| #include <gtest/gtest.h> |
| |
| #include <torch/torch.h> |
| |
| #include <test/cpp/api/support.h> |
| |
| using namespace torch::indexing; |
| using namespace torch::test; |
| |
| TEST(TensorIndexingTest, Slice) { |
| Slice slice(1, 2, 3); |
| ASSERT_EQ(slice.start(), 1); |
| ASSERT_EQ(slice.stop(), 2); |
| ASSERT_EQ(slice.step(), 3); |
| |
| ASSERT_EQ(c10::str(slice), "1:2:3"); |
| } |
| |
| TEST(TensorIndexingTest, TensorIndex) { |
| { |
| std::vector<TensorIndex> indices = {None, "...", Ellipsis, 0, true, Slice(1, None, 2), torch::tensor({1, 2})}; |
| ASSERT_TRUE(indices[0].is_none()); |
| ASSERT_TRUE(indices[1].is_ellipsis()); |
| ASSERT_TRUE(indices[2].is_ellipsis()); |
| ASSERT_TRUE(indices[3].is_integer()); |
| ASSERT_TRUE(indices[3].integer() == 0); |
| ASSERT_TRUE(indices[4].is_boolean()); |
| ASSERT_TRUE(indices[4].boolean() == true); |
| ASSERT_TRUE(indices[5].is_slice()); |
| ASSERT_TRUE(indices[5].slice().start() == 1); |
| ASSERT_TRUE(indices[5].slice().stop() == INDEX_MAX); |
| ASSERT_TRUE(indices[5].slice().step() == 2); |
| ASSERT_TRUE(indices[6].is_tensor()); |
| ASSERT_TRUE(torch::equal(indices[6].tensor(), torch::tensor({1, 2}))); |
| } |
| |
| ASSERT_THROWS_WITH( |
| TensorIndex(".."), |
| "Expected \"...\" to represent an ellipsis index, but got \"..\""); |
| |
| { |
| std::vector<TensorIndex> indices = {None, "...", Ellipsis, 0, true, Slice(1, None, 2)}; |
| ASSERT_EQ(c10::str(indices), c10::str("(None, ..., ..., 0, true, 1:", INDEX_MAX, ":2)")); |
| ASSERT_EQ(c10::str(indices[0]), "None"); |
| ASSERT_EQ(c10::str(indices[1]), "..."); |
| ASSERT_EQ(c10::str(indices[2]), "..."); |
| ASSERT_EQ(c10::str(indices[3]), "0"); |
| ASSERT_EQ(c10::str(indices[4]), "true"); |
| ASSERT_EQ(c10::str(indices[5]), c10::str("1:", INDEX_MAX, ":2")); |
| } |
| |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice()})), c10::str("(0:", INDEX_MAX, ":1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, None)})), c10::str("(0:", INDEX_MAX, ":1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, None, None)})), c10::str("(0:", INDEX_MAX, ":1)")); |
| |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(1, None)})), c10::str("(1:", INDEX_MAX, ":1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(1, None, None)})), c10::str("(1:", INDEX_MAX, ":1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, 3)})), c10::str("(0:3:1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, 3, None)})), c10::str("(0:3:1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, None, 2)})), c10::str("(0:", INDEX_MAX, ":2)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, None, -1)})), c10::str("(", INDEX_MAX, ":", INDEX_MIN, ":-1)")); |
| |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(1, 3)})), c10::str("(1:3:1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(1, None, 2)})), c10::str("(1:", INDEX_MAX, ":2)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(1, None, -1)})), c10::str("(1:", INDEX_MIN, ":-1)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, 3, 2)})), c10::str("(0:3:2)")); |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(None, 3, -1)})), c10::str("(", INDEX_MAX, ":3:-1)")); |
| |
| ASSERT_EQ(c10::str(std::vector<TensorIndex>({Slice(1, 3, 2)})), c10::str("(1:3:2)")); |
| } |
| |
| TEST(TensorIndexingTest, TestNoIndices) { |
| torch::Tensor tensor = torch::randn({20, 20}); |
| torch::Tensor value = torch::randn({20, 20}); |
| std::vector<TensorIndex> indices; |
| |
| ASSERT_THROWS_WITH(tensor.index({}), "Passing an empty index list to Tensor::index() is not valid syntax"); |
| ASSERT_THROWS_WITH(tensor.index_put_({}, 1), "Passing an empty index list to Tensor::index_put_() is not valid syntax"); |
| ASSERT_THROWS_WITH(tensor.index_put_({}, value), "Passing an empty index list to Tensor::index_put_() is not valid syntax"); |
| |
| ASSERT_THROWS_WITH(tensor.index(indices), "Passing an empty index list to Tensor::index() is not valid syntax"); |
| ASSERT_THROWS_WITH(tensor.index_put_(indices, 1), "Passing an empty index list to Tensor::index_put_() is not valid syntax"); |
| ASSERT_THROWS_WITH(tensor.index_put_(indices, value), "Passing an empty index list to Tensor::index_put_() is not valid syntax"); |
| } |
| |
