_beartype.beartype |
| def _lt_helper(g: jit_utils.GraphContext, input, other): |
| if g.opset <= 8: |
| from torch.onnx.symbolic_opset8 import lt as _lt8 |
| |
| return _lt8(g, input, other) |
| else: |
| from torch.onnx.symbolic_opset9 import lt as _lt9 |
| |
| return _lt9(g, input, other) |
| |
| |
| @_beartype.beartype |
| def _interpolate_warning(interpolate_mode): |
| onnx_op = ( |
| "onnx:Resize" if GLOBALS.export_onnx_opset_version >= 10 else "onnx:Upsample" |
| ) |
| warnings.warn( |
| "You are trying to export the model with " |
| + onnx_op |
| + " for ONNX opset version " |
| "" + str(GLOBALS.export_onnx_opset_version) + ". " |
| "This operator might cause results to not match the expected results by PyTorch.\n" |
| "ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. " |
| "Attributes to determine how to transform the input were added in onnx:Resize in opset 11 " |
| "to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n" |
| "We recommend using opset 11 and above for models using this operator." |
| ) |
| |
| |
| @_beartype.beartype |
| def _unsqueeze_helper(g: jit_utils.GraphContext, input, axes_i): |
| if _is_constant(axes_i[0]): |
| if g.opset >= 13: |
| axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long)) |
| return g.op("Unsqueeze", input, axes) |
| return g.op("Unsqueeze", input, axes_i=axes_i) |
| # Tensor type |
| if g.opset < 13: |
| raise errors.SymbolicValueError( |
| "Opset version must be >= 13 for Unsqueeze with dynamic axes.", input |
| ) |
| return g.op("Unsqueeze", input, axes_i[0]) |
| |
| |
| @_beartype.beartype |
| def _squeeze_helper(g: jit_utils.GraphContext, input, axes_i): |
| if _is_constant(axes_i[0]): |
| if g.opset >= 13: |
| axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long)) |
| return g.op("Squeeze", input, axes) |
| return g.op("Squeeze", input, axes_i=axes_i) |
| # Tensor type |
| if g.opset < 13: |
| raise errors.SymbolicValueError( |
| "Opset version must be >= 13 for Squeeze with dynamic axes.", input |
| ) |
| axes_t = axes_i[0] |
| axes_rank = _get_tensor_rank(axes_t) |
| assert axes_rank is not None |
| if axes_rank > 1: |
| raise errors.SymbolicValueError( |
| "For Squeeze axses as input, the axes rank must be one in ONNX spec.", input |
| ) |
| elif axes_rank == 0: |
| # The axes is a scalar. Unsqueeze it to a rank 1 tensor. |
| axes_t = _unsqueeze_helper(g, axes_t, [0]) |
| return g.op("Squeeze", input, axes_t) |
| return g.op("Squeeze", input, axes_t) |
| |
| |
| @_beartype.beartype |
| def _reducesum_helper( |
| g: jit_utils.GraphContext, |
| input, |
| axes_i=None, |
| keepdims_i=1, |
| noop_with_empty_axes_i=0, |
| ): |
| keepdims_i = _maybe_get_const(keepdims_i, "i") |
| if g.opset >= 13: |
| if axes_i: |
| if not _is_value(axes_i): |
| axes_i = g.op( |
| "Constant", value_t=torch.tensor(axes_i, dtype=torch.long) |
| ) |
| return g.op( |
| "ReduceSum", |
| input, |
| axes_i, |
| keepdims_i=keepdims_i, |
| noop_with_empty_axes_i=noop_with_empty_axes_i, |
| ) |
| return g.op( |
| "ReduceSum", |
| input, |
| keepdims_i=keepdims_i, |
| noop_with_empty_axes_i=noop_with_empty_axes_i, |
| ) |
| else: |
| return g.op("ReduceSum", input, axes_i=axes_i, keepdims_i=keepdims_i) |
| |
| |
| @_beartype.beartype |
| def _interpolate_size_to_scales(g: jit_utils.GraphContext, input, output_size, dim): |
| output_size = _maybe_get_const(output_size, "is") |
| if _is_value(output_size): |
| offset = 2 |
| offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32)) |
| dividend = g.op("Cast", output_size, to_i=_C_onnx.TensorProtoDataType.FLOAT) |
| divisor = _slice_helper( |
| g, g.op("Shape", input), axes=[0], ends=[sys.maxsize], starts=[offset] |
| ) |
| divisor = g.op("Cast", divisor, to_i=_C_onnx.TensorProtoDataType.FLOAT) |
| scale_dims = g.op("Div", dividend, divisor) |
| scales = g.op("Concat", offsets, scale_dims, axis_i=0) |
| else: |
| scales_constant = [ |
| 1.0 |
| if i < 2 |
| else float(output_size[-(dim - i)]) |
| / float(input.type().sizes()[-(dim - i)]) |
| for i in range(0, dim) |
| ] |
| scales = g.op( |
| "Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32) |
| ) |
| return scales |
| |
| |
| @_beartype.beartype |
| def _interpolate_get_scales_if_available(g: jit_utils.GraphContext, scales): |
| available_scales = _maybe_get_const(scales[0], "fs") != -1 and not _is_none( |
| scales[0] |
| ) |
| |
| if not available_scales: |
| return None |
| |
| offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32)) |
| scales_list = g.op( |
| "Constant", value_t=torch.tensor(_maybe_get_const(scales[0], "fs")) |
| ) |
| scales = g.op("Concat", offsets, scales_list, axis_i=0) |
| return scales |
| |
| |
| @_beartype.beartype |
| def _get_interpolate_attributes(g: jit_utils.GraphContext, mode, args): |
| if mode == "nearest": |
| align_corners = None |
| scales = args[0:] |
| else: |
| align_corners = args[0] |
| scales = args[1:] |
| scales = _interpolate_get_scales_if_available(g, scales) |
| return scales, align_corners |
| |
| |
| @_beartype.beartype |
| def _interpolate_get_scales(g: jit_utils.GraphContext, scale_factor, dim): |
| offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32)) |
| scale_factor_rank = _get_tensor_rank(scale_factor) |
| if isinstance(scale_factor.type(), _C.ListType) or ( |
| scale_factor_rank is not None and scale_factor_rank > 0 |
| ): |
| return g.op("Concat", offsets, scale_factor, axis_i=0) |
| else: |
| scale_factor = _unsqueeze_helper(g, scale_factor, [0]) |
| scale_factor = g.op( |
| "Cast", scale_factor, to_i=_C_onnx.TensorProtoDataType.FLOAT |
| ) |
| scales = [scale_factor for i in range(dim - 2)] |
| scale_factor = g.op("Concat", offsets, *scales, axis_i=0) |
| return scale_factor |
| |
| |
| @_beartype.beartype |
| def _interpolate_get_scales_and_mode( |
| g: jit_utils.GraphContext, input, size, scale_factor, mode, align_corners |
| ): |
| mode = _maybe_get_const(mode, "s") |
| if "linear" in mode: |
| mode = "linear" |
| if "cubic" in mode: |
| mode = "cubic" |
| _interpolate_warning(mode) |
| |
| align_corners = _maybe_get_const(align_corners, "b") |
| if isinstance(align_corners, bool) and align_corners: |
| return _unimplemented("interpolate", "align_corners == True") |
| |
| if not input.type().dim(): |
| return _unimplemented("interpolate", "missing input shape") |
| dim = input.type().dim() |
| |
| if not _is_none(scale_factor): |
