| # Owner(s): ["module: dataloader"] |
| |
| import copy |
| import itertools |
| import os |
| import os.path |
| import pickle |
| import random |
| import sys |
| import tempfile |
| import warnings |
| from functools import partial |
| from typing import ( |
| Any, |
| Awaitable, |
| Dict, |
| Generic, |
| Iterator, |
| List, |
| NamedTuple, |
| Optional, |
| Set, |
| Tuple, |
| Type, |
| TypeVar, |
| Union, |
| ) |
| from unittest import skipIf |
| |
| import numpy as np |
| |
| import torch |
| import torch.utils.data.backward_compatibility |
| import torch.utils.data.datapipes as dp |
| import torch.utils.data.graph |
| import torch.utils.data.graph_settings |
| from torch.testing._internal.common_utils import TestCase, run_tests, suppress_warnings |
| from torch.utils.data import ( |
| DataLoader, |
| DataChunk, |
| IterDataPipe, |
| MapDataPipe, |
| RandomSampler, |
| argument_validation, |
| runtime_validation, |
| runtime_validation_disabled, |
| ) |
| from torch.utils.data.graph import traverse |
| from torch.utils.data.datapipes.utils.common import StreamWrapper |
| from torch.utils.data.datapipes.utils.decoder import ( |
| basichandlers as decoder_basichandlers, |
| ) |
| from torch.utils.data.datapipes.dataframe import CaptureDataFrame |
| from torch.utils.data.datapipes.dataframe import dataframe_wrapper as df_wrapper |
| |
| try: |
| import dill |
| |
| # XXX: By default, dill writes the Pickler dispatch table to inject its |
| # own logic there. This globally affects the behavior of the standard library |
| # pickler for any user who transitively depends on this module! |
| # Undo this extension to avoid altering the behavior of the pickler globally. |
| dill.extend(use_dill=False) |
| HAS_DILL = True |
| except ImportError: |
| HAS_DILL = False |
| skipIfNoDill = skipIf(not HAS_DILL, "no dill") |
| |
| try: |
| import pandas # type: ignore[import] # noqa: F401 F403 |
| |
| HAS_PANDAS = True |
| except ImportError: |
| HAS_PANDAS = False |
| skipIfNoDataFrames = skipIf(not HAS_PANDAS, "no dataframes (pandas)") |
| |
| skipTyping = skipIf(True, "TODO: Fix typing bug") |
| T_co = TypeVar("T_co", covariant=True) |
| |
| |
| def create_temp_dir_and_files(): |
| # The temp dir and files within it will be released and deleted in tearDown(). |
| # Adding `noqa: P201` to avoid mypy's warning on not releasing the dir handle within this function. |
| temp_dir = tempfile.TemporaryDirectory() # noqa: P201 |
| temp_dir_path = temp_dir.name |
| with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.txt') as f: |
| temp_file1_name = f.name |
| with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.byte') as f: |
| temp_file2_name = f.name |
| with tempfile.NamedTemporaryFile(dir=temp_dir_path, delete=False, suffix='.empty') as f: |
| temp_file3_name = f.name |
| |
| with open(temp_file1_name, 'w') as f1: |
| f1.write('0123456789abcdef') |
| with open(temp_file2_name, 'wb') as f2: |
| f2.write(b"0123456789abcdef") |
| |
| temp_sub_dir = tempfile.TemporaryDirectory(dir=temp_dir_path) # noqa: P201 |
| temp_sub_dir_path = temp_sub_dir.name |
| with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.txt') as f: |
| temp_sub_file1_name = f.name |
| with tempfile.NamedTemporaryFile(dir=temp_sub_dir_path, delete=False, suffix='.byte') as f: |
