blob: 6a087adb63c851062654501914002ca23ff184ab [file] [log] [blame]
#include <gtest/gtest.h>
#include "test/cpp/jit/test_utils.h"
#include "torch/csrc/jit/frontend/tracer.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/passes/constant_propagation.h"
#include "torch/csrc/jit/passes/create_autodiff_subgraphs.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/graph_fuser.h"
#include "torch/csrc/jit/passes/lower_grad_of.h"
#include "torch/csrc/jit/passes/requires_grad_analysis.h"
#include "torch/csrc/jit/passes/shape_analysis.h"
#include "torch/csrc/jit/passes/utils/subgraph_utils.h"
#include "torch/csrc/jit/runtime/argument_spec.h"
#include "torch/csrc/jit/runtime/autodiff.h"
#include "torch/csrc/jit/runtime/graph_iterator.h"
#include "torch/csrc/jit/runtime/profiling_graph_executor_impl.h"
#include "torch/torch.h"
#include <ATen/ATen.h>
#include "torch/csrc/autograd/engine.h"
#include "torch/csrc/autograd/generated/variable_factories.h"
#include "torch/csrc/autograd/variable.h"
namespace torch {
namespace jit {
using namespace torch::autograd;
using var_meta_type = std::vector<int64_t>;
using var_meta_list = std::vector<var_meta_type>;
using test_fn_type = std::function<variable_list(const variable_list&)>;
struct ADTestSpec {
ADTestSpec(
const char* name,
// NOLINTNEXTLINE(modernize-pass-by-value)
var_meta_list input_meta,
// NOLINTNEXTLINE(modernize-pass-by-value)
test_fn_type test_fn,
float clampMax = -1.0f)
: name(name),
input_meta(input_meta),
test_fn(test_fn),
clampMax(clampMax) {}
variable_list operator()(const variable_list& inputs) const {
return test_fn(inputs);
};
std::vector<Variable> make_vars() const {
std::vector<Variable> out;
for (const auto& m : input_meta) {
if (clampMax > 0.0f) {
out.push_back(torch::randn(m, at::requires_grad(true))
.clamp(-clampMax, clampMax));
continue;
}
out.push_back(torch::randn(m, at::requires_grad(true)));
}
return out;
}
const char* name;
var_meta_list input_meta;
test_fn_type test_fn;
float clampMax;
};
variable_list get_grad_outputs(const variable_list& vars) {
return fmap(vars, [](const Variable& v) -> Variable {
return at::randn(v.sizes(), v.options());
});
}
variable_list grad(
const variable_list& outputs,
const variable_list& inputs,
const variable_list& grad_outputs) {
const auto get_edge = [](const Variable& v) {
return torch::autograd::impl::gradient_edge(v);
};
auto& engine = torch::autograd::Engine::get_default_engine();
return engine.execute(
fmap(outputs, get_edge),
grad_outputs,
true,
false,
false,
fmap(inputs, get_edge));
}
TEST(AutodiffTest, ADFormulas) {
const auto cast = [](const Variable& v) {
return static_cast<at::Tensor>(v);
};
using VL = variable_list;
const var_meta_list binary_pointwise = {{2, 3, 4, 5}, {2, 3, 4, 5}};
const var_meta_list unary_pointwise = {{2, 3, 4, 5}};
const var_meta_list unary_pointwise_2d = {{2, 3}};
const std::vector<ADTestSpec> ad_tests = {
{"add",
binary_pointwise,
[](const VL& v) -> VL { return {v[0] + v[1]}; }},
{"sub",
binary_pointwise,
[](const VL& v) -> VL { return {v[0] - v[1]}; }},
{"mul",
binary_pointwise,
[](const VL& v) -> VL { return {v[0] * v[1]}; }},
{"sigmoid",
unary_pointwise,
[](const VL& v) -> VL { return {v[0].sigmoid()}; }},
// Clamp tanh input tensor values to [-3, 3]
// to set a minimum on gradient absolute values
{"tanh",
unary_pointwise,
[](const VL& v) -> VL { return {v[0].tanh()}; },
3.0f},
{"t", unary_pointwise_2d, [](const VL& v) -> VL { return {v[0].t()}; }},
{"view",
unary_pointwise_2d,
[](const VL& v) -> VL {