| scale_factor = _interpolate_get_scales(g, scale_factor, dim) |
| elif not _is_none(size): |
| if not _is_packed_list(size): |
| is_scalar = _maybe_get_const(size, "t").dim() == 0 |
| if is_scalar: |
| size = _unsqueeze_helper(g, size, [0]) |
| size = [size for i in range(dim - 2)] |
| size = g.op("Concat", *size, axis_i=0) |
| scale_factor = _interpolate_size_to_scales(g, input, size, dim) |
| else: |
| return _unimplemented( |
| "interpolate", "Both size and scales are None in __interpolate" |
| ) |
| return scale_factor, mode |
| |
| |
| @_beartype.beartype |
| def _argmin_argmax_helper( |
| g: jit_utils.GraphContext, |
| input: torch._C.Value, |
| dim: torch._C.Value, |
| keepdim: bool, |
| op_name: str, |
| ): |
| def op_wrapper(input, axis_i, keepdims_i): |
| if g.opset >= 12: |
| return g.op( |
| op_name, |
| input, |
| axis_i=axis_i, |
| keepdims_i=keepdims_i, |
| select_last_index_i=False, |
| ) |
| return g.op(op_name, input, axis_i=axis_i, keepdims_i=keepdims_i) |
| |
| if _is_none(dim): |
| flattened = _reshape_helper( |
| g, input, g.op("Constant", value_t=torch.tensor([-1])) |
| ) |
| output = op_wrapper(flattened, axis_i=0, keepdims_i=False) |
| if keepdim: |
| input_shape = g.op("Shape", input) |
| input_shape_shape = g.op("Shape", input_shape) |
| new_shape = g.op( |
| "ConstantOfShape", |
| input_shape_shape, |
| value_t=torch.tensor([1], dtype=torch.int64), |
| ) |
| output = g.op("Reshape", output, new_shape) |
| return output |
| |
| dim = _parse_arg(dim, "i") |
| return op_wrapper(input, axis_i=dim, keepdims_i=keepdim) |
| |
| |
| @_beartype.beartype |
| def _interpolate_helper(name, dim, interpolate_mode): |
| @quantized_args(True, False, False) |
| def symbolic_fn(g, input, output_size, *args): |
| scales, align_corners = _get_interpolate_attributes(g, interpolate_mode, args) |
| align_corners = _maybe_get_scalar(align_corners) |
| coordinate_transformation_mode = ( |
| "asymmetric" |
| if interpolate_mode == "nearest" |
| else "align_corners" |
| if align_corners |
| else "half_pixel" |
| ) |
| |
| if scales is None: |
| input_size = g.op("Shape", input) |
| input_size_beg = _slice_helper( |
| g, input_size, axes=[0], ends=[2], starts=[0] |
| ) |
| output_size = g.op( |
| "Cast", output_size, to_i=_C_onnx.TensorProtoDataType.INT64 |
| ) |
| output_size = g.op("Concat", input_size_beg, output_size, axis_i=0) |
| |
| if g.opset >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| empty_scales = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op( |
| "Constant", value_t=torch.tensor([], dtype=torch.float32) |
| ) |
| empty_scales = g.op( |
| "Constant", value_t=torch.tensor([], dtype=torch.float32) |
| ) |
| |
| return g.op( |
| "Resize", |
| input, |
| empty_roi, |
| empty_scales, |
| output_size, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=interpolate_mode, # nearest, linear, or cubic |
| nearest_mode_s="floor", |
| ) # only valid when mode="nearest" |
| else: |
| if g.opset >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op( |
| "Constant", value_t=torch.tensor([], dtype=torch.float32) |
| ) |
| |
| return g.op( |
| "Resize", |
| input, |
| empty_roi, |
| scales, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=interpolate_mode, # nearest, linear, or cubic |
| nearest_mode_s="floor", |
| ) # only valid when mode="nearest" |
| |
| return symbolic_fn |
| |
| |
| @_beartype.beartype |
| def __interpolate_helper( |
| g: jit_utils.GraphContext, |
| input, |
| size, |
| scale_factor, |
| mode, |
| align_corners, |
| recompute_scale_factor, |
| ): |
| mode = _maybe_get_const(mode, "s") |
| if "linear" in mode: |
| mode = "linear" |
| if "cubic" in mode: |
| mode = "cubic" |
| align_corners = _maybe_get_const(align_corners, "b") |
| align_corners = False if not isinstance(align_corners, bool) else align_corners |
| coordinate_transformation_mode = ( |
| "asymmetric" |
| if mode == "nearest" |
| else "align_corners" |
| if align_corners |
| else "half_pixel" |
| ) |
| |
| if not _is_none(size): |
| input_size = g.op("Shape", input) |
| input_size = _slice_helper(g, input_size, axes=[0], ends=[2], starts=[0]) |
| # in some cases size is not a packed list but size is a scalar |
| # We need to also verify that (_maybe_get_const(size, "t").dim() == 0) |
| # but this information is not always available. Try to get the dim, |
| # and if not assume that it is not a scalar. |
| try: |
| is_scalar = not _is_packed_list(size) and ( |
| _maybe_get_const(size, "t").dim() == 0 |
| ) |
| except AttributeError: |
| is_scalar = not _is_packed_list(size) |
| if not is_scalar: |
| warnings.warn( |
| "Cannot verify if the output_size is a scalar " |
| "while exporting interpolate. Assuming that it is not a scalar." |
| ) |
| |
| if is_scalar: |
| rank = _get_tensor_rank(input) |
| if rank is None: |
| return _unimplemented( |
| "interpolate (with a scalar output_size)", |
| "missing input shape (try giving an array of output_size values)", |
| ) |
| size = _unsqueeze_helper(g, size, [0]) |
| size = [size for i in range(rank - 2)] |
| size = g.op("Concat", *size, axis_i=0) |
| size = g.op("Cast", size, to_i=_C_onnx.TensorProtoDataType.INT64) |
| size = g.op("Concat", input_size, size, axis_i=0) |
| |
| if g.opset >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| empty_scales = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| empty_scales = g.op( |
| "Constant", value_t=torch.tensor([], dtype=torch.float32) |
| ) |
| |
| return g.op( |
| "Resize", |
| input, |
| empty_roi, |
| empty_scales, |
| size, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=mode, # nearest, linear, or cubic |
| nearest_mode_s="floor", |
| ) |
| else: # if not _is_none(scales) |
| rank = _get_tensor_rank(input) |
| if rank is None: |
| return _unimplemented("interpolate (with scales)", "missing input shape") |
| |
| if g.opset >= 13: |
| empty_roi = _optional_input_placeholder_tensor(g) |
| else: |
| empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32)) |
| |
| scales = _interpolate_get_scales(g, scale_factor, rank) |
| return g.op( |
| "Resize", |
| input, |
| empty_roi, |
| scales, |
| coordinate_transformation_mode_s=coordinate_transformation_mode, |
| cubic_coeff_a_f=-0.75, # only valid when mode="cubic" |
| mode_s=mode, # nearest, linear, or cubic |
| nearest_mode_s="floor", |
| ) # only valid when mode="nearest" |
| |
| |
| @_beartype.beartype |