| temp_sub_file2_name = f.name |
| |
| with open(temp_sub_file1_name, 'w') as f1: |
| f1.write('0123456789abcdef') |
| with open(temp_sub_file2_name, 'wb') as f2: |
| f2.write(b"0123456789abcdef") |
| |
| return [(temp_dir, temp_file1_name, temp_file2_name, temp_file3_name), |
| (temp_sub_dir, temp_sub_file1_name, temp_sub_file2_name)] |
| |
| |
| def reset_after_n_next_calls(datapipe: Union[IterDataPipe[T_co], MapDataPipe[T_co]], |
| n: int) -> Tuple[List[T_co], List[T_co]]: |
| """ |
| Given a DataPipe and integer n, iterate the DataPipe for n elements and store the elements into a list |
| Then, reset the DataPipe and return a tuple of two lists |
| 1. A list of elements yielded before the reset |
| 2. A list of all elements of the DataPipe after the reset |
| """ |
| it = iter(datapipe) |
| res_before_reset = [] |
| for _ in range(n): |
| res_before_reset.append(next(it)) |
| return res_before_reset, list(datapipe) |
| |
| |
| def odd_or_even(x: int) -> int: |
| return x % 2 |
| |
| |
| class TestDataChunk(TestCase): |
| def setUp(self): |
| self.elements = list(range(10)) |
| random.shuffle(self.elements) |
| self.chunk: DataChunk[int] = DataChunk(self.elements) |
| |
| def test_getitem(self): |
| for i in range(10): |
| self.assertEqual(self.elements[i], self.chunk[i]) |
| |
| def test_iter(self): |
| for ele, dc in zip(self.elements, iter(self.chunk)): |
| self.assertEqual(ele, dc) |
| |
| def test_len(self): |
| self.assertEqual(len(self.elements), len(self.chunk)) |
| |
| def test_as_string(self): |
| self.assertEqual(str(self.chunk), str(self.elements)) |
| |
| batch = [self.elements] * 3 |
| chunks: List[DataChunk[int]] = [DataChunk(self.elements)] * 3 |
| self.assertEqual(str(batch), str(chunks)) |
| |
| def test_sort(self): |
| chunk: DataChunk[int] = DataChunk(self.elements) |
| chunk.sort() |
| self.assertTrue(isinstance(chunk, DataChunk)) |
| for i, d in enumerate(chunk): |
| self.assertEqual(i, d) |
| |
| def test_reverse(self): |
| chunk: DataChunk[int] = DataChunk(self.elements) |
| chunk.reverse() |
| self.assertTrue(isinstance(chunk, DataChunk)) |
| for i in range(10): |
| self.assertEqual(chunk[i], self.elements[9 - i]) |
| |
| def test_random_shuffle(self): |
| elements = list(range(10)) |
| chunk: DataChunk[int] = DataChunk(elements) |
| |
| rng = random.Random(0) |
| rng.shuffle(chunk) |
| |
| rng = random.Random(0) |
| rng.shuffle(elements) |
| |
| self.assertEqual(chunk, elements) |
| |
| |
| class TestStreamWrapper(TestCase): |
| class _FakeFD: |
| def __init__(self, filepath): |
| self.filepath = filepath |
| self.opened = False |
| self.closed = False |
| |
| def open(self): |
| self.opened = True |
| |
| def read(self): |
| if self.opened: |
| return "".join(self) |
| else: |
| raise IOError("Cannot read from un-opened file descriptor") |
| |
| def __iter__(self): |
| for i in range(5): |
| yield str(i) |
| |
| def close(self): |
| if self.opened: |
| self.opened = False |
| self.closed = True |
| |
| def __repr__(self): |
| return "FakeFD" |
| |
| def test_dir(self): |
| fd = TestStreamWrapper._FakeFD("") |
| wrap_fd = StreamWrapper(fd) |
| |
| s = set(dir(wrap_fd)) |
| for api in ['open', 'read', 'close']: |
| self.assertTrue(api in s) |
| |
