| #include <gtest/gtest.h> |
| |
| #include <torch/csrc/jit/api/function_impl.h> |
| #include <torch/csrc/jit/runtime/argument_spec.h> |
| #include <torch/jit.h> |
| |
| #include "test/cpp/jit/test_utils.h" |
| |
| namespace torch { |
| namespace jit { |
| |
| namespace { |
| |
| at::Device device(const autograd::Variable& v) { |
| // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions) |
| return v.device(); |
| } |
| |
| bool isEqual(at::IntArrayRef lhs, at::IntArrayRef rhs) { |
| return lhs.size() == rhs.size() && |
| std::equal(lhs.begin(), lhs.end(), rhs.begin()); |
| } |
| |
| bool isEqual(const CompleteArgumentInfo& ti, const autograd::Variable& v) { |
| if (!ti.defined()) |
| return ti.defined() == v.defined(); |
| return ti.device() == device(v) && ti.requires_grad() == v.requires_grad() && |
| ti.type() == v.scalar_type() && isEqual(ti.sizes(), v.sizes()) && |
| isEqual(ti.strides(), v.strides()); |
| } |
| |
| bool isEqual(const ArgumentInfo& ti, const autograd::Variable& v) { |
| if (!ti.defined()) |
| return ti.defined() == v.defined(); |
| return ti.device() == device(v) && ti.requires_grad() == v.requires_grad() && |
| ti.type() == v.scalar_type() && ti.dim() == v.dim(); |
| } |
| |
| autograd::Variable var( |
| at::TensorOptions t, |
| at::IntArrayRef sizes, |
| bool requires_grad) { |
| return autograd::make_variable(at::rand(sizes, t), requires_grad); |
| } |
| autograd::Variable undef() { |
| return autograd::Variable(); |
| } |
| } // namespace |
| |
| TEST(ArgumentSpecTest, CompleteArgumentSpec_CUDA) { |
| auto const CF = at::CPU(at::kFloat); |
| auto const CD = at::CPU(at::kDouble); |
| auto const GF = at::CUDA(at::kFloat); |
| auto const GD = at::CUDA(at::kDouble); |
| |
| auto list = createStack( |
| {var(CF, {1}, true), |
| var(CD, {1, 2}, false), |
| var(GF, {}, true), |
| var(GD, {4, 5, 6}, false), |
| undef()}); |
| |
| // make sure we have some non-standard strides |
| list[1].toTensor().transpose_(0, 1); |
| |
| // same list but different backing values |
| auto list2 = createStack( |
| {var(CF, {1}, true), |
| var(CD, {1, 2}, false), |
| var(GF, {}, true), |
| var(GD, {4, 5, 6}, false), |
| undef()}); |
| list2[1].toTensor().transpose_(0, 1); |
| |
| CompleteArgumentSpec a(true, list); |
| CompleteArgumentSpec b(true, list); |
| ASSERT_EQ(a.hashCode(), b.hashCode()); |
| |
| ASSERT_EQ(a, b); |
| CompleteArgumentSpec d(true, list2); |
| ASSERT_EQ(d, a); |
| ASSERT_EQ(d.hashCode(), a.hashCode()); |
| |
| for (size_t i = 0; i < list.size(); ++i) { |
| ASSERT_TRUE(isEqual(a.at(i), list[i].toTensor())); |
| } |
| CompleteArgumentSpec no_grad(/*with_grad=*/false, list); |
| ASSERT_TRUE(no_grad != a); |
| |
| std::unordered_set<CompleteArgumentSpec> spec; |
| spec.insert(a); // we use a below, so no move |
| ASSERT_TRUE(spec.count(b) > 0); |
| ASSERT_EQ(spec.count(no_grad), 0); |
| spec.insert(std::move(no_grad)); |
| ASSERT_EQ(spec.count(CompleteArgumentSpec(true, list)), 1); |
| |
| list2[1].toTensor().transpose_(0, 1); |
| CompleteArgumentSpec c(true, list2); // same as list, except for one stride |
| ASSERT_FALSE(c == a); |
| ASSERT_EQ(spec.count(c), 0); |
| |
| Stack stack = {var(CF, {1, 2}, true), 3, var(CF, {1, 2}, true)}; |
| CompleteArgumentSpec with_const(true, stack); |
| ASSERT_EQ(with_const.at(2).sizes().size(), 2); |
| } |
| |
| // TODO: this test was disabled for unknown reasons and doesn't run. |