| def _unbind_helper(g: jit_utils.GraphContext, self, dim, _outputs): |
| if g.opset < 11: |
| from torch.onnx.symbolic_opset9 import unbind |
| elif g.opset <= 12: |
| from torch.onnx.symbolic_opset11 import unbind # type: ignore[no-redef] |
| else: |
| from torch.onnx.symbolic_opset13 import unbind # type: ignore[no-redef] |
| return unbind(g, self, dim, _outputs) |
| |
| |
| @_beartype.beartype |
| def _scatter_helper(g: jit_utils.GraphContext, self, dim, index, src): |
| if g.opset <= 10: |
| from torch.onnx.symbolic_opset9 import scatter |
| else: |
| # for mypy, scatter was imported two lines above |
| from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef] |
| return scatter(g, self, dim, index, src) |
| |
| |
| @_beartype.beartype |
| def _repeat_interleave_split_helper(g: jit_utils.GraphContext, self, reps, dim): |
| if g.opset <= 12: |
| split_out = g.op("Split", self, split_i=[1] * reps, axis_i=dim, outputs=reps) |
| else: |
| from torch.onnx.symbolic_opset13 import split |
| |
| repeats = g.op("Constant", value_t=torch.tensor([1] * reps)) |
| split_out = split(g, self, repeats, dim, _outputs=reps) |
| return split_out if reps > 1 else [split_out] |
| |
| |
| @_beartype.beartype |
| def _repeat_interleave_single_value_repeat_helper( |
| g: jit_utils.GraphContext, self, repeats, dim |
| ): |
| from torch.onnx.symbolic_opset9 import flatten, unsqueeze |
| |
| if not _is_tensor(repeats): |
| repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) |
| |
| const_repeats: bool = _is_constant(repeats) |
| reps = _maybe_get_const(repeats, "t") |
| |
| # Convert 'repeats' to 1-d if it is 0-d. |
| if _get_tensor_rank(repeats) == 0: |
| repeats = g.op("Reshape", repeats, g.op("Constant", value_t=torch.tensor([1]))) |
| |
| # Create a new dim of size 1, then expand it to be 'repeats' long, and finally collapse it. |
| unsqueezed = unsqueeze(g, self, dim + 1) |
| |
| # repeats_per_dim is 1 for all dims except for the new unsqueezed dim, where it has value 'repeats'. |
| if const_repeats: |
| # 'Repeats' is a constant, 'repeats_per_dim' can be a constant. |
| onehot = torch.ones(_get_tensor_rank(unsqueezed), dtype=torch.int64) |
| onehot[dim + 1] = reps |
| repeats_per_dim = g.op("Constant", value_t=onehot) |
| else: |
| # 'Repeats' is a variable, 'repeats_per_dim' cannot be a constant. |
| onehot = g.op( |
| "OneHot", |
| unsqueeze(g, dim + 1, 0), # indices, must be >= 1-dimensional |
| g.op( |
| "Constant", value_t=torch.tensor(_get_tensor_rank(unsqueezed)) |
| ), # depth |
| g.op( |
| "Concat", g.op("Constant", value_t=torch.tensor([1])), repeats, axis_i=0 |
| ), # on/off values |
| ) |
| repeats_per_dim = flatten(g, onehot, 0, 1) |
| |
| tiled = g.op("Tile", unsqueezed, repeats_per_dim) |
| return flatten(g, tiled, dim, dim + 1) |
| |
| |
| @_beartype.beartype |
| def _arange_cast_helper( |
| g: jit_utils.GraphContext, end, start=None, step=None, dtype=None |
| ) -> Tuple[ |
| _type_utils.JitScalarType, |
| Optional[_C.Value], |
| Optional[_C.Value], |
| Optional[_C.Value], |
| ]: |
| def _is_all_integral(scalars): |
| for scalar in scalars: |
| scalar_type = _type_utils.JitScalarType.from_value( |
| scalar, _type_utils.JitScalarType.UNDEFINED |
| ) |
| if ( |
| scalar_type != _type_utils.JitScalarType.INT64 |
| and scalar_type != _type_utils.JitScalarType.UNDEFINED |
| ): |
| return False |
| return True |
| |
| # This logic is based on torch.arange docs. If "dtype" is provided, |
| # infer input types from dtype. If not, then check if any of start, stop, |
| # or step are floating point, and infer the type from get_default. |
| # Otherwise, the dtype is inferred to be torch.int64. |
| if dtype is None or (_is_value(dtype) and _is_none(dtype)): |
| if _is_all_integral([start, end, step]): |
| scalar_type = _type_utils.JitScalarType.INT64 |
| else: |
| scalar_type = _type_utils.JitScalarType.from_dtype( |
| torch.get_default_dtype() |
| ) |
| else: |
| assert isinstance(dtype, int) |
| # TODO(justinchuby): Check if dtype is indeed a int. |
| scalar_type = _type_utils.JitScalarType(dtype) |
| |
| start = g.op("Cast", start, to_i=scalar_type.onnx_type()) if start else None |
| end = g.op("Cast", end, to_i=scalar_type.onnx_type()) if end else None |
| step = g.op("Cast", step, to_i=scalar_type.onnx_type()) if step else None |
| return scalar_type, end, start, step |
| |
| |
| @_beartype.beartype |
| def _arange_helper(g: jit_utils.GraphContext, *args): |
| if g.opset <= 10: |
| from torch.onnx.symbolic_opset9 import arange |
| else: |
| from torch.onnx.symbolic_opset11 import arange # type: ignore[no-redef] |
| return arange(g, *args) |
| |
| |
| @_beartype.beartype |
| def _size_helper(g: jit_utils.GraphContext, self, dim): |
| full_shape = g.op("Shape", self) |
| from torch.onnx.symbolic_opset9 import select |
| |
| return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim) |
| |
| |
| @_beartype.beartype |
| def _index_fill_reshape_helper(g: jit_utils.GraphContext, self, dim, index): |
| # 1. reshape index => [1, ..., 1, dim, 1, ..., 1] |
| # 2. expand index => [..., dim, ...], same shape as self except for dim. |
| # 3. expand value as well. |
| # 4. apply onnx::scatter. |
| |
| from torch.onnx.symbolic_opset9 import expand |
| |
| if g.opset <= 10: |
| from torch.onnx.symbolic_opset9 import scatter |
| else: |
| # for mypy, scatter was imported two lines above |
| from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef] |
| |
| if self.type().dim() is None: |
| return _unimplemented("index_fill", "input rank not accessible") |
| self_dim = self.type().dim() |
| dim_value = _parse_arg(dim, "i") |
| if dim_value < 0: |
| dim_value += self_dim |
| unsqueezed_index = _unsqueeze_helper( |
| g, index, [i for i in range(self_dim) if i != dim_value] |
| ) |
| expanded_index_shape = scatter( |
| g, g.op("Shape", self), 0, _unsqueeze_helper(g, dim, [0]), g.op("Shape", index) |
| ) |
| expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None) |
| return expanded_index_shape, expanded_index |
| |
| |
| # By default, when any value in the 'shape' input is equal to zero |
| # the corresponding dimension value is copied from the input tensor dynamically. |
| # allowzero=1 indicates that if any value in the 'shape' input is set to zero, |
| # the zero value is honored, similar to NumPy. |
| # allowzero=1 is only supported for opset version >= 14. |
| @_beartype.beartype |