return {v[0].view({3, 2})};
}},
{"expand",
{{2, 1}},
[](const VL& v) -> VL {
return {v[0].expand({2, 3})};
}},
{"mm",
{{10, 12}, {12, 15}},
[](const VL& v) -> VL { return {v[0].mm(v[1])}; }},
// TODO: enable once we'll be able to capture lists across
// forward-backward
//{"chunk", {{10, 12, 15}}, [](const VL& v) -> VL { return
// fmap<Variable>(v[0].chunk(4, 1)); }},
//{"chunk", {{10, 12, 15}}, [](const VL& v) -> VL { return
// fmap<Variable>(v[0].chunk(3, 2)); }},
//{"split", {{10, 12, 15}}, [](const VL& v) -> VL { return
// fmap<Variable>(v[0].split(4, 1)); }},
//{"split", {{10, 12, 15}}, [](const VL& v) -> VL { return
// fmap<Variable>(v[0].split(3, 2)); }},
};
for (const auto& test : ad_tests) {
// Get reference values form autograd
auto vars_in = test.make_vars();
auto vars_out = test(vars_in);
auto var_grads_in = get_grad_outputs(vars_out);
auto var_grads_out = grad(vars_out, vars_in, var_grads_in);
// Trace and differentiate the op
auto graph = tracer::trace(
fmap<IValue>(vars_in),
[&test](Stack in) -> Stack {
auto ivalue_inps = fmap(in, [](const IValue& v) {
return Variable(v.toTensor());
});
return fmap<IValue>(test(ivalue_inps));
},
[](const Variable& var) { return ""; })
.first->graph;
EliminateDeadCode(graph); // Tracing of some ops depends on the DCE trick
ConstantPropagation(graph);
auto grad_spec = differentiate(graph);
LowerGradOf(*grad_spec.df);
// Get outputs from the interpreter
auto tensors_in = fmap(vars_in, cast);
auto tensor_grads_in = fmap(var_grads_in, cast);
tensor_list tensors_out, tensor_grads_out;
std::tie(tensors_out, tensor_grads_out) =
runGradient(grad_spec, tensors_in, tensor_grads_in);
// Compare results
auto expected_tensors_out = fmap(vars_out, cast);
auto expected_tensor_grads_out = fmap(var_grads_out, cast);
assertAllClose(tensors_out, expected_tensors_out);
assertAllClose(tensor_grads_out, expected_tensor_grads_out);
}
}
TEST(AutodiffTest, Differentiate) {
// Note: can't use IRParser for this test due to issue #23989
auto graph = std::make_shared<Graph>();
std::vector<int64_t> sizes{2, 3, 4};
std::vector<int64_t> strides{12, 4, 1};
const auto type = TensorType::create(
at::ScalarType::Float,
at::kCPU,
c10::VaryingShape<int64_t>{sizes},
c10::VaryingShape<int64_t>{strides},
true);
// Builds graph a * b * a + b
auto* a = graph->addInput()->setType(type);
auto* b = graph->addInput()->setType(type);
auto* cOne = graph->insertConstant(1);
auto* ab = graph->insertNode(graph->create(aten::mul, /*num_outputs =*/1));
ab->addInput(a);
ab->addInput(b);
auto* aba = graph->insertNode(graph->create(aten::mul, /*num_outputs =*/1));
aba->addInput(ab->output());
aba->addInput(a);
auto* abaplusb =
graph->insertNode(graph->create(aten::add, /*num_outputs =*/1));
abaplusb->addInput(aba->output());
abaplusb->addInput(b);
abaplusb->addInput(cOne);
graph->registerOutput(abaplusb->output());
auto grad_spec = differentiate(graph);
std::vector<size_t> expected_captured_inputs = {0, 1};
std::vector<size_t> expected_captured_outputs = {1, 2, 3, 4, 5, 6, 7};
std::vector<size_t> expected_input_vjps = {0, 1};
std::vector<size_t> expected_output_vjps = {0, 1};
ASSERT_EQ(grad_spec.f_real_outputs, 1);
ASSERT_EQ(grad_spec.df_input_captured_inputs, expected_captured_inputs);
ASSERT_EQ(grad_spec.df_input_captured_outputs, expected_captured_outputs);
ASSERT_EQ(grad_spec.df_input_vjps, expected_input_vjps);
ASSERT_EQ(grad_spec.df_output_vjps, expected_output_vjps);
testing::FileCheck()
.check_count("aten::mul", 2)
->check("aten::size")