| TEST(TensorIndexingTest, TestAdvancedIndexingWithListOfTensor) { |
| { |
| torch::Tensor tensor = torch::randn({20, 20}); |
| torch::Tensor index = torch::arange(10, torch::kLong).cpu(); |
| torch::Tensor result = at::index(tensor, {index}); |
| torch::Tensor result_with_init_list = tensor.index({index}); |
| ASSERT_TRUE(result.equal(result_with_init_list)); |
| } |
| { |
| torch::Tensor tensor = torch::randn({20, 20}); |
| torch::Tensor index = torch::arange(10, torch::kLong).cpu(); |
| torch::Tensor result = at::index_put_(tensor, {index}, torch::ones({20})); |
| torch::Tensor result_with_init_list = tensor.index_put_({index}, torch::ones({20})); |
| ASSERT_TRUE(result.equal(result_with_init_list)); |
| } |
| { |
| torch::Tensor tensor = torch::randn({20, 20}); |
| torch::Tensor index = torch::arange(10, torch::kLong).cpu(); |
| torch::Tensor result = at::index_put_(tensor, {index}, torch::ones({1, 20})); |
| torch::Tensor result_with_init_list = tensor.index_put_({index}, torch::ones({1, 20})); |
| ASSERT_TRUE(result.equal(result_with_init_list)); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestSingleInt) { |
| auto v = torch::randn({5, 7, 3}); |
| ASSERT_EQ(v.index({4}).sizes(), torch::IntArrayRef({7, 3})); |
| } |
| |
| TEST(TensorIndexingTest, TestMultipleInt) { |
| auto v = torch::randn({5, 7, 3}); |
| ASSERT_EQ(v.index({4}).sizes(), torch::IntArrayRef({7, 3})); |
| ASSERT_EQ(v.index({4, Slice(), 1}).sizes(), torch::IntArrayRef({7})); |
| |
| // To show that `.index_put_` works |
| v.index_put_({4, 3, 1}, 0); |
| ASSERT_EQ(v.index({4, 3, 1}).item<double>(), 0); |
| } |
| |
| TEST(TensorIndexingTest, TestNone) { |
| auto v = torch::randn({5, 7, 3}); |
| ASSERT_EQ(v.index({None}).sizes(), torch::IntArrayRef({1, 5, 7, 3})); |
| ASSERT_EQ(v.index({Slice(), None}).sizes(), torch::IntArrayRef({5, 1, 7, 3})); |
| ASSERT_EQ(v.index({Slice(), None, None}).sizes(), torch::IntArrayRef({5, 1, 1, 7, 3})); |
| ASSERT_EQ(v.index({"...", None}).sizes(), torch::IntArrayRef({5, 7, 3, 1})); |
| } |
| |
| TEST(TensorIndexingTest, TestStep) { |
| auto v = torch::arange(10); |
| assert_tensor_equal(v.index({Slice(None, None, 1)}), v); |
| assert_tensor_equal(v.index({Slice(None, None, 2)}), torch::tensor({0, 2, 4, 6, 8})); |
| assert_tensor_equal(v.index({Slice(None, None, 3)}), torch::tensor({0, 3, 6, 9})); |
| assert_tensor_equal(v.index({Slice(None, None, 11)}), torch::tensor({0})); |
| assert_tensor_equal(v.index({Slice(1, 6, 2)}), torch::tensor({1, 3, 5})); |
| } |
| |
| TEST(TensorIndexingTest, TestStepAssignment) { |
| auto v = torch::zeros({4, 4}); |
| v.index_put_({0, Slice(1, None, 2)}, torch::tensor({3., 4.})); |
| assert_tensor_equal(v.index({0}), torch::tensor({0., 3., 0., 4.})); |
| assert_tensor_equal(v.index({Slice(1, None)}).sum(), torch::tensor(0)); |
| } |
| |
| TEST(TensorIndexingTest, TestBoolIndices) { |
| { |
| auto v = torch::randn({5, 7, 3}); |
| auto boolIndices = torch::tensor({true, false, true, true, false}, torch::kBool); |
| ASSERT_EQ(v.index({boolIndices}).sizes(), torch::IntArrayRef({3, 7, 3})); |
| assert_tensor_equal(v.index({boolIndices}), torch::stack({v.index({0}), v.index({2}), v.index({3})})); |
| } |
| { |
| auto v = torch::tensor({true, false, true}, torch::kBool); |
| auto boolIndices = torch::tensor({true, false, false}, torch::kBool); |
| auto uint8Indices = torch::tensor({1, 0, 0}, torch::kUInt8); |
| |
| { |
| WarningCapture warnings; |
| |
| ASSERT_EQ(v.index({boolIndices}).sizes(), v.index({uint8Indices}).sizes()); |
| assert_tensor_equal(v.index({boolIndices}), v.index({uint8Indices})); |
| assert_tensor_equal(v.index({boolIndices}), torch::tensor({true}, torch::kBool)); |
| |
| ASSERT_EQ(count_substr_occurrences(warnings.str(), "indexing with dtype torch.uint8 is now deprecated"), 2); |
| } |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestBoolIndicesAccumulate) { |
| auto mask = torch::zeros({10}, torch::kBool); |
| auto y = torch::ones({10, 10}); |
| y.index_put_({mask}, {y.index({mask})}, /*accumulate=*/true); |
| assert_tensor_equal(y, torch::ones({10, 10})); |
| } |
| |
| |
| TEST(TensorIndexingTest, TestMultipleBoolIndices) { |
| auto v = torch::randn({5, 7, 3}); |
| // note: these broadcast together and are transposed to the first dim |