| def _reshape_helper(g: jit_utils.GraphContext, input, shape, allowzero=0): |
| shape = _maybe_get_const(shape, "is") |
| if not _is_value(shape): |
| shape = g.op("Constant", value_t=torch.LongTensor(shape)) |
| if g.opset <= 13: |
| if allowzero == 1: |
| _onnx_opset_unsupported( |
| "Reshape with allowzero=1", GLOBALS.export_onnx_opset_version, 14, input |
| ) |
| return g.op("Reshape", input, shape) |
| else: |
| return g.op("Reshape", input, shape, allowzero_i=allowzero) |
| |
| |
| @_beartype.beartype |
| def _batchnorm_helper( |
| g: jit_utils.GraphContext, input, weight, bias, running_mean, running_var |
| ): |
| from torch.onnx.symbolic_opset9 import _var_mean |
| |
| batch_size = _get_tensor_dim_size(input, 0) |
| channel_size = _get_tensor_dim_size(input, 1) |
| |
| if weight is None or _is_none(weight): |
| if channel_size is None: |
| raise errors.SymbolicValueError( |
| "Unsupported: ONNX export of batch_norm for unknown channel size.", |
| input, |
| ) |
| weight_value = torch.tensor( |
| [1.0] * channel_size, |
| dtype=_type_utils.JitScalarType.from_value(input).dtype(), |
| ) |
| weight = g.op("Constant", value_t=weight_value) |
| if bias is None or _is_none(bias): |
| if channel_size is None: |
| raise errors.SymbolicValueError( |
| "Unsupported: ONNX export of batch_norm for unknown channel size.", |
| input, |
| ) |
| bias_value = torch.tensor( |
| [0.0] * channel_size, |
| dtype=_type_utils.JitScalarType.from_value(input).dtype(), |
| ) |
| bias = g.op("Constant", value_t=bias_value) |
| # If track_running_stats is set to False batch statistics are instead used during evaluation time |
| if ( |
| running_mean is None |
| or _is_none(running_mean) |
| or running_var is None |
| or _is_none(running_var) |
| ): |
| assert batch_size is not None and channel_size is not None |
| reshape_in = _reshape_helper( |
| g, |
| input, |
| g.op( |
| "Constant", |
| value_t=torch.tensor([batch_size, channel_size, -1], dtype=torch.int64), |
| ), |
| ) |
| trans_in = g.op("Transpose", reshape_in, perm_i=[0, 2, 1]) |
| running_var, running_mean = _var_mean( |
| g, |
| trans_in, |
| g.op("Constant", value_t=torch.tensor([0, 1], dtype=torch.int64)), |
| False, |
| False, |
| ) |
| return weight, bias, running_mean, running_var |
| |
| |
| @_beartype.beartype |
| def _avgpool_helper( |
| tuple_fn: Callable[[Any], Sequence[int]], |
| padding: Union[int, Sequence[int]], |
| kernel_size, |
| stride, |
| divisor_override, |
| name, |
| ) -> Tuple[int, ...]: |
| if divisor_override and divisor_override.node().kind() != "prim::Constant": |
| _unimplemented(name, "divisor_override") |
| return tuple(tuple_fn(padding)) |
| |
| |
| @_beartype.beartype |
| def check_training_mode(op_train_mode: int, op_name: str) -> None: |
| """Warns the user if the model's training mode and the export mode do not agree.""" |
| if GLOBALS.training_mode == _C_onnx.TrainingMode.PRESERVE: |
| return |
| |
| if op_train_mode: |
| op_mode_enum = _C_onnx.TrainingMode.TRAINING |
| else: |
| op_mode_enum = _C_onnx.TrainingMode.EVAL |
| if op_mode_enum == GLOBALS.training_mode: |
| # The modes agree. Do nothing |
| return |
| |
| op_mode_text = f"train={bool(op_train_mode)}" |
| # Setting the model mode could result in op_mode != GLOBALS.training_mode |
| # if the model is a FuncModule. In this case we warn the user of |
| # the state and export depending on op_mode |
| # This is to support use-cases of fixing certain layer weights |
| # in training. |
| warnings.warn( |
| f"ONNX export mode is set to {GLOBALS.training_mode}, but operator '{op_name}' " |
| f"is set to {op_mode_text}. Exporting with {op_mode_text}." |
| ) |
| |
| |
| @_beartype.beartype |
| def _flatten_helper(g: jit_utils.GraphContext, input, start_dim, end_dim, dim): |
| input_size = g.op("Shape", input) |
| slice1 = _slice_helper(g, input_size, axes=[0], starts=[0], ends=[start_dim]) |
| slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long))] |
| if end_dim < dim - 1: |
| slice3 = _slice_helper( |
| g, input_size, axes=[0], starts=[end_dim + 1], ends=[dim] |
| ) |
| slices = [ |
| slice1, |
| g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)), |
| slice3, |
| ] |
| |
| final_shape = g.op("Concat", *slices, axis_i=0) |
| from torch.onnx.symbolic_opset9 import _reshape_from_tensor |
| |
| return _reshape_from_tensor(g, input, final_shape) |
| |
| |
| @_beartype.beartype |
| def _is_split_static(split_size_or_sizes, _outputs): |
| if _outputs is None: |
| return False |
| if ( |
| _is_value(split_size_or_sizes) |
| and split_size_or_sizes.node().kind() != "onnx::Constant" |
| ): |
| return False |
| return True |
| |
| |
| @_beartype.beartype |
| def _optional_input_placeholder_tensor(g): |
| n = g.op("prim::Constant") |
| n.setType(_C.OptionalType.ofTensor()) |
| return n |
| |
| |
| @_beartype.beartype |
| def _handle_reduce_dim_none(g: jit_utils.GraphContext, self, op_name): |
| rank = _get_tensor_rank(self) |
| if rank is not None and any( |
| _get_tensor_dim_size(self, i) == 0 for i in range(rank) |
| ): |
| # If input tensor is empty, according to ONNX ReduceSum definition, |
| # set keepdims=1 so that the resulted tensor has the same rank as the input. |
| return g.op(op_name, self, keepdims_i=1) |
| return g.op(op_name, self, keepdims_i=0) |
| |
| |
| @_beartype.beartype |
| def dequantize_helper( |
| g: jit_utils.GraphContext, |
| qtensor: _C.Value, |
| qdtype: Optional[_C_onnx.TensorProtoDataType] = None, |
| ) -> Tuple[_C.Value, _C.Value, _C.Value, Optional[_C.Value]]: |
| """Appends to graph `g` ONNX nodes that dequantizes `qtensor` into `tensor`. |
| |
| Args: |
| g: Graph, the ONNX IR graph that is under construction. |
| qtensor: torch._C.Value, either a tuple of (quantized_tensor, scale, zero_point) |
| for per tensor quantization, or |
| (quantized_tensor, scale, zero_point, axis) for per channel quantization, |
| representing the quantized tensor. |
| qdtype: torch.onnx.TensorProtoDataType default None, if not None, represents the |
| data type of quantized tensor. It must be either |
| torch.onnx.TensorProtoDataType.UINT8 or torch.onnx.TensorProtoDataType.INT8. |
| """ |
| unpacked_qtensors = _unpack_quantized_tensor(qtensor) |
| tensor, scale, zero_point = unpacked_qtensors[:3] |
| axis = unpacked_qtensors[3] if len(unpacked_qtensors) >= 4 else None |
| axis_i = _get_const(axis, "i", "axis") |
| input_qdtype = _type_utils.JitScalarType.from_value(tensor) |