| def test_api(self): |
| fd = TestStreamWrapper._FakeFD("") |
| wrap_fd = StreamWrapper(fd) |
| |
| self.assertFalse(fd.opened) |
| self.assertFalse(fd.closed) |
| with self.assertRaisesRegex(IOError, "Cannot read from"): |
| wrap_fd.read() |
| |
| wrap_fd.open() |
| self.assertTrue(fd.opened) |
| self.assertEqual("01234", wrap_fd.read()) |
| |
| del wrap_fd |
| self.assertFalse(fd.opened) |
| self.assertTrue(fd.closed) |
| |
| def test_pickle(self): |
| f = tempfile.TemporaryFile() |
| with self.assertRaises(TypeError) as ctx1: |
| pickle.dumps(f) |
| |
| wrap_f = StreamWrapper(f) |
| with self.assertRaises(TypeError) as ctx2: |
| pickle.dumps(wrap_f) |
| |
| # Same exception when pickle |
| self.assertEqual(str(ctx1.exception), str(ctx2.exception)) |
| |
| fd = TestStreamWrapper._FakeFD("") |
| wrap_fd = StreamWrapper(fd) |
| _ = pickle.loads(pickle.dumps(wrap_fd)) |
| |
| def test_repr(self): |
| fd = TestStreamWrapper._FakeFD("") |
| wrap_fd = StreamWrapper(fd) |
| self.assertEqual(str(wrap_fd), "StreamWrapper<FakeFD>") |
| |
| f = tempfile.TemporaryFile() |
| wrap_f = StreamWrapper(f) |
| self.assertEqual(str(wrap_f), "StreamWrapper<" + str(f) + ">") |
| |
| |
| class TestIterableDataPipeBasic(TestCase): |
| def setUp(self): |
| ret = create_temp_dir_and_files() |
| self.temp_dir = ret[0][0] |
| self.temp_files = ret[0][1:] |
| self.temp_sub_dir = ret[1][0] |
| self.temp_sub_files = ret[1][1:] |
| |
| def tearDown(self): |
| try: |
| self.temp_sub_dir.cleanup() |
| self.temp_dir.cleanup() |
| except Exception as e: |
| warnings.warn("TestIterableDatasetBasic was not able to cleanup temp dir due to {}".format(str(e))) |
| |
| def test_listdirfiles_iterable_datapipe(self): |
| temp_dir = self.temp_dir.name |
| datapipe = dp.iter.FileLister(temp_dir, '') |
| |
| count = 0 |
| for pathname in datapipe: |
| count = count + 1 |
| self.assertTrue(pathname in self.temp_files) |
| self.assertEqual(count, len(self.temp_files)) |
| |
| count = 0 |
| datapipe = dp.iter.FileLister(temp_dir, '', recursive=True) |
| for pathname in datapipe: |
| count = count + 1 |
| self.assertTrue((pathname in self.temp_files) or (pathname in self.temp_sub_files)) |
| self.assertEqual(count, len(self.temp_files) + len(self.temp_sub_files)) |
| |
| temp_files = self.temp_files |
| datapipe = dp.iter.FileLister([temp_dir, *temp_files]) |
| count = 0 |
| for pathname in datapipe: |
| count += 1 |
| self.assertTrue(pathname in self.temp_files) |
| self.assertEqual(count, 2 * len(self.temp_files)) |
| |
| def test_listdirfilesdeterministic_iterable_datapipe(self): |
| temp_dir = self.temp_dir.name |
| |
| datapipe = dp.iter.FileLister(temp_dir, '') |
| # The output order should be always the same. |
| self.assertEqual(list(datapipe), list(datapipe)) |
| |
| datapipe = dp.iter.FileLister(temp_dir, '', recursive=True) |
| # The output order should be always the same. |
| self.assertEqual(list(datapipe), list(datapipe)) |
| |
| def test_openfilesfromdisk_iterable_datapipe(self): |
| # test import datapipe class directly |
| from torch.utils.data.datapipes.iter import ( |
| FileLister, |
| FileOpener, |
| ) |
| |
| temp_dir = self.temp_dir.name |
| datapipe1 = FileLister(temp_dir, '') |
| datapipe2 = FileOpener(datapipe1, mode='b') |
| |