| auto mask1 = torch::tensor({1, 0, 1, 1, 0}, torch::kBool); |
| auto mask2 = torch::tensor({1, 1, 1}, torch::kBool); |
| ASSERT_EQ(v.index({mask1, Slice(), mask2}).sizes(), torch::IntArrayRef({3, 7})); |
| } |
| |
| TEST(TensorIndexingTest, TestByteMask) { |
| { |
| auto v = torch::randn({5, 7, 3}); |
| auto mask = torch::tensor({1, 0, 1, 1, 0}, torch::kByte); |
| { |
| WarningCapture warnings; |
| |
| ASSERT_EQ(v.index({mask}).sizes(), torch::IntArrayRef({3, 7, 3})); |
| assert_tensor_equal(v.index({mask}), torch::stack({v[0], v[2], v[3]})); |
| |
| ASSERT_EQ(count_substr_occurrences(warnings.str(), "indexing with dtype torch.uint8 is now deprecated"), 2); |
| } |
| } |
| { |
| auto v = torch::tensor({1.}); |
| assert_tensor_equal(v.index({v == 0}), torch::randn({0})); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestByteMaskAccumulate) { |
| auto mask = torch::zeros({10}, torch::kUInt8); |
| auto y = torch::ones({10, 10}); |
| { |
| WarningCapture warnings; |
| |
| y.index_put_({mask}, y.index({mask}), /*accumulate=*/true); |
| assert_tensor_equal(y, torch::ones({10, 10})); |
| |
| ASSERT_EQ(count_substr_occurrences(warnings.str(), "indexing with dtype torch.uint8 is now deprecated"), 2); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestMultipleByteMask) { |
| auto v = torch::randn({5, 7, 3}); |
| // note: these broadcast together and are transposed to the first dim |
| auto mask1 = torch::tensor({1, 0, 1, 1, 0}, torch::kByte); |
| auto mask2 = torch::tensor({1, 1, 1}, torch::kByte); |
| { |
| WarningCapture warnings; |
| |
| ASSERT_EQ(v.index({mask1, Slice(), mask2}).sizes(), torch::IntArrayRef({3, 7})); |
| |
| ASSERT_EQ(count_substr_occurrences(warnings.str(), "indexing with dtype torch.uint8 is now deprecated"), 2); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestByteMask2d) { |
| auto v = torch::randn({5, 7, 3}); |
| auto c = torch::randn({5, 7}); |
| int64_t num_ones = (c > 0).sum().item().to<int64_t>(); |
| auto r = v.index({c > 0}); |
| ASSERT_EQ(r.sizes(), torch::IntArrayRef({num_ones, 3})); |
| } |
| |
| TEST(TensorIndexingTest, TestIntIndices) { |
| auto v = torch::randn({5, 7, 3}); |
| ASSERT_EQ(v.index({torch::tensor({0, 4, 2})}).sizes(), torch::IntArrayRef({3, 7, 3})); |
| ASSERT_EQ(v.index({Slice(), torch::tensor({0, 4, 2})}).sizes(), torch::IntArrayRef({5, 3, 3})); |
| ASSERT_EQ(v.index({Slice(), torch::tensor({{0, 1}, {4, 3}})}).sizes(), torch::IntArrayRef({5, 2, 2, 3})); |
| } |
| |
| |
| TEST(TensorIndexingTest, TestIntIndices2d) { |
| // From the NumPy indexing example |
| auto x = torch::arange(0, 12, torch::kLong).view({4, 3}); |
| auto rows = torch::tensor({{0, 0}, {3, 3}}); |
| auto columns = torch::tensor({{0, 2}, {0, 2}}); |
| assert_tensor_equal(x.index({rows, columns}), torch::tensor({{0, 2}, {9, 11}})); |
| } |
| |
| TEST(TensorIndexingTest, TestIntIndicesBroadcast) { |
| // From the NumPy indexing example |
| auto x = torch::arange(0, 12, torch::kLong).view({4, 3}); |
| auto rows = torch::tensor({0, 3}); |
| auto columns = torch::tensor({0, 2}); |
| auto result = x.index({rows.index({Slice(), None}), columns}); |
| assert_tensor_equal(result, torch::tensor({{0, 2}, {9, 11}})); |
| } |
| |
| TEST(TensorIndexingTest, TestEmptyIndex) { |
| auto x = torch::arange(0, 12).view({4, 3}); |
| auto idx = torch::tensor({}, torch::kLong); |
| ASSERT_EQ(x.index({idx}).numel(), 0); |
| |
| // empty assignment should have no effect but not throw an exception |
| auto y = x.clone(); |
| y.index_put_({idx}, -1); |
| assert_tensor_equal(x, y); |
| |
| auto mask = torch::zeros({4, 3}, torch::kBool); |
| y.index_put_({mask}, -1); |
| assert_tensor_equal(x, y); |
| } |
| |
| TEST(TensorIndexingTest, TestEmptyNdimIndex) { |
| torch::Device device(torch::kCPU); |
| { |
| auto x = torch::randn({5}, device); |
| assert_tensor_equal( |
| torch::empty({0, 2}, device), |
| x.index({torch::empty({0, 2}, torch::TensorOptions(torch::kInt64).device(device))})); |
| } |
| { |
| auto x = torch::randn({2, 3, 4, 5}, device); |
| assert_tensor_equal( |
| torch::empty({2, 0, 6, 4, 5}, device), |
| x.index({Slice(), torch::empty({0, 6}, torch::TensorOptions(torch::kInt64).device(device))})); |
| } |
| { |
| auto x = torch::empty({10, 0}); |