| if qdtype is None: |
| if input_qdtype is not None: |
| qdtype = input_qdtype.onnx_type() |
| else: |
| qdtype = _C_onnx.TensorProtoDataType.UINT8 |
| value = g.op("Cast", tensor, to_i=qdtype) |
| scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT) |
| zero_point = g.op("Cast", zero_point, to_i=qdtype) |
| |
| if axis_i is not None and GLOBALS.export_onnx_opset_version < 13: |
| _onnx_opset_unsupported_detailed( |
| "DequantizeLinear", |
| GLOBALS.export_onnx_opset_version, |
| 13, |
| "Attribute axis is not supported.", |
| qtensor, |
| ) |
| |
| return ( |
| g.op("DequantizeLinear", value, scale, zero_point, axis_i=axis_i), |
| scale, |
| zero_point, |
| axis, |
| ) |
| |
| |
| @_beartype.beartype |
| def quantize_helper( |
| g: jit_utils.GraphContext, |
| tensor: _C.Value, |
| scale: _C.Value, |
| zero_point: _C.Value, |
| axis: Optional[_C.Value] = None, |
| ) -> _C.Value: |
| """Appends to graph `g` ONNX nodes that quantizes `tensor` based on `scale`, `zero_point` and `axis`. |
| |
| Args: |
| g: Graph, the ONNX IR graph that is under construction. |
| tensor: torch._C.Value, representing the tensor to be quantized. |
| scale: torch._C.Value, quantized scale. |
| zero_point: torch._C.Value, quantized zero point. |
| axis: Optional[torch._C.Value] default None, if None, represents per tensor quantization. |
| Otherwise, represents per channel quantization, along given axis. |
| |
| Returns: |
| A TupleConstruct storing information of the quantized tensor. |
| """ |
| if ( |
| axis is not None |
| and not _is_none(axis) |
| and GLOBALS.export_onnx_opset_version < 13 |
| ): |
| _onnx_opset_unsupported_detailed( |
| "QuantizeLinear", |
| GLOBALS.export_onnx_opset_version, |
| 13, |
| "Attribute axis is not supported.", |
| tensor, |
| ) |
| |
| assert scale is not None |
| if ( |
| _type_utils.JitScalarType.from_value(scale, _type_utils.JitScalarType.UNDEFINED) |
| != _type_utils.JitScalarType.FLOAT |
| ): |
| scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT) |
| |
| assert zero_point is not None |
| if _type_utils.JitScalarType.from_value( |
| zero_point, _type_utils.JitScalarType.UNDEFINED |
| ) not in { |
| _type_utils.JitScalarType.UINT8, |
| _type_utils.JitScalarType.INT8, |
| }: |
| zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.UINT8) |
| output = g.op( |
| "QuantizeLinear", |
| tensor, |
| scale, |
| zero_point, |
| axis_i=_get_const(axis, "i", "axis"), |
| ) |
| args = [output, scale, zero_point] |
| if axis is not None and not _is_none(axis): |
| args.append(axis) |
| return g.op("prim::TupleConstruct", *args) |
| |
| |
| @_beartype.beartype |
| def requantize_bias_helper( |
| g: jit_utils.GraphContext, bias, input_scale, weight_scale, axis=None |
| ): |
| """In PyTorch, bias is float and is quantized to int32 implicitly inside the quantized ATen op kernel. |
| In ONNX we need to make the quantization explicit because operators expect all of their inputs to be quantized. |
| Since int32 is not a supported output type by ONNX operator `QuantizeLinear`, quantization is exported using |
| regular operators. |
| """ |
| bias_scale = g.op("Mul", weight_scale, input_scale) |
| bias_scale_shape = g.op("Shape", bias_scale) |
| bias_zero_point = g.op( |
| "ConstantOfShape", bias_scale_shape, value_t=torch.tensor([0], dtype=torch.int) |
| ) |
| q_bias = g.op( |
| "Cast", g.op("Div", bias, bias_scale), to_i=_C_onnx.TensorProtoDataType.INT32 |
| ) |
| axis_args = [] |
| if axis is not None and not _is_none(axis): |
| axis_args.append(axis) |
| return g.op("prim::TupleConstruct", q_bias, bias_scale, bias_zero_point, *axis_args) |
| |
| |
| @_beartype.beartype |
| def args_have_same_dtype(args): |
| assert args |
| base_dtype = _type_utils.JitScalarType.from_value(args[0]) |
| has_same_dtype = all( |
| _type_utils.JitScalarType.from_value(elem) == base_dtype for elem in args |
| ) |
| return has_same_dtype |
| |
| |
| @_beartype.beartype |
| def _op_with_optional_float_cast(g: jit_utils.GraphContext, op_name, *args, **kwargs): |
| """Some PyTorch operators (e.g., Clip/Min/ReLU/Pad) are super set of ONNX in terms of data types. |
| This function maximizes the exportability of PyTorch-ONNX by allowing ONNX-unsupported PyTorch |
| operator data type. For example, `Cast<int>(Clip<float>(Cast<float>(INPUT)))` can be used to mimic |
| `Clip<int>(INPUT)` (opset version < 12). |
| |
| Args: |
| g (torch._C.Graph): graph to write the ONNX representation into. |
| op_name (str): operator name in ONNX. |
| *args (tuple): operands to the operator. |
| **kwargs (dict): attributes to the operator along with "opset_before" (optional, None by default) |
| indicating the smallest opset version to trigger such casting behavior and "target_float_t" |
| (optional, torch.onnx.JitScalarType.FLOAT by default) indicating the data type of internal operator. |
| |
| Returns: |
| Optional[torch._C.Value, Tuple[torch._C.Value, ...]]: output(s) of the operator. |
| """ |
| opset_before = kwargs.pop("opset_before", None) |
| target_float_t = kwargs.pop("target_float_t", _type_utils.JitScalarType.FLOAT) |
| |
| inputs = list(args) |
| dtype_0 = _type_utils.JitScalarType.from_value(inputs[0]) |
| |
| require_cast = not _is_fp(inputs[0]) and ( |
| opset_before is None or GLOBALS.export_onnx_opset_version < opset_before |
| ) |
| |
| if require_cast: |
| for input in inputs: |
| if input.isCompleteTensor(): |
| input_scalar_type = _type_utils.JitScalarType.from_value(input) |
| if input_scalar_type != dtype_0: |
| raise errors.SymbolicValueError( |
| f"Inputs of {op_name} must have same dtype." |
| f"Got {dtype_0.scalar_name()} and {input_scalar_type.scalar_name()}", |
| input, |
| ) |
| for i, input in enumerate(inputs): |
| if input.isCompleteTensor() and not _is_fp(input): |
| inputs[i] = g.op( |
| "Cast", |
| input, |
| to_i=target_float_t.onnx_type(), |
| ) |
| |
| self = g.op(op_name, *inputs, **kwargs) |
| |
| if require_cast: |
| self = g.op("Cast", self, to_i=dtype_0.onnx_type()) |
| |
| return self |
| |
| |
| @_beartype.beartype |
| def _maybe_cast_reduce_op_input(g: jit_utils.GraphContext, self): |
| scalar_type = _type_utils.JitScalarType.from_value( |
| self, _type_utils.JitScalarType.UNDEFINED |
| ) |
| if scalar_type != _type_utils.JitScalarType.UNDEFINED: |
| # This check only covers traced modules where dtype is present |