| // static size_t hashCode(const TensorTypePtr& ptr) { |
| // return std::hash<TensorType>()(*ptr.get()); |
| // } |
| |
| // TEST(ArgumentSpecTest, VaryingShape) { |
| // c10::VaryingShape<int64_t> vs(c10::optional<size_t>{}); |
| // auto ptt_empty1 = TensorType::create({}, {}, vs, vs, false); |
| // auto ptt_empty2 = TensorType::create({}, {}, vs, vs, false); |
| // ASSERT_EQ(hashCode(ptt_empty1), hashCode(ptt_empty2)); |
| |
| // c10::VaryingShape<int64_t> vs22(std::vector<int64_t>{2, 2}); |
| // auto ptt_vs22_vs22_1 = TensorType::create({}, {}, vs22, vs22, false); |
| // auto ptt_vs22_vs22_2 = TensorType::create({}, {}, vs22, vs22, false); |
| // ASSERT_EQ(hashCode(ptt_vs22_vs22_1), hashCode(ptt_vs22_vs22_2)); |
| |
| // c10::VaryingShape<int64_t> vs23(std::vector<int64_t>{2, 3}); |
| // auto ptt_vs22_vs23_2 = TensorType::create({}, {}, vs22, vs23, false); |
| // ASSERT_NE(hashCode(ptt_vs22_vs22_1), hashCode(ptt_vs22_vs23_2)); |
| |
| // auto ptt_vs22_vs22_1_true = TensorType::create({}, {}, vs22, vs22, true); |
| // auto ptt_vs22_vs22_2_true = TensorType::create({}, {}, vs22, vs22, true); |
| // ASSERT_EQ(hashCode(ptt_vs22_vs22_1_true), hashCode(ptt_vs22_vs22_2_true)); |
| |
| // auto ptt_vs22_vs22_1_false = TensorType::create({}, {}, vs22, vs22, false); |
| // ASSERT_NE(hashCode(ptt_vs22_vs22_1_true), hashCode(ptt_vs22_vs22_1_false)); |
| // } |
| |
| TEST(ArgumentSpecTest, Basic_CUDA) { |
| auto& CF = at::CPU(at::kFloat); |
| auto& CD = at::CPU(at::kDouble); |
| auto& GF = at::CUDA(at::kFloat); |
| auto& GD = at::CUDA(at::kDouble); |
| |
| auto graph = toGraphFunction(jit::compile(R"JIT( |
| def fn(a, b, c, d, e): |
| return a, b, c, d, e |
| )JIT") |
| ->get_function("fn")) |
| .graph(); |
| |
| ArgumentSpecCreator arg_spec_creator(*graph); |
| |
| auto list = createStack( |
| {var(CF, {1}, true), |
| var(CD, {1, 2}, false), |
| var(GF, {}, true), |
| var(GD, {4, 5, 6}, false), |
| undef()}); |
| |
| // make sure we have some non-standard strides |
| list[1].toTensor().transpose_(0, 1); |
| |
| // same list but different backing values |
| auto list2 = createStack( |
| {var(CF, {1}, true), |
| var(CD, {1, 2}, false), |
| var(GF, {}, true), |
| var(GD, {4, 5, 6}, false), |
| undef()}); |
| list2[1].toTensor().transpose_(0, 1); |
| |
| ArgumentSpec a = arg_spec_creator.create(true, list); |
| ArgumentSpec b = arg_spec_creator.create(true, list); |
| ASSERT_EQ(a.hashCode(), b.hashCode()); |
| |
| ASSERT_EQ(a, b); |
| ArgumentSpec d = arg_spec_creator.create(true, list2); |
| ASSERT_EQ(d, a); |
| ASSERT_EQ(d.hashCode(), a.hashCode()); |
| |
| for (size_t i = 0; i < list.size(); ++i) { |
| ASSERT_TRUE(isEqual(a.tensorAt(i), list[i].toTensor())); |
| } |
| ArgumentSpec no_grad = arg_spec_creator.create(/*with_grad=*/false, list); |
| ASSERT_TRUE(no_grad != a); |
| |
| std::unordered_set<ArgumentSpec> spec; |
| spec.insert(a); // we still need a for the test below |
| ASSERT_TRUE(spec.count(b) > 0); |
| ASSERT_EQ(spec.count(no_grad), 0); |
| spec.insert(std::move(no_grad)); |
| ASSERT_EQ(spec.count(arg_spec_creator.create(true, list)), 1); |
| |
| list2[1].toTensor().transpose_(0, 1); |
| ArgumentSpec c = arg_spec_creator.create( |
| true, list2); // same as list, except for one stride, used to be |
| // different, now the same |
| ASSERT_TRUE(c == a); |
| ASSERT_EQ(spec.count(c), 1); |
| } |
| |
| } // namespace jit |
| } // namespace torch |