| ASSERT_EQ(x.index({torch::tensor({1, 2})}).sizes(), torch::IntArrayRef({2, 0})); |
| ASSERT_EQ(x.index({torch::tensor({}, torch::kLong), torch::tensor({}, torch::kLong)}).sizes(), torch::IntArrayRef({0})); |
| ASSERT_THROWS_WITH(x.index({Slice(), torch::tensor({0, 1})}), "for dimension with size 0"); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestEmptyNdimIndex_CUDA) { |
| torch::Device device(torch::kCUDA); |
| { |
| auto x = torch::randn({5}, device); |
| assert_tensor_equal( |
| torch::empty({0, 2}, device), |
| x.index({torch::empty({0, 2}, torch::TensorOptions(torch::kInt64).device(device))})); |
| } |
| { |
| auto x = torch::randn({2, 3, 4, 5}, device); |
| assert_tensor_equal( |
| torch::empty({2, 0, 6, 4, 5}, device), |
| x.index({Slice(), torch::empty({0, 6}, torch::TensorOptions(torch::kInt64).device(device))})); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestEmptyNdimIndexBool) { |
| torch::Device device(torch::kCPU); |
| auto x = torch::randn({5}, device); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(x.index({torch::empty({0, 2}, torch::TensorOptions(torch::kUInt8).device(device))}), c10::Error); |
| } |
| |
| TEST(TensorIndexingTest, TestEmptyNdimIndexBool_CUDA) { |
| torch::Device device(torch::kCUDA); |
| auto x = torch::randn({5}, device); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(x.index({torch::empty({0, 2}, torch::TensorOptions(torch::kUInt8).device(device))}), c10::Error); |
| } |
| |
| TEST(TensorIndexingTest, TestEmptySlice) { |
| torch::Device device(torch::kCPU); |
| auto x = torch::randn({2, 3, 4, 5}, device); |
| auto y = x.index({Slice(), Slice(), Slice(), 1}); |
| auto z = y.index({Slice(), Slice(1, 1), Slice()}); |
| ASSERT_EQ(z.sizes(), torch::IntArrayRef({2, 0, 4})); |
| // this isn't technically necessary, but matches NumPy stride calculations. |
| ASSERT_EQ(z.strides(), torch::IntArrayRef({60, 20, 5})); |
| ASSERT_TRUE(z.is_contiguous()); |
| } |
| |
| TEST(TensorIndexingTest, TestEmptySlice_CUDA) { |
| torch::Device device(torch::kCUDA); |
| auto x = torch::randn({2, 3, 4, 5}, device); |
| auto y = x.index({Slice(), Slice(), Slice(), 1}); |
| auto z = y.index({Slice(), Slice(1, 1), Slice()}); |
| ASSERT_EQ(z.sizes(), torch::IntArrayRef({2, 0, 4})); |
| // this isn't technically necessary, but matches NumPy stride calculations. |
| ASSERT_EQ(z.strides(), torch::IntArrayRef({60, 20, 5})); |
| ASSERT_TRUE(z.is_contiguous()); |
| } |
| |
| TEST(TensorIndexingTest, TestIndexGetitemCopyBoolsSlices) { |
| auto true_tensor = torch::tensor(1, torch::kUInt8); |
| auto false_tensor = torch::tensor(0, torch::kUInt8); |
| |
| std::vector<torch::Tensor> tensors = {torch::randn({2, 3}), torch::tensor(3)}; |
| |
| for (auto& a : tensors) { |
| ASSERT_NE(a.data_ptr(), a.index({true}).data_ptr()); |
| { |
| std::vector<int64_t> sizes = {0}; |
| sizes.insert(sizes.end(), a.sizes().begin(), a.sizes().end()); |
| assert_tensor_equal(torch::empty(sizes), a.index({false})); |
| } |
| ASSERT_NE(a.data_ptr(), a.index({true_tensor}).data_ptr()); |
| { |
| std::vector<int64_t> sizes = {0}; |
| sizes.insert(sizes.end(), a.sizes().begin(), a.sizes().end()); |
| assert_tensor_equal(torch::empty(sizes), a.index({false_tensor})); |
| } |
| ASSERT_EQ(a.data_ptr(), a.index({None}).data_ptr()); |
| ASSERT_EQ(a.data_ptr(), a.index({"..."}).data_ptr()); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestIndexSetitemBoolsSlices) { |
| auto true_tensor = torch::tensor(1, torch::kUInt8); |
| auto false_tensor = torch::tensor(0, torch::kUInt8); |
| |
| std::vector<torch::Tensor> tensors = {torch::randn({2, 3}), torch::tensor(3)}; |
| |
| for (auto& a : tensors) { |
| // prefix with a 1,1, to ensure we are compatible with numpy which cuts off prefix 1s |
| // (some of these ops already prefix a 1 to the size) |
| auto neg_ones = torch::ones_like(a) * -1; |
| auto neg_ones_expanded = neg_ones.unsqueeze(0).unsqueeze(0); |
| a.index_put_({true}, neg_ones_expanded); |
| assert_tensor_equal(a, neg_ones); |
| a.index_put_({false}, 5); |
| assert_tensor_equal(a, neg_ones); |
| a.index_put_({true_tensor}, neg_ones_expanded * 2); |
| assert_tensor_equal(a, neg_ones * 2); |
| a.index_put_({false_tensor}, 5); |
| assert_tensor_equal(a, neg_ones * 2); |