| # pytorch reduce-ops cast all other integral types to int64 |
| if not _is_fp(self) and scalar_type != _type_utils.JitScalarType.INT64: |
| self = g.op("Cast", self, to_i=_C_onnx.TensorProtoDataType.INT64) |
| return self |
| |
| |
| def _apply_params(*args, **kwargs): |
| """Returns a decorator that calls the decorated (higher-order) function with the given parameters.""" |
| |
| def _apply(fn): |
| return fn(*args, **kwargs) |
| |
| return _apply |
| |
| |
| @_beartype.beartype |
| def _reduce_op_symbolic_helper(onnx_op_name, allow_multi_dim_support=True): |
| @_beartype.beartype |
| def symbolic(g, self, dim=None, keepdim=None): |
| self = _maybe_cast_reduce_op_input(g, self) |
| if dim is None or dim == (): |
| # Dim can be 0, which will cause (not dim) == True. So we don't want to do |
| # (not dim) |
| # all-reduce path |
| return _handle_reduce_dim_none(g, self, onnx_op_name) |
| else: |
| # dim-reduce path |
| keepdim = _get_const(keepdim, "i", "keepdim") |
| if g.opset < 18: |
| desc = "is" if allow_multi_dim_support else "i" |
| dim = _get_const(dim, desc, "dim") |
| dim_list = dim if allow_multi_dim_support else [dim] |
| return g.op(onnx_op_name, self, axes_i=dim_list, keepdims_i=keepdim) |
| else: |
| if _is_value(dim): |
| axes = dim |
| else: |
| if allow_multi_dim_support: |
| axes = g.op( |
| "Constant", value_t=torch.tensor(dim, dtype=torch.long) |
| ) |
| else: |
| axes = g.op( |
| "Constant", value_t=torch.tensor([dim], dtype=torch.long) |
| ) |
| return g.op(onnx_op_name, self, axes, keepdims_i=keepdim) |
| |
| return symbolic |
| |
| |
| @_beartype.beartype |
| def _overload_by_arg_count(fn): |
| @functools.wraps(fn) |
| @_beartype.beartype |
| def wrapper(g, *args): |
| overloads = fn(g, *args) |
| for overload in overloads: |
| arg_descriptors = overload._arg_descriptors |
| if len(arg_descriptors) == len(args): |
| return overload(g, *args) |
| return _unimplemented(f"aten::{fn.__name__}", f"with {len(args)} arguments") |
| |
| return wrapper |
| |
| |
| @_beartype.beartype |
| def _reduce_with_dtype_helper( |
| onnx_op: str, name: str, allow_multi_dim_support: bool = True |
| ): |
| symbolic = _reduce_op_symbolic_helper( |
| onnx_op, allow_multi_dim_support=allow_multi_dim_support |
| ) |
| |
| @_overload_by_arg_count |
| def reduce(g, *args, **kwargs): |
| @quantized_args(True) |
| @parse_args("v", "none") |
| def reduce_nodim(g, self, dtype): |
| dtype_onnx = None |
| if dtype.node().kind() == "onnx::Constant": |
| dtype = _get_const(dtype, "i", "dtype") |
| dtype_onnx = _type_utils.JitScalarType(dtype).onnx_type() |
| self = g.op("Cast", self, to_i=dtype_onnx) |
| elif dtype.node().kind() != "prim::Constant": |
| return _unimplemented(name, "dtype", dtype) |
| result = symbolic(g, self) |
| if dtype_onnx is not None: |
| result_dtype_onnx = _type_utils.JitScalarType.from_value( |
| result |
| ).onnx_type() |
| if result_dtype_onnx != dtype_onnx: |
| result = g.op("Cast", result, to_i=dtype_onnx) |
| return result |
| |
| dim_desc = "is" if allow_multi_dim_support else "i" |
| |
| @quantized_args(True) |
| @parse_args("v", dim_desc, "i", "none") # type: ignore[arg-type] |
| def reduce_dim(g, self, dim, keepdim, dtype): |
| dtype_onnx = None |
| if dtype.node().kind() == "onnx::Constant": |
| dtype = _get_const(dtype, "i", "dtype") |
| dtype_onnx = _type_utils.JitScalarType(dtype).onnx_type() |
| self = g.op("Cast", self, to_i=dtype_onnx) |
| elif dtype.node().kind() != "prim::Constant": |
| return _unimplemented(name, "dtype", dtype) |
| result = symbolic(g, self, dim, keepdim) |
| if dtype_onnx is not None: |
| result_dtype_onnx = _type_utils.JitScalarType.from_value( |
| result |
| ).onnx_type() |
| if result_dtype_onnx != dtype_onnx: |
| result = g.op("Cast", result, to_i=dtype_onnx) |
| return result |
| |
| return reduce_nodim, reduce_dim |
| |
| return reduce |
| |
| |
| @_beartype.beartype |
| def _max_helper(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None): |
| # torch.max(input) |
| if dim_or_y is None and keepdim is None: |
| return g.op("ReduceMax", self, keepdims_i=0) |
| # torch.max(input, other) |
| if keepdim is None: |
| return _op_with_optional_float_cast(g, "Max", self, dim_or_y, opset_before=12) |
| # torch.max(input, dim, keepdim) |
| else: |
| keepdim = _get_const(keepdim, "i", "keepdim") |
| dim = _get_const(dim_or_y, "i", "dim") |
| if g.opset < 18: |
| max = g.op("ReduceMax", self, axes_i=[dim], keepdims_i=keepdim) |
| else: |
| axes = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long)) |
| max = g.op("ReduceMax", self, axes, keepdims_i=keepdim) |
| indices = g.op("ArgMax", self, axis_i=dim, keepdims_i=keepdim) |
| return max, indices |
| |
| |
| @_beartype.beartype |
| def _min_helper(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None): |
| # torch.min(input) |
| if dim_or_y is None and keepdim is None: |
| return g.op("ReduceMin", self, keepdims_i=0) |
| # torch.min(input, other) |
| if keepdim is None: |
| return _op_with_optional_float_cast(g, "Min", self, dim_or_y, opset_before=12) |
| # torch.min(input, dim, keepdim) |
| else: |
| keepdim = _get_const(keepdim, "i", "keepdim") |
| dim = _get_const(dim_or_y, "i", "dim") |
| if g.opset < 18: |
| min = g.op("ReduceMin", self, axes_i=[dim], keepdims_i=keepdim) |
| else: |
| axes = g.op("Constant", value_t=torch.tensor([dim], dtype=torch.long)) |
| min = g.op("ReduceMin", self, axes, keepdims_i=keepdim) |
| indices = g.op("ArgMin", self, axis_i=dim, keepdims_i=keepdim) |
| return min, indices |
| |
| |
| @_beartype.beartype |
| def _numel_helper(g: jit_utils.GraphContext, self): |
| shape = g.op("Shape", self) |
| return g.op("ReduceProd", shape, keepdims_i=0) |
| |
| |
| @parse_args("v", "is", "i", "i") |
| @_beartype.beartype |
| def _var_mean_helper(g: jit_utils.GraphContext, input, dim, correction, keepdim): |
| if g.opset < 18: |
| if dim is None: |
| mean = g.op("ReduceMean", input, keepdims_i=0) |
| t_mean = mean |
| num_elements = _numel_helper(g, input) |
| else: |
| mean = g.op("ReduceMean", input, axes_i=dim, keepdims_i=keepdim) |
| t_mean = g.op("ReduceMean", input, axes_i=dim, keepdims_i=1) |
| redudced_dims = g.op("Shape", input) |
| # dim could contain one or multiple dimensions |
| redudced_dims = g.op( |
| "Gather", |
| redudced_dims, |
| g.op("Constant", value_t=torch.tensor(dim)), |
| axis_i=0, |
| ) |
| num_elements = g.op("ReduceProd", redudced_dims, keepdims_i=0) |