->check("aten::add")
->run(*grad_spec.f);
testing::FileCheck()
.check("prim::GradOf[name=\"aten::add\"]")
->check_count("prim::GradOf[name=\"aten::mul\"]", 2)
->check_count("AutogradAdd", 2)
->run(*grad_spec.df);
}
TEST(AutodiffTest, DifferentiateWithRequiresGrad) {
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : Tensor = aten::mul(%1, %1)
%4 : Tensor = aten::add(%3, %1, %2)
%5 : Tensor = aten::add(%4, %0, %2)
%6 : Tensor = aten::mul(%5, %0)
%7 : Tensor = aten::add(%6, %1, %2)
return (%4, %7))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
auto a_var = autograd::make_variable(
at::empty_strided(2, 2, at::CPU(at::kFloat).options()), true);
auto b_var = autograd::make_variable(
at::empty_strided(2, 2, at::CPU(at::kFloat).options()), false);
ArgumentSpecCreator asc(*g);
asc.specializeTypes(*g, asc.create(true, {a_var, b_var}));
PropagateInputShapes(g);
PropagateRequiresGrad(g);
auto grad_spec = differentiate(g);
std::vector<size_t> expected_input_vjps = {1, 2}; // for e and %4 = (d + a)
std::vector<size_t> expected_output_vjps = {0}; // only a requires grad
ASSERT_EQ(grad_spec.f_real_outputs, 2);
ASSERT_EQ(grad_spec.df_input_captured_inputs, std::vector<size_t>({0}));
ASSERT_EQ(
grad_spec.df_input_captured_outputs,
std::vector<size_t>({2, 3, 4, 5, 6}));
ASSERT_EQ(grad_spec.df_input_vjps, expected_input_vjps);
ASSERT_EQ(grad_spec.df_output_vjps, expected_output_vjps);
testing::FileCheck()
.check("aten::mul")
->check_count("aten::add", 2)
->check("aten::mul")
->check("aten::size")
->check("aten::add")
->run(*grad_spec.f);
testing::FileCheck()
.check_count("prim::GradOf[name=\"aten::mul\"]", 1, /*exactly*/ true)
->run(*grad_spec.df);
}
class AutodiffRemoveUnusedGradientsTest : public ::testing::Test {
protected:
void SetUp() override {
prev_exec = getExecutorMode();
getExecutorMode() = true;
prev_inline_autodiff = getAutodiffSubgraphInlining();
debugSetAutodiffSubgraphInlining(false);
}
void TearDown() override {
getExecutorMode() = prev_exec;
debugSetAutodiffSubgraphInlining(prev_inline_autodiff);
}
bool prev_exec;
bool prev_profiling;
bool prev_inline_autodiff;
};
TEST_F(AutodiffRemoveUnusedGradientsTest, Linear) {
auto graph = std::make_shared<Graph>();
const std::string input =
R"IR(
graph(%inp.1 : Tensor,
%weight.1 : Tensor,
%bias.1 : Tensor):
%6 : Tensor = aten::linear(%inp.1, %weight.1, %bias.1)
return (%6))IR";
parseIR(input, graph.get());
auto inp = torch::randn({10, 10}).requires_grad_(false);
auto weight = torch::randn({10, 10}).requires_grad_(true);
auto bias = torch::randn({1, 10}).requires_grad_(true);
auto stack = createStack({inp, weight, bias});
ProfilingGraphExecutorImpl executor(graph, "linear");
// initial run to profile requires_grad information
auto plan = executor.getPlanFor(stack, 20);
InterpreterState is{plan.code};
is.run(stack);
auto optimized_plan = executor.getPlanFor(stack, 20);
DepthFirstGraphNodeIterator it(optimized_plan.graph);
Node* diff_graph_node = nullptr;
while ((diff_graph_node = it.next()) != nullptr) {
if (diff_graph_node->kind() == prim::DifferentiableGraph) {
break;
}
}
ASSERT_NE(nullptr, diff_graph_node);
auto backward_graph = diff_graph_node->g(attr::ReverseSubgraph);
// we expect to compute grad_weight (which requires a matmul) but we don't
// expect to compute grad_input. So, we expect exactly 1 matmul.
// Note: this could change, e.g. if mm is used instead
testing::FileCheck().check_count("matmul", 1, true)->run(*backward_graph);
}
} // namespace jit
} // namespace torch