| a.index_put_({None}, neg_ones_expanded * 3); |
| assert_tensor_equal(a, neg_ones * 3); |
| a.index_put_({"..."}, neg_ones_expanded * 4); |
| assert_tensor_equal(a, neg_ones * 4); |
| if (a.dim() == 0) { |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index_put_({Slice()}, neg_ones_expanded * 5), c10::Error); |
| } |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestIndexScalarWithBoolMask) { |
| torch::Device device(torch::kCPU); |
| |
| auto a = torch::tensor(1, device); |
| auto uintMask = torch::tensor(true, torch::TensorOptions(torch::kUInt8).device(device)); |
| auto boolMask = torch::tensor(true, torch::TensorOptions(torch::kBool).device(device)); |
| assert_tensor_equal(a.index({uintMask}), a.index({boolMask})); |
| ASSERT_EQ(a.index({uintMask}).dtype(), a.index({boolMask}).dtype()); |
| |
| a = torch::tensor(true, torch::TensorOptions(torch::kBool).device(device)); |
| assert_tensor_equal(a.index({uintMask}), a.index({boolMask})); |
| ASSERT_EQ(a.index({uintMask}).dtype(), a.index({boolMask}).dtype()); |
| } |
| |
| TEST(TensorIndexingTest, TestIndexScalarWithBoolMask_CUDA) { |
| torch::Device device(torch::kCUDA); |
| |
| auto a = torch::tensor(1, device); |
| auto uintMask = torch::tensor(true, torch::TensorOptions(torch::kUInt8).device(device)); |
| auto boolMask = torch::tensor(true, torch::TensorOptions(torch::kBool).device(device)); |
| assert_tensor_equal(a.index({uintMask}), a.index({boolMask})); |
| ASSERT_EQ(a.index({uintMask}).dtype(), a.index({boolMask}).dtype()); |
| |
| a = torch::tensor(true, torch::TensorOptions(torch::kBool).device(device)); |
| assert_tensor_equal(a.index({uintMask}), a.index({boolMask})); |
| ASSERT_EQ(a.index({uintMask}).dtype(), a.index({boolMask}).dtype()); |
| } |
| |
| TEST(TensorIndexingTest, TestSetitemExpansionError) { |
| auto true_tensor = torch::tensor(true); |
| auto a = torch::randn({2, 3}); |
| // check prefix with non-1s doesn't work |
| std::vector<int64_t> tensor_sizes{5, 1}; |
| tensor_sizes.insert( |
| tensor_sizes.end(), |
| a.sizes().begin(), |
| a.sizes().end()); |
| auto a_expanded = a.expand(tensor_sizes); |
| // NumPy: ValueError |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index_put_({true}, a_expanded), c10::Error); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index_put_({true_tensor}, a_expanded), c10::Error); |
| } |
| |
| TEST(TensorIndexingTest, TestGetitemScalars) { |
| auto zero = torch::tensor(0, torch::kInt64); |
| auto one = torch::tensor(1, torch::kInt64); |
| |
| // non-scalar indexed with scalars |
| auto a = torch::randn({2, 3}); |
| assert_tensor_equal(a.index({0}), a.index({zero})); |
| assert_tensor_equal(a.index({0}).index({1}), a.index({zero}).index({one})); |
| assert_tensor_equal(a.index({0, 1}), a.index({zero, one})); |
| assert_tensor_equal(a.index({0, one}), a.index({zero, 1})); |
| |
| // indexing by a scalar should slice (not copy) |
| ASSERT_EQ(a.index({0, 1}).data_ptr(), a.index({zero, one}).data_ptr()); |
| ASSERT_EQ(a.index({1}).data_ptr(), a.index({one.to(torch::kInt)}).data_ptr()); |
| ASSERT_EQ(a.index({1}).data_ptr(), a.index({one.to(torch::kShort)}).data_ptr()); |
| |
| // scalar indexed with scalar |
| auto r = torch::randn({}); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(r.index({Slice()}), c10::Error); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(r.index({zero}), c10::Error); |
| assert_tensor_equal(r, r.index({"..."})); |
| } |
| |
| TEST(TensorIndexingTest, TestSetitemScalars) { |
| auto zero = torch::tensor(0, torch::kInt64); |
| |
| // non-scalar indexed with scalars |
| auto a = torch::randn({2, 3}); |
| auto a_set_with_number = a.clone(); |
| auto a_set_with_scalar = a.clone(); |
| auto b = torch::randn({3}); |
| |
| a_set_with_number.index_put_({0}, b); |
| a_set_with_scalar.index_put_({zero}, b); |
| assert_tensor_equal(a_set_with_number, a_set_with_scalar); |
| a.index_put_({1, zero}, 7.7); |
| ASSERT_TRUE(a.index({1, 0}).allclose(torch::tensor(7.7))); |
| |
| // scalar indexed with scalars |
| auto r = torch::randn({}); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(r.index_put_({Slice()}, 8.8), c10::Error); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(r.index_put_({zero}, 8.8), c10::Error); |