| sub_v = g.op("Sub", input, t_mean) |
| sqr_sub = g.op("Mul", sub_v, sub_v) |
| keepdim_mean = 0 if dim is None else keepdim |
| var = g.op("ReduceMean", sqr_sub, axes_i=dim, keepdims_i=keepdim_mean) |
| # Correct bias in calculating variance, by dividing it over (N - correction) instead on N |
| if correction is None: |
| correction = 1 |
| if correction != 0: |
| num_elements = g.op( |
| "Cast", num_elements, to_i=_C_onnx.TensorProtoDataType.FLOAT |
| ) |
| one = g.op("Constant", value_t=torch.tensor(correction, dtype=torch.float)) |
| mul = g.op("Mul", var, num_elements) |
| var = g.op("Div", mul, g.op("Sub", num_elements, one)) |
| return var, mean |
| else: |
| axes = None |
| if dim is None: |
| mean = g.op("ReduceMean", input, keepdims_i=0) |
| t_mean = mean |
| num_elements = _numel_helper(g, input) |
| else: |
| axes = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long)) |
| mean = g.op("ReduceMean", input, axes, keepdims_i=keepdim) |
| t_mean = g.op("ReduceMean", input, axes, keepdims_i=1) |
| redudced_dims = g.op("Shape", input) |
| # dim could contain one or multiple dimensions |
| redudced_dims = g.op( |
| "Gather", |
| redudced_dims, |
| g.op("Constant", value_t=torch.tensor(dim)), |
| axis_i=0, |
| ) |
| num_elements = g.op("ReduceProd", redudced_dims, keepdims_i=0) |
| sub_v = g.op("Sub", input, t_mean) |
| sqr_sub = g.op("Mul", sub_v, sub_v) |
| keepdim_mean = 0 if dim is None else keepdim |
| if axes is None: |
| var = g.op("ReduceMean", sqr_sub, keepdims_i=keepdim_mean) |
| else: |
| var = g.op("ReduceMean", sqr_sub, axes, keepdims_i=keepdim_mean) |
| # Correct bias in calculating variance, by dividing it over (N - correction) instead on N |
| if correction is None: |
| correction = 1 |
| if correction != 0: |
| num_elements = g.op( |
| "Cast", num_elements, to_i=_C_onnx.TensorProtoDataType.FLOAT |
| ) |
| one = g.op("Constant", value_t=torch.tensor(correction, dtype=torch.float)) |
| mul = g.op("Mul", var, num_elements) |
| var = g.op("Div", mul, g.op("Sub", num_elements, one)) |
| return var, mean |
| |
| |
| @_beartype.beartype |
| def _embedding_bag_helper( |
| g: jit_utils.GraphContext, |
| embedding_matrix, |
| indices, |
| offsets, |
| scale_grad_by_freq, |
| mode, |
| sparse, |
| per_sample_weights, |
| include_last_offset, |
| padding_idx, |
| ): |
| if scale_grad_by_freq and GLOBALS.export_training: |
| return _onnx_unsupported( |
| "embedding_bag with scale_grad_by_freq for training mode" |
| ) |
| if padding_idx is not None and padding_idx >= 0: |
| raise RuntimeError("embedding_bag with padding_idx") |
| |
| loop_condition = g.op("Constant", value_t=torch.tensor(1)) |
| loop_condition = g.op("Cast", loop_condition, to_i=_C_onnx.TensorProtoDataType.BOOL) |
| zero = g.op("Constant", value_t=torch.tensor([0])) |
| |
| indices_len = _unsqueeze_helper( |
| g, |
| _size_helper(g, indices, g.op("Constant", value_t=torch.tensor(0))), |
| [0], |
| ) |
| if not include_last_offset: |
| offsets = [offsets, indices_len] |
| offsets = g.op("Concat", *offsets, axis_i=0) |
| |
| # Offsets holds the starting index position of each bag. So we create a list of the indices slices (determined by |
| # offsets) and gather those indices in indices_row. Then we use this subset of indices to gather from embeddings. |
| # The embeddings output is a loop scan output, so we can avoid creating a sequence and inserting elements in. |
| offsets_starts = _slice_helper( |
| g, offsets, axes=[0], starts=[0], ends=[sys.maxsize], steps=[1] |
| ) |
| offsets_ends = _slice_helper( |
| g, offsets, axes=[0], starts=[1], ends=[sys.maxsize], steps=[1] |
| ) |
| |
| loop_len = _size_helper(g, offsets_ends, g.op("Constant", value_t=torch.tensor(0))) |
| |
| loop, (loop_context,), _ = jit_utils.add_op_with_blocks( |
| g, "Loop", loop_len, loop_condition, n_blocks=1 |
| ) |
| loop_block = loop_context.block |
| |
| # FIXME(justinchuby): We need to handle what happens when we call b.op on a node return |
| block_input_iter = utils._add_input_to_block(loop_block) |
| cond = utils._add_input_to_block(loop_block) |
| |
| indices_start = loop_context.op( |
| "Gather", offsets_starts, block_input_iter, axis_i=0 |
| ) |
| indices_end = loop_context.op("Gather", offsets_ends, block_input_iter, axis_i=0) |
| indices_start = _unsqueeze_helper(loop_context, indices_start, [0]) |
| indices_end = _unsqueeze_helper(loop_context, indices_end, [0]) |
| |
| indices_row = loop_context.op("Slice", indices, indices_start, indices_end, zero) |
| embeddings = loop_context.op("Gather", embedding_matrix, indices_row, axis_i=0) |
| if not _is_none(per_sample_weights): |
| per_sample_weights_row = loop_context.op( |
| "Slice", per_sample_weights, indices_start, indices_end, zero |
| ) |
| per_sample_weights_row = _unsqueeze_helper( |
| loop_context, per_sample_weights_row, [1] |
| ) |
| embeddings = loop_context.op("Mul", embeddings, per_sample_weights_row) |
| if mode == 0: |
| embeddings = _reducesum_helper( |
| loop_context, embeddings, axes_i=[0], keepdims_i=0 |
| ) |
| elif mode == 1: |
| if loop_context.opset < 18: |
| embeddings = loop_context.op( |
| "ReduceMean", embeddings, axes_i=[0], keepdims_i=0 |
| ) |
| else: |
| axes = loop_context.op( |
| "Constant", value_t=torch.tensor([0], dtype=torch.long) |
| ) |
| embeddings = loop_context.op("ReduceMean", embeddings, axes, keepdims_i=0) |
| else: |
| if loop_context.opset < 18: |
| embeddings = loop_context.op( |
| "ReduceMax", embeddings, axes_i=[0], keepdims_i=0 |
| ) |
| else: |
| axes = loop_context.op( |
| "Constant", value_t=torch.tensor([0], dtype=torch.long) |
| ) |
| embeddings = loop_context.op("ReduceMax", embeddings, axes, keepdims_i=0) |
| |
| cond_out = loop_context.op( |
| "Cast", loop_condition, to_i=_C_onnx.TensorProtoDataType.BOOL |
| ) |
| utils._add_output_to_block(loop_block, cond_out) |
| utils._add_output_to_block(loop_block, embeddings) |
| |
| # aten::embedding_bag returns a tuple of 4 elements: output, offset2bag, bag_size, max_indices. |
| # But the last three outputs are not used in torch.nn.EmbeddingBag or torch.nn.functional.embedding_bag. |
| return loop.node().output(), None, None, None |
| |
| |
| @_beartype.beartype |
| def _linalg_vector_norm_helper( |
| g: jit_utils.GraphContext, |
| self: torch._C.Value, |
| ord: float, |
| dim: Optional[Sequence[int]], |
| keepdim: bool, |
| dtype: torch._C.Value, |