| count = 0 |
| for rec in datapipe2: |
| count = count + 1 |
| self.assertTrue(rec[0] in self.temp_files) |
| with open(rec[0], 'rb') as f: |
| self.assertEqual(rec[1].read(), f.read()) |
| rec[1].close() |
| self.assertEqual(count, len(self.temp_files)) |
| |
| # functional API |
| datapipe3 = datapipe1.open_files(mode='b') |
| |
| count = 0 |
| for rec in datapipe3: |
| count = count + 1 |
| self.assertTrue(rec[0] in self.temp_files) |
| with open(rec[0], 'rb') as f: |
| self.assertEqual(rec[1].read(), f.read()) |
| rec[1].close() |
| self.assertEqual(count, len(self.temp_files)) |
| |
| # __len__ Test |
| with self.assertRaises(TypeError): |
| len(datapipe3) |
| |
| def test_routeddecoder_iterable_datapipe(self): |
| temp_dir = self.temp_dir.name |
| temp_pngfile_pathname = os.path.join(temp_dir, "test_png.png") |
| png_data = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single) |
| np.save(temp_pngfile_pathname, png_data) |
| datapipe1 = dp.iter.FileLister(temp_dir, ['*.png', '*.txt']) |
| datapipe2 = dp.iter.FileOpener(datapipe1, mode='b') |
| |
| def _png_decoder(extension, data): |
| if extension != 'png': |
| return None |
| return np.load(data) |
| |
| def _helper(prior_dp, dp, channel_first=False): |
| # Byte stream is not closed |
| for inp in prior_dp: |
| self.assertFalse(inp[1].closed) |
| for inp, rec in zip(prior_dp, dp): |
| ext = os.path.splitext(rec[0])[1] |
| if ext == '.png': |
| expected = np.array([[[1., 0., 0.], [1., 0., 0.]], [[1., 0., 0.], [1., 0., 0.]]], dtype=np.single) |
| if channel_first: |
| expected = expected.transpose(2, 0, 1) |
| self.assertEqual(rec[1], expected) |
| else: |
| with open(rec[0], 'rb') as f: |
| self.assertEqual(rec[1], f.read().decode('utf-8')) |
| # Corresponding byte stream is closed by Decoder |
| self.assertTrue(inp[1].closed) |
| |
| cached = list(datapipe2) |
| datapipe3 = dp.iter.RoutedDecoder(cached, _png_decoder) |
| datapipe3.add_handler(decoder_basichandlers) |
| _helper(cached, datapipe3) |
| |
| cached = list(datapipe2) |
| datapipe4 = dp.iter.RoutedDecoder(cached, decoder_basichandlers) |
| datapipe4.add_handler(_png_decoder) |
| _helper(cached, datapipe4, channel_first=True) |
| |
| def test_groupby_iterable_datapipe(self): |
| file_list = ["a.png", "b.png", "c.json", "a.json", "c.png", "b.json", "d.png", |
| "d.json", "e.png", "f.json", "g.png", "f.png", "g.json", "e.json", |
| "h.txt", "h.json"] |
| |
| import io |
| |
| datapipe1 = dp.iter.IterableWrapper([(filename, io.BytesIO(b'12345abcde')) for filename in file_list]) |
| |
| def group_fn(data): |
| filepath, _ = data |
| return os.path.basename(filepath).split(".")[0] |
| |
| datapipe2 = dp.iter.Grouper(datapipe1, group_key_fn=group_fn, group_size=2) |
| |
| def order_fn(data): |
| data.sort(key=lambda f: f[0], reverse=True) |
| return data |
| |
| datapipe3 = dp.iter.Mapper(datapipe2, fn=order_fn) # type: ignore[var-annotated] |
| |
| expected_result = [ |
| ("a.png", "a.json"), ("c.png", "c.json"), ("b.png", "b.json"), ("d.png", "d.json"), |
| ("f.png", "f.json"), ("g.png", "g.json"), ("e.png", "e.json"), ("h.txt", "h.json")] |
| |
| count = 0 |
| for rec, expected in zip(datapipe3, expected_result): |
| count = count + 1 |
| self.assertEqual(os.path.basename(rec[0][0]), expected[0]) |
