blob: 87261a8b1ce795adcb5941c07d53e71395125250 [file] [log] [blame]
#include <gtest/gtest.h>
#include <ATen/ATen.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/ivalue.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/codegen/cuda/interface.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/attributes.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/lower_grad_of.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/requires_grad_analysis.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/runtime/symbolic_script.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <onnx/onnx_pb.h>
#include <c10/util/Exception.h>
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <vector>
namespace torch {
namespace jit {
class FuserTest : public ::testing::Test {
void SetUp() override {
old_nvfuser_value_ = fuser::cuda::setEnabled(false);
}
void TearDown() override {
fuser::cuda::setEnabled(old_nvfuser_value_);
}
private:
bool old_nvfuser_value_;
};
TEST_F(FuserTest, TestSimple_CUDA) {
#if defined(FBCODE_CAFFE2)
return;
#endif
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : Tensor = aten::mul(%0, %1)
return (%2))IR";
Graph graph;
torch::jit::parseIR(graph_string, &graph);
auto a = at::rand({3, 4}, at::kCUDA);
auto b = at::rand({4, 3}, at::kCUDA).transpose(0, 1);
auto o = at::zeros({3, 4}, at::kCUDA);
auto outputs = debugLaunchGraph(graph, {a, b});
ASSERT_EQ(outputs.size(), 1);
auto o2 = a * b;
float max_diff = (o2 - outputs[0]).abs().max().item<double>();
// std::cout << "max diff: " << max_diff << "\n";
ASSERT_EQ(max_diff, 0);
}
TEST_F(FuserTest, TestOne_CUDA) {
#if defined(FBCODE_CAFFE2)
return;
#endif
auto testOne = [&](int ti, int tj) {
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor,
%3 : Tensor,
%4 : Tensor):
%5 : Tensor = aten::sigmoid(%4)
%6 : Tensor = aten::sigmoid(%3)
%7 : Tensor = aten::tanh(%2)
%8 : Tensor = aten::sigmoid(%1)
%9 : Tensor = aten::mul(%6, %0)
%10 : Tensor = aten::mul(%5, %7)
%11 : int = prim::Constant[value=1]()
%12 : Tensor = aten::add(%9, %10, %11)
%13 : Tensor = aten::tanh(%12)
%14 : Tensor = aten::mul(%8, %13)
return (%14, %12))IR";
Graph graph;
torch::jit::parseIR(graph_string, &graph);
graph.lint();
std::vector<at::Tensor> inputs;
// We want to generate input/output tensors with dimension 128x128x32, but
// with different internal strides. To do this, we generate a tensor
// with the "wrong" dimensions, and then use transpose to get an
// appropriately sized view.
for (const auto i : c10::irange(graph.inputs().size())) {
std::vector<int64_t> dims = {128, 128, 32};
std::swap(dims[ti], dims[tj]);
inputs.push_back(at::rand(dims, at::kCUDA).transpose(ti, tj));
}
auto t22 = inputs[4].sigmoid();
auto t20 = inputs[3].sigmoid();
auto t18 = inputs[2].tanh();
auto t16 = inputs[1].sigmoid();
auto t14 = t20 * inputs[0];
auto t11 = t22 * t18;
auto out1 = t14 + t11;
auto t5 = out1.tanh();
auto out0 = t16 * t5;
auto outputs = debugLaunchGraph(graph, inputs);
ASSERT_EQ(outputs.size(), graph.outputs().size());
ASSERT_TRUE(out0.is_same_size(outputs.front()));
float max_diff = (outputs.front() - out0).abs().max().item<double>();
ASSERT_TRUE(max_diff < 1e-6);
};
testOne(0, 0);
testOne(0, 1);
testOne(1, 2);
testOne(0, 2);
}
TEST_F(FuserTest, FusedConcat_CUDA) {
#if defined(FBCODE_CAFFE2)
return;