| r.index_put_({"..."}, 9.9); |
| ASSERT_TRUE(r.allclose(torch::tensor(9.9))); |
| } |
| |
| TEST(TensorIndexingTest, TestBasicAdvancedCombined) { |
| // From the NumPy indexing example |
| auto x = torch::arange(0, 12).to(torch::kLong).view({4, 3}); |
| assert_tensor_equal(x.index({Slice(1, 2), Slice(1, 3)}), x.index({Slice(1, 2), torch::tensor({1, 2})})); |
| assert_tensor_equal(x.index({Slice(1, 2), Slice(1, 3)}), torch::tensor({{4, 5}})); |
| |
| // Check that it is a copy |
| { |
| auto unmodified = x.clone(); |
| x.index({Slice(1, 2), torch::tensor({1, 2})}).zero_(); |
| assert_tensor_equal(x, unmodified); |
| } |
| |
| // But assignment should modify the original |
| { |
| auto unmodified = x.clone(); |
| x.index_put_({Slice(1, 2), torch::tensor({1, 2})}, 0); |
| assert_tensor_not_equal(x, unmodified); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestIntAssignment) { |
| { |
| auto x = torch::arange(0, 4).to(torch::kLong).view({2, 2}); |
| x.index_put_({1}, 5); |
| assert_tensor_equal(x, torch::tensor({{0, 1}, {5, 5}})); |
| } |
| |
| { |
| auto x = torch::arange(0, 4).to(torch::kLong).view({2, 2}); |
| x.index_put_({1}, torch::arange(5, 7).to(torch::kLong)); |
| assert_tensor_equal(x, torch::tensor({{0, 1}, {5, 6}})); |
| } |
| } |
| |
| TEST(TensorIndexingTest, TestByteTensorAssignment) { |
| auto x = torch::arange(0., 16).to(torch::kFloat).view({4, 4}); |
| auto b = torch::tensor({true, false, true, false}, torch::kByte); |
| auto value = torch::tensor({3., 4., 5., 6.}); |
| |
| { |
| WarningCapture warnings; |
| |
| x.index_put_({b}, value); |
| |
| ASSERT_EQ(count_substr_occurrences(warnings.str(), "indexing with dtype torch.uint8 is now deprecated"), 1); |
| } |
| |
| assert_tensor_equal(x.index({0}), value); |
| assert_tensor_equal(x.index({1}), torch::arange(4, 8).to(torch::kLong)); |
| assert_tensor_equal(x.index({2}), value); |
| assert_tensor_equal(x.index({3}), torch::arange(12, 16).to(torch::kLong)); |
| } |
| |
| TEST(TensorIndexingTest, TestVariableSlicing) { |
| auto x = torch::arange(0, 16).view({4, 4}); |
| auto indices = torch::tensor({0, 1}, torch::kInt); |
| int i = indices[0].item<int>(); |
| int j = indices[1].item<int>(); |
| assert_tensor_equal(x.index({Slice(i, j)}), x.index({Slice(0, 1)})); |
| } |
| |
| TEST(TensorIndexingTest, TestEllipsisTensor) { |
| auto x = torch::arange(0, 9).to(torch::kLong).view({3, 3}); |
| auto idx = torch::tensor({0, 2}); |
| assert_tensor_equal(x.index({"...", idx}), torch::tensor({{0, 2}, |
| {3, 5}, |
| {6, 8}})); |
| assert_tensor_equal(x.index({idx, "..."}), torch::tensor({{0, 1, 2}, |
| {6, 7, 8}})); |
| } |
| |
| TEST(TensorIndexingTest, TestOutOfBoundIndex) { |
| auto x = torch::arange(0, 100).view({2, 5, 10}); |
| ASSERT_THROWS_WITH(x.index({0, 5}), "index 5 is out of bounds for dimension 1 with size 5"); |
| ASSERT_THROWS_WITH(x.index({4, 5}), "index 4 is out of bounds for dimension 0 with size 2"); |
| ASSERT_THROWS_WITH(x.index({0, 1, 15}), "index 15 is out of bounds for dimension 2 with size 10"); |
| ASSERT_THROWS_WITH(x.index({Slice(), Slice(), 12}), "index 12 is out of bounds for dimension 2 with size 10"); |
| } |
| |
| TEST(TensorIndexingTest, TestZeroDimIndex) { |
| auto x = torch::tensor(10); |
| |
| auto runner = [&]() -> torch::Tensor { |
| std::cout << x.index({0}) << std::endl; |
| return x.index({0}); |
| }; |
| |
| ASSERT_THROWS_WITH(runner(), "invalid index"); |
| } |
| |
| // The tests below are from NumPy test_indexing.py with some modifications to |
| // make them compatible with libtorch. It's licensed under the BDS license below: |
| // |
| // Copyright (c) 2005-2017, NumPy Developers. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // |
| // * Neither the name of the NumPy Developers nor the names of any |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| TEST(NumpyTests, TestNoneIndex) { |
| // `None` index adds newaxis |
| auto a = torch::tensor({1, 2, 3}); |
| ASSERT_EQ(a.index({None}).dim(), a.dim() + 1); |
| } |
| |
| TEST(NumpyTests, TestEmptyFancyIndex) { |
| // Empty list index creates an empty array |
| auto a = torch::tensor({1, 2, 3}); |
| assert_tensor_equal(a.index({torch::tensor({}, torch::kLong)}), torch::tensor({})); |
| |
| auto b = torch::tensor({}).to(torch::kLong); |