| self.assertEqual(os.path.basename(rec[1][0]), expected[1]) |
| for i in [0, 1]: |
| self.assertEqual(rec[i][1].read(), b'12345abcde') |
| rec[i][1].close() |
| self.assertEqual(count, 8) |
| |
| def test_demux_mux_datapipe(self): |
| numbers = NumbersDataset(10) |
| n1, n2 = numbers.demux(2, lambda x: x % 2) |
| self.assertEqual([0, 2, 4, 6, 8], list(n1)) |
| self.assertEqual([1, 3, 5, 7, 9], list(n2)) |
| |
| # Functional Test: demux and mux works sequentially as expected |
| numbers = NumbersDataset(10) |
| n1, n2, n3 = numbers.demux(3, lambda x: x % 3) |
| n = n1.mux(n2, n3) |
| self.assertEqual(list(range(10)), list(n)) |
| |
| # Functional Test: Uneven DataPipes |
| source_numbers = list(range(0, 10)) + [10, 12] |
| numbers_dp = dp.iter.IterableWrapper(source_numbers) |
| n1, n2 = numbers_dp.demux(2, lambda x: x % 2) |
| self.assertEqual([0, 2, 4, 6, 8, 10, 12], list(n1)) |
| self.assertEqual([1, 3, 5, 7, 9], list(n2)) |
| n = n1.mux(n2) |
| self.assertEqual(source_numbers, list(n)) |
| |
| @suppress_warnings # Suppress warning for lambda fn |
| def test_map_with_col_file_handle_datapipe(self): |
| temp_dir = self.temp_dir.name |
| datapipe1 = dp.iter.FileLister(temp_dir, '') |
| datapipe2 = dp.iter.FileOpener(datapipe1) |
| |
| def _helper(datapipe): |
| dp1 = datapipe.map(lambda x: x.read(), input_col=1) |
| dp2 = datapipe.map(lambda x: (x[0], x[1].read())) |
| self.assertEqual(list(dp1), list(dp2)) |
| |
| # tuple |
| _helper(datapipe2) |
| # list |
| datapipe3 = datapipe2.map(lambda x: list(x)) |
| _helper(datapipe3) |
| |
| |
| @skipIfNoDataFrames |
| class TestCaptureDataFrame(TestCase): |
| def get_new_df(self): |
| return df_wrapper.create_dataframe([[1, 2]], columns=['a', 'b']) |
| |
| def compare_capture_and_eager(self, operations): |
| cdf = CaptureDataFrame() |
| cdf = operations(cdf) |
| df = self.get_new_df() |
| cdf = cdf.apply_ops(df) |
| |
| df = self.get_new_df() |
| df = operations(df) |
| |
| self.assertTrue(df.equals(cdf)) |
| |
| def test_basic_capture(self): |
| def operations(df): |
| df['c'] = df.b + df['a'] * 7 |
| # somehow swallows pandas UserWarning when `df.c = df.b + df['a'] * 7` |
| return df |
| |
| self.compare_capture_and_eager(operations) |
| |
| |
| @skipIf(True, "Fix DataFramePipes Tests") |
| class TestDataFramesPipes(TestCase): |
| """ |
| Most of test will fail if pandas instaled, but no dill available. |
| Need to rework them to avoid multiple skips. |
| """ |
| |
| def _get_datapipe(self, range=10, dataframe_size=7): |
| return NumbersDataset(range) \ |
| .map(lambda i: (i, i % 3)) |
| |
| def _get_dataframes_pipe(self, range=10, dataframe_size=7): |
| return NumbersDataset(range) \ |
| .map(lambda i: (i, i % 3)) \ |
| ._to_dataframes_pipe( |
| columns=['i', 'j'], |
| dataframe_size=dataframe_size) |
| |
| @skipIfNoDataFrames |
| @skipIfNoDill # TODO(VitalyFedyunin): Decouple tests from dill by avoiding lambdas in map |
| def test_capture(self): |
| dp_numbers = self._get_datapipe().map(lambda x: (x[0], x[1], x[1] + 3 * x[0])) |
| df_numbers = self._get_dataframes_pipe() |
| df_numbers['k'] = df_numbers['j'] + df_numbers.i * 3 |
| self.assertEqual(list(dp_numbers), list(df_numbers)) |
| |
| @skipIfNoDataFrames |
| @skipIfNoDill |
| def test_shuffle(self): |
