| |
| import torch.distributed as c10d |
| import torch |
| import argparse |
| import os |
| import logging |
| logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) |
| |
| if __name__ == "__main__": |
| parser = argparse.ArgumentParser( |
| description='Simple script to simulate NCCL errors. The script is ' |
| 'supposed to be run on multiple different nodes simultaneously with ' |
| 'appropriate rank and world_size. The script run an allreduce() on ' |
| 'the rank 0 node and aborts all the other nodes to simulate an error ' |
| 'in NCCL') |
| parser.add_argument('addr', help='address of the master node to connect to.') |
| parser.add_argument('port', help='port of the master node to connect to.') |
| parser.add_argument('rank', help='rank of this node') |
| parser.add_argument('world_size', help='number of nodes in process group') |
| args = parser.parse_args() |
| rank = int(args.rank) |
| world_size = int(args.world_size) |
| port = int(args.port) |
| |
| store = c10d.TCPStore(args.addr, port, world_size, rank == 0) |
| process_group = c10d.ProcessGroupNCCL(store, rank, world_size) |
| logging.info('Running first allreduce') |
| process_group.allreduce(torch.rand(10).cuda(rank)).wait() |
| if rank == 0: |
| logging.info('Running second allreduce only on rank 0') |
| work = process_group.allreduce(torch.rand(10).cuda(rank)) |
| logging.info('Waiting for allreduce to complete...') |
| work.wait() |
| logging.info('Second allreduce successful: {}'.format(work.is_success())) |
| else: |
| logging.info('Aborting all other ranks.') |
| os.abort() |