#endif
const auto graph_string0 = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = prim::FusedConcat[dim=0](%0, %2)
return (%2, %3))IR";
const auto graph_string1 = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = prim::FusedConcat[dim=1](%0, %2)
return (%2, %3))IR";
const auto graph_string2 = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : Tensor = aten::mul(%0, %1)
%3 : Tensor = prim::FusedConcat[dim=2](%0, %2)
return (%2, %3))IR";
auto a = at::rand({3, 4, 5}, at::kCUDA);
auto b = at::rand({4, 3, 5}, at::kCUDA).transpose(0, 1);
const auto o_r = a * b;
std::vector<std::string> graph_strings{
graph_string0, graph_string1, graph_string2};
for (const auto i : c10::irange(graph_strings.size())) {
Graph g;
torch::jit::parseIR(graph_strings[i], &g);
auto outputs = debugLaunchGraph(g, {a, b});
ASSERT_EQ(outputs.size(), 2);
float max_diff = (o_r - outputs[0]).abs().max().item<double>();
ASSERT_EQ(max_diff, 0);
const auto o2_r = at::cat({a, o_r}, i);
float max_diff2 = (o2_r - outputs[1]).abs().max().item<double>();
ASSERT_EQ(max_diff2, 0);
};
}
TEST_F(FuserTest, FusionAliasing) {
#if defined(FBCODE_CAFFE2)
return;
#endif
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%12 : int = prim::Constant[value=1]()
%2.1 : Tensor = aten::mul(%0, %1)
%2 : Tensor = aten::mul(%2.1, %1)
%3 : Tensor = aten::add_(%2, %1, %12)
%4 : Tensor = aten::mul(%2, %1)
%5 : Tensor = aten::add(%2, %4, %12)
return (%5))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
FuseGraph(g);
// We should not be able to fuse across the in-place operation here.
testing::FileCheck()
.check("prim::FusionGroup_0")
->check("aten::add_")
->check("prim::FusionGroup_1")
->run(*g);
}
TEST_F(FuserTest, KernelCaching) {
#if defined(FBCODE_CAFFE2)
return;
#endif
// Constructs two functionally equivalent graphs
const auto graph0_string = R"IR(
graph(%0 : Float(2, 3, 4),
%1 : Float(2, 3, 4)):
%c0 : Float(2, 3, 4) = aten::mul(%0, %1)
%d0 : Float(2, 3, 4) = aten::mul(%c0, %0)
return (%d0))IR";
auto g0 = std::make_shared<Graph>();
torch::jit::parseIR(graph0_string, g0.get());
const auto graph1_string = R"IR(
graph(%0 : Float(2, 3, 4),
%1 : Float(2, 3, 4)):
%c1 : Float(2, 3, 4) = aten::mul(%0, %1)
%d1 : Float(2, 3, 4) = aten::mul(%c1, %0)
return (%d1))IR";
auto g1 = std::make_shared<Graph>();
torch::jit::parseIR(graph1_string, g1.get());
auto getFusionGroup = [](const std::shared_ptr<Graph>& graph) {
const auto& nodes = graph->nodes();
auto maybe_fusion_group =
std::find_if(nodes.begin(), nodes.end(), [](const Node* node) {
return node->kind() == prim::FusionGroup;
});
TORCH_CHECK(
maybe_fusion_group != nodes.end(),
"testRegisterFusionCachesKernel: could not create FusionGroup");
return *maybe_fusion_group;
};
// Creates two alpha-equivalent fusion groups
torch::jit::overrideCanFuseOnCPU(true);
FuseGraph(g0);
FuseGraph(g1);
torch::jit::overrideCanFuseOnCPU(false);
auto fg0 = getFusionGroup(g0);
auto fg1 = getFusionGroup(g1);
// Registers both with the fusion compiler.
auto expected_key = registerFusion(fg0);
auto second_key = registerFusion(fg1);
// Because the graphs are alpha-equivalent, they should return the same key
// and therefore share a KernelSpec to share kernels for specializations
ASSERT_EQ(second_key, expected_key);
}
} // namespace jit
} // namespace torch