| # With non-zero (but extremely low) probability (when shuffle do nothing), |
| # this test fails, so feel free to restart |
| df_numbers = self._get_dataframes_pipe(range=1000).shuffle() |
| dp_numbers = self._get_datapipe(range=1000) |
| df_result = [tuple(item) for item in df_numbers] |
| self.assertNotEqual(list(dp_numbers), df_result) |
| self.assertEqual(list(dp_numbers), sorted(df_result)) |
| |
| @skipIfNoDataFrames |
| @skipIfNoDill |
| def test_batch(self): |
| df_numbers = self._get_dataframes_pipe(range=100).batch(8) |
| df_numbers_list = list(df_numbers) |
| last_batch = df_numbers_list[-1] |
| self.assertEqual(4, len(last_batch)) |
| unpacked_batch = [tuple(row) for row in last_batch] |
| self.assertEqual([(96, 0), (97, 1), (98, 2), (99, 0)], unpacked_batch) |
| |
| @skipIfNoDataFrames |
| @skipIfNoDill |
| def test_unbatch(self): |
| df_numbers = self._get_dataframes_pipe(range=100).batch(8).batch(3) |
| dp_numbers = self._get_datapipe(range=100) |
| self.assertEqual(list(dp_numbers), list(df_numbers.unbatch(2))) |
| |
| @skipIfNoDataFrames |
| @skipIfNoDill |
| def test_filter(self): |
| df_numbers = self._get_dataframes_pipe(range=10).filter(lambda x: x.i > 5) |
| self.assertEqual([(6, 0), (7, 1), (8, 2), (9, 0)], list(df_numbers)) |
| |
| |
| class IDP_NoLen(IterDataPipe): |
| def __init__(self, input_dp): |
| super().__init__() |
| self.input_dp = input_dp |
| |
| # Prevent in-place modification |
| def __iter__(self): |
| input_dp = self.input_dp if isinstance(self.input_dp, IterDataPipe) else copy.deepcopy(self.input_dp) |
| for i in input_dp: |
| yield i |
| |
| |
| def _fake_fn(data): |
| return data |
| |
| |
| def _fake_add(constant, data): |
| return constant + data |
| |
| |
| def _fake_filter_fn(data): |
| return data >= 5 |
| |
| |
| def _fake_filter_fn_constant(constant, data): |
| return data >= constant |
| |
| |
| def _worker_init_fn(worker_id): |
| random.seed(123) |
| |
| |
| def _mul_10(x): |
| return x * 10 |
| |
| |
| def _mod_3_test(x): |
| return x % 3 == 1 |
| |
| |
| class TestFunctionalIterDataPipe(TestCase): |
| |
| def _serialization_test_helper(self, datapipe, use_dill): |
| if use_dill: |
| serialized_dp = dill.dumps(datapipe) |
| deserialized_dp = dill.loads(serialized_dp) |
| else: |
| serialized_dp = pickle.dumps(datapipe) |
| deserialized_dp = pickle.loads(serialized_dp) |
| try: |
| self.assertEqual(list(datapipe), list(deserialized_dp)) |
| except AssertionError as e: |
| print(f"{datapipe} is failing.") |
| raise e |
| |
| def _serialization_test_for_single_dp(self, dp, use_dill=False): |
| # 1. Testing for serialization before any iteration starts |
| self._serialization_test_helper(dp, use_dill) |
| # 2. Testing for serialization after DataPipe is partially read |
| it = iter(dp) |
| _ = next(it) |
| self._serialization_test_helper(dp, use_dill) |
| # 3. Testing for serialization after DataPipe is fully read |
| _ = list(it) |
| self._serialization_test_helper(dp, use_dill) |
| |
| def _serialization_test_for_dp_with_children(self, dp1, dp2, use_dill=False): |
| # 1. Testing for serialization before any iteration starts |
| self._serialization_test_helper(dp1, use_dill) |
| self._serialization_test_helper(dp2, use_dill) |