| ): |
| axes = None |
| # Conditions based on https://pytorch.org/docs/stable/generated/torch.linalg.vector_norm.html |
| if _is_none(dim): |
| self = _reshape_helper(g, self, [-1]) |
| keepdim = False |
| elif g.opset >= 18: |
| axes = g.op("Constant", value_t=torch.tensor(dim, dtype=torch.long)) |
| |
| if ord == math.inf: |
| if g.opset < 18: |
| result = g.op( |
| "ReduceMax", g.op("Abs", self), axes_i=dim, keepdims_i=keepdim |
| ) |
| else: |
| if axes is None: |
| result = g.op("ReduceMax", g.op("Abs", self), keepdims_i=keepdim) |
| else: |
| result = g.op("ReduceMax", g.op("Abs", self), axes, keepdims_i=keepdim) |
| elif ord == -math.inf: |
| if g.opset < 18: |
| result = g.op( |
| "ReduceMin", g.op("Abs", self), axes_i=dim, keepdims_i=keepdim |
| ) |
| else: |
| if axes is None: |
| result = g.op("ReduceMin", g.op("Abs", self), keepdims_i=keepdim) |
| else: |
| result = g.op("ReduceMin", g.op("Abs", self), axes, keepdims_i=keepdim) |
| elif ord == 0: |
| if g.opset < 11: |
| return _onnx_opset_unsupported_detailed( |
| "linalg_vector_norm", 9, 11, "ord=0 not supported", self |
| ) |
| else: |
| if dim is None: |
| self = _reshape_helper( |
| g, |
| self, |
| g.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64)), |
| ) |
| keepdim = False |
| |
| cond_op = g.op( |
| "Not", |
| g.op("Equal", self, g.op("Constant", value_t=torch.LongTensor([0]))), |
| ) |
| cond_op = g.op( |
| "Cast", |
| cond_op, |
| to_i=_type_utils.JitScalarType.from_value(self).onnx_type(), |
| ) |
| return _reducesum_helper(g, cond_op, axes_i=dim, keepdims_i=keepdim) |
| elif ord == 1: |
| if g.opset < 18: |
| result = _reduce_op_symbolic_helper("ReduceL1")( |
| g, self, dim=dim, keepdim=keepdim |
| ) |
| else: |
| if axes is None: |
| result = _reduce_op_symbolic_helper("ReduceL1")( |
| g, self, keepdim=keepdim |
| ) |
| else: |
| result = _reduce_op_symbolic_helper("ReduceL1")( |
| g, self, axes, keepdim=keepdim |
| ) |
| elif ord == 2: |
| if g.opset < 18: |
| result = _reduce_op_symbolic_helper("ReduceL2")( |
| g, self, dim=dim, keepdim=keepdim |
| ) |
| else: |
| if axes is None: |
| result = _reduce_op_symbolic_helper("ReduceL2")( |
| g, self, keepdim=keepdim |
| ) |
| else: |
| result = _reduce_op_symbolic_helper("ReduceL2")( |
| g, self, axes, keepdim=keepdim |
| ) |
| else: |
| ord_op = g.op("Constant", value_t=torch.tensor(ord, dtype=torch.float32)) |
| result = _reducesum_helper( |
| g, g.op("Pow", g.op("Abs", self), ord_op), axes_i=dim, keepdims_i=keepdim |
| ) |
| result = g.op( |
| "Pow", |
| result, |
| g.op( |
| "Div", |
| g.op("Constant", value_t=torch.tensor(1, dtype=torch.float32)), |
| ord_op, |
| ), |
| ) |
| |
| if not _is_none(dtype): |
| dtype = _get_const(dtype, "i", "dtype") |
| result = g.op("Cast", result, to_i=_type_utils.JitScalarType(dtype).onnx_type()) # type: ignore[arg-type] |
| return result |
| |
| |
| # Deprecated. Internally use _type_utils.ScalarType |
| # TODO: remove these once we support Type's in the JIT IR and we can once again |
| # use the unified toType operator |
| cast_pytorch_to_onnx = { |
| "Byte": _C_onnx.TensorProtoDataType.UINT8, |
| "Char": _C_onnx.TensorProtoDataType.INT8, |
| "Double": _C_onnx.TensorProtoDataType.DOUBLE, |
| "Float": _C_onnx.TensorProtoDataType.FLOAT, |
| "Half": _C_onnx.TensorProtoDataType.FLOAT16, |
| "Int": _C_onnx.TensorProtoDataType.INT32, |
| "Long": _C_onnx.TensorProtoDataType.INT64, |
| "Short": _C_onnx.TensorProtoDataType.INT16, |
| "Bool": _C_onnx.TensorProtoDataType.BOOL, |
| "ComplexFloat": _C_onnx.TensorProtoDataType.COMPLEX64, |
| "ComplexDouble": _C_onnx.TensorProtoDataType.COMPLEX128, |
| "BFloat16": _C_onnx.TensorProtoDataType.BFLOAT16, |
| "Undefined": _C_onnx.TensorProtoDataType.UNDEFINED, |
| } |
| |
| # Deprecated. Internally use _type_utils.ScalarType |
| scalar_name_to_pytorch = { |
| "uint8_t": "Byte", |
| "int8_t": "Char", |
| "double": "Double", |
| "float": "Float", |
| "half": "Half", |
| "int": "Int", |
| "int64_t": "Long", |
| "int16_t": "Short", |
| "bool": "Bool", |
| "complex64": "ComplexFloat", |
| "complex128": "ComplexDouble", |
| "qint8": "QInt8", |
| "quint8": "QUInt8", |
| "qint32": "QInt32", |
| "bfloat16": "BFloat16", |
| } |
| |
| |
| # Deprecated. Internally use _type_utils.ScalarType |
| # This indicates each scalar type's corresponding |
| # torch type. Related source: |
| # https://github.com/pytorch/pytorch/blob/344defc9733a45fee8d0c4d3f5530f631e823196/c10/core/ScalarType.h |
| scalar_type_to_pytorch_type = [ |
| torch.uint8, # 0 |
| torch.int8, # 1 |
| torch.short, # 2 |
| torch.int, # 3 |
| torch.int64, # 4 |
| torch.half, # 5 |
| torch.float, # 6 |
| torch.double, # 7 |
| torch.complex32, # 8 |
| torch.complex64, # 9 |
| torch.complex128, # 10 |
| torch.bool, # 11 |
| torch.qint8, # 12 |
| torch.quint8, # 13 |
| torch.qint32, # 14 |
| torch.bfloat16, # 15 |
| ] |
| |
| # Deprecated. Internally use _type_utils.ScalarType |
| # source of truth is |
| # https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/tensor_dtypes.cpp |
| pytorch_name_to_type = { |
| "Byte": torch.uint8, |
| "Char": torch.int8, |
| "Double": torch.double, |
| "Float": torch.float, |
| "Half": torch.half, |
| "Int": torch.int, |
| "Long": torch.int64, |
| "Short": torch.short, |
| "Bool": torch.bool, |
| "ComplexFloat": torch.complex64, |
| "ComplexDouble": torch.complex128, |
| "QInt8": torch.qint8, |
| "QUInt8": torch.quint8, |
| "QInt32": torch.qint32, |
| "BFloat16": torch.bfloat16, |
| } |
| |
| |
| # Deprecated. Internally use _type_utils.ScalarType |
| scalar_type_to_onnx = [ |
| cast_pytorch_to_onnx["Byte"], # 0 |
| cast_pytorch_to_onnx["Char"], # 1 |
| cast_pytorch_to_onnx["Short"], # 2 |
| cast_pytorch_to_onnx["Int"], # 3 |
| cast_pytorch_to_onnx["Long"], # 4 |
| cast_pytorch_to_onnx["Half"], # 5 |
| cast_pytorch_to_onnx["Float"], # 6 |
| cast_pytorch_to_onnx["Double"], # 7 |
| cast_pytorch_to_onnx["Undefined"], # 8 |
| cast_pytorch_to_onnx["ComplexFloat"], # 9 |
| cast_pytorch_to_onnx["ComplexDouble"], # 10 |
| cast_pytorch_to_onnx["Bool"], # 11 |
| cast_pytorch_to_onnx["Char"], # 12 |
| cast_pytorch_to_onnx["Byte"], # 13 |
| cast_pytorch_to_onnx["Int"], # 14 |
| cast_pytorch_to_onnx["BFloat16"], # 15 |
| ] |
| |
| # Global set to store the list of quantized operators in the network. |
| # This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX. |
| _quantized_ops: Set[int] = set() |