| assert_tensor_equal(a.index({torch::tensor({}, torch::kLong)}), torch::tensor({}, torch::kLong)); |
| |
| b = torch::tensor({}).to(torch::kFloat); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({b}), c10::Error); |
| } |
| |
| TEST(NumpyTests, TestEllipsisIndex) { |
| auto a = torch::tensor({{1, 2, 3}, |
| {4, 5, 6}, |
| {7, 8, 9}}); |
| ASSERT_FALSE(a.index({"..."}).is_same(a)); |
| assert_tensor_equal(a.index({"..."}), a); |
| // `a[...]` was `a` in numpy <1.9. |
| ASSERT_EQ(a.index({"..."}).data_ptr(), a.data_ptr()); |
| |
| // Slicing with ellipsis can skip an |
| // arbitrary number of dimensions |
| assert_tensor_equal(a.index({0, "..."}), a.index({0})); |
| assert_tensor_equal(a.index({0, "..."}), a.index({0, Slice()})); |
| assert_tensor_equal(a.index({"...", 0}), a.index({Slice(), 0})); |
| |
| // In NumPy, slicing with ellipsis results in a 0-dim array. In PyTorch |
| // we don't have separate 0-dim arrays and scalars. |
| assert_tensor_equal(a.index({0, "...", 1}), torch::tensor(2)); |
| |
| // Assignment with `Ellipsis` on 0-d arrays |
| auto b = torch::tensor(1); |
| b.index_put_({Ellipsis}, 2); |
| ASSERT_EQ(b.item<int64_t>(), 2); |
| } |
| |
| TEST(NumpyTests, TestSingleIntIndex) { |
| // Single integer index selects one row |
| auto a = torch::tensor({{1, 2, 3}, |
| {4, 5, 6}, |
| {7, 8, 9}}); |
| |
| assert_tensor_equal(a.index({0}), torch::tensor({1, 2, 3})); |
| assert_tensor_equal(a.index({-1}), torch::tensor({7, 8, 9})); |
| |
| // Index out of bounds produces IndexError |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({1 << 30}), c10::Error); |
| // NOTE: According to the standard (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0543r0.html), |
| // for signed integers, if during the evaluation of an expression, the result is not mathematically defined |
| // or not in the range of representable values for its type, the behavior is undefined. |
| // Therefore, there is no way to check for index overflow case because it might not throw exception. |
| // ASSERT_THROW(a(1 << 64), c10::Error); |
| } |
| |
| TEST(NumpyTests, TestSingleBoolIndex) { |
| // Single boolean index |
| auto a = torch::tensor({{1, 2, 3}, |
| {4, 5, 6}, |
| {7, 8, 9}}); |
| |
| assert_tensor_equal(a.index({true}), a.index({None})); |
| assert_tensor_equal(a.index({false}), a.index({None}).index({Slice(0, 0)})); |
| } |
| |
| TEST(NumpyTests, TestBooleanShapeMismatch) { |
| auto arr = torch::ones({5, 4, 3}); |
| |
| auto index = torch::tensor({true}); |
| ASSERT_THROWS_WITH(arr.index({index}), "mask"); |
| |
| index = torch::tensor({false, false, false, false, false, false}); |
| ASSERT_THROWS_WITH(arr.index({index}), "mask"); |
| |
| { |
| WarningCapture warnings; |
| |
| index = torch::empty({4, 4}, torch::kByte).zero_(); |
| ASSERT_THROWS_WITH(arr.index({index}), "mask"); |
| ASSERT_THROWS_WITH(arr.index({Slice(), index}), "mask"); |
| |
| ASSERT_EQ(count_substr_occurrences(warnings.str(), "indexing with dtype torch.uint8 is now deprecated"), 2); |
| } |
| } |
| |
| TEST(NumpyTests, TestBooleanIndexingOnedim) { |
| // Indexing a 2-dimensional array with |
| // boolean array of length one |
| auto a = torch::tensor({{0., 0., 0.}}); |
| auto b = torch::tensor({true}); |
| assert_tensor_equal(a.index({b}), a); |
| // boolean assignment |
| a.index_put_({b}, 1.); |
| assert_tensor_equal(a, torch::tensor({{1., 1., 1.}})); |
| } |
| |
| TEST(NumpyTests, TestBooleanAssignmentValueMismatch) { |
| // A boolean assignment should fail when the shape of the values |
| // cannot be broadcast to the subscription. (see also gh-3458) |
| auto a = torch::arange(0, 4); |
| |
| auto f = [](torch::Tensor a, std::vector<int64_t> v) -> void { |
| a.index_put_({a > -1}, torch::tensor(v)); |
| }; |
| |
| ASSERT_THROWS_WITH(f(a, {}), "shape mismatch"); |
| ASSERT_THROWS_WITH(f(a, {1, 2, 3}), "shape mismatch"); |
| ASSERT_THROWS_WITH(f(a.index({Slice(None, 1)}), {1, 2, 3}), "shape mismatch"); |
| } |
| |
| TEST(NumpyTests, TestBooleanIndexingTwodim) { |
| // Indexing a 2-dimensional array with |
| // 2-dimensional boolean array |
| auto a = torch::tensor({{1, 2, 3}, |
| {4, 5, 6}, |
| {7, 8, 9}}); |
| auto b = torch::tensor({{true, false, true}, |
| {false, true, false}, |
| {true, false, true}}); |
| assert_tensor_equal(a.index({b}), torch::tensor({1, 3, 5, 7, 9})); |
| assert_tensor_equal(a.index({b.index({1})}), torch::tensor({{4, 5, 6}})); |
| assert_tensor_equal(a.index({b.index({0})}), a.index({b.index({2})})); |
| |
| // boolean assignment |
| a.index_put_({b}, 0); |
| assert_tensor_equal(a, torch::tensor({{0, 2, 0}, |
| {4, 0, 6}, |
| {0, 8, 0}})); |
| } |
| |
| TEST(NumpyTests, TestBooleanIndexingWeirdness) { |
| // Weird boolean indexing things |
| auto a = torch::ones({2, 3, 4}); |
| ASSERT_EQ(a.index({false, true, "..."}).sizes(), torch::IntArrayRef({0, 2, 3, 4})); |
| assert_tensor_equal(torch::ones({1, 2}), a.index({true, torch::tensor({0, 1}), true, true, torch::tensor({1}), torch::tensor({{2}})})); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({false, torch::tensor({0, 1}), "..."}), c10::Error); |
| } |
| |
| TEST(NumpyTests, TestBooleanIndexingWeirdnessTensors) { |
| // Weird boolean indexing things |
| auto false_tensor = torch::tensor(false); |
| auto true_tensor = torch::tensor(true); |
| auto a = torch::ones({2, 3, 4}); |
| ASSERT_EQ(a.index({false, true, "..."}).sizes(), torch::IntArrayRef({0, 2, 3, 4})); |
| assert_tensor_equal(torch::ones({1, 2}), a.index({true_tensor, torch::tensor({0, 1}), true_tensor, true_tensor, torch::tensor({1}), torch::tensor({{2}})})); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({false_tensor, torch::tensor({0, 1}), "..."}), c10::Error); |
| } |
| |
| TEST(NumpyTests, TestBooleanIndexingAlldims) { |
| auto true_tensor = torch::tensor(true); |
| auto a = torch::ones({2, 3}); |
| ASSERT_EQ(a.index({true, true}).sizes(), torch::IntArrayRef({1, 2, 3})); |
| ASSERT_EQ(a.index({true_tensor, true_tensor}).sizes(), torch::IntArrayRef({1, 2, 3})); |
| } |
| |
| TEST(NumpyTests, TestBooleanListIndexing) { |
| // Indexing a 2-dimensional array with |
| // boolean lists |
| auto a = torch::tensor({{1, 2, 3}, |
| {4, 5, 6}, |
| {7, 8, 9}}); |
| auto b = torch::tensor({true, false, false}); |
| auto c = torch::tensor({true, true, false}); |
| assert_tensor_equal(a.index({b}), torch::tensor({{1, 2, 3}})); |
| assert_tensor_equal(a.index({b, b}), torch::tensor({1})); |
| assert_tensor_equal(a.index({c}), torch::tensor({{1, 2, 3}, {4, 5, 6}})); |
| assert_tensor_equal(a.index({c, c}), torch::tensor({1, 5})); |
| } |
| |
| TEST(NumpyTests, TestEverythingReturnsViews) { |
| // Before `...` would return a itself. |
| auto a = torch::tensor({5}); |
| |
| ASSERT_FALSE(a.is_same(a.index({"..."}))); |
| ASSERT_FALSE(a.is_same(a.index({Slice()}))); |
| } |
| |
| TEST(NumpyTests, TestBroaderrorsIndexing) { |
| auto a = torch::zeros({5, 5}); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({torch::tensor({0, 1}), torch::tensor({0, 1, 2})}), c10::Error); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index_put_({torch::tensor({0, 1}), torch::tensor({0, 1, 2})}, 0), c10::Error); |
| } |
| |
| TEST(NumpyTests, TestTrivialFancyOutOfBounds) { |
| auto a = torch::zeros({5}); |
| auto ind = torch::ones({20}, torch::kInt64); |
| ind.index_put_({-1}, 10); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({ind}), c10::Error); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index_put_({ind}, 0), c10::Error); |
| ind = torch::ones({20}, torch::kInt64); |
| ind.index_put_({0}, 11); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index({ind}), c10::Error); |
| // NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto) |
| ASSERT_THROW(a.index_put_({ind}, 0), c10::Error); |
| } |
| |
| TEST(NumpyTests, TestIndexIsLarger) { |
| // Simple case of fancy index broadcasting of the index. |
| auto a = torch::zeros({5, 5}); |
| a.index_put_({torch::tensor({{0}, {1}, {2}}), torch::tensor({0, 1, 2})}, torch::tensor({2., 3., 4.})); |
| |
| ASSERT_TRUE((a.index({Slice(None, 3), Slice(None, 3)}) == torch::tensor({2., 3., 4.})).all().item<bool>()); |
| } |
| |
| TEST(NumpyTests, TestBroadcastSubspace) { |
| auto a = torch::zeros({100, 100}); |
| auto v = torch::arange(0., 100).index({Slice(), None}); |
| auto b = torch::arange(99, -1, -1).to(torch::kLong); |
| a.index_put_({b}, v); |
| auto expected = b.to(torch::kDouble).unsqueeze(1).expand({100, 100}); |
| assert_tensor_equal(a, expected); |
| } |