| # 2. Testing for serialization after DataPipe is partially read |
| it1, it2 = iter(dp1), iter(dp2) |
| _, _ = next(it1), next(it2) |
| self._serialization_test_helper(dp1, use_dill) |
| self._serialization_test_helper(dp2, use_dill) |
| # 2.5. Testing for serialization after one child DataPipe is fully read |
| # (Only for DataPipes with children DataPipes) |
| _ = list(it1) # fully read one child |
| self._serialization_test_helper(dp1, use_dill) |
| self._serialization_test_helper(dp2, use_dill) |
| # 3. Testing for serialization after DataPipe is fully read |
| _ = list(it2) # fully read the other child |
| self._serialization_test_helper(dp1, use_dill) |
| self._serialization_test_helper(dp2, use_dill) |
| |
| def test_serializable(self): |
| picklable_datapipes: List = [ |
| (dp.iter.Batcher, None, (3, True,), {}), |
| (dp.iter.Collator, None, (_fake_fn,), {}), |
| (dp.iter.Concater, None, (dp.iter.IterableWrapper(range(5)),), {}), |
| (dp.iter.Demultiplexer, None, (2, _fake_filter_fn), {}), |
| (dp.iter.FileLister, ".", (), {}), |
| (dp.iter.FileOpener, None, (), {}), |
| (dp.iter.Filter, None, (_fake_filter_fn,), {}), |
| (dp.iter.Filter, None, (partial(_fake_filter_fn_constant, 5),), {}), |
| (dp.iter.Forker, None, (2,), {}), |
| (dp.iter.Grouper, None, (_fake_filter_fn,), {"group_size": 2}), |
| (dp.iter.IterableWrapper, range(10), (), {}), |
| (dp.iter.Mapper, None, (_fake_fn,), {}), |
| (dp.iter.Mapper, None, (partial(_fake_add, 1),), {}), |
| (dp.iter.Multiplexer, None, (dp.iter.IterableWrapper(range(10)),), {}), |
| (dp.iter.Sampler, None, (), {}), |
| (dp.iter.Shuffler, dp.iter.IterableWrapper([0] * 10), (), {}), |
| (dp.iter.StreamReader, None, (), {}), |
| (dp.iter.UnBatcher, None, (0,), {}), |
| (dp.iter.Zipper, None, (dp.iter.IterableWrapper(range(10)),), {}), |
| ] |
| # Skipping comparison for these DataPipes |
| dp_skip_comparison = {dp.iter.FileOpener, dp.iter.StreamReader} |
| # These DataPipes produce multiple DataPipes as outputs and those should be compared |
| dp_compare_children = {dp.iter.Demultiplexer, dp.iter.Forker} |
| |
| for dpipe, custom_input, dp_args, dp_kwargs in picklable_datapipes: |
| if custom_input is None: |
| custom_input = dp.iter.IterableWrapper(range(10)) |
| if dpipe in dp_skip_comparison: # Merely make sure they are picklable and loadable (no value comparison) |
| datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| serialized_dp = pickle.dumps(datapipe) |
| _ = pickle.loads(serialized_dp) |
| elif dpipe in dp_compare_children: # DataPipes that have children |
| dp1, dp2 = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self._serialization_test_for_dp_with_children(dp1, dp2) |
| else: # Single DataPipe that requires comparison |
| datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self._serialization_test_for_single_dp(datapipe) |
| |
| def test_serializable_with_dill(self): |
| """Only for DataPipes that take in a function as argument""" |
| input_dp = dp.iter.IterableWrapper(range(10)) |
| unpicklable_datapipes: List[Tuple[Type[IterDataPipe], Tuple, Dict[str, Any]]] = [ |
| (dp.iter.Collator, (lambda x: x,), {}), |
| (dp.iter.Demultiplexer, (2, lambda x: x % 2,), {}), |
| (dp.iter.Filter, (lambda x: x >= 5,), {}), |
| (dp.iter.Grouper, (lambda x: x >= 5,), {}), |
| (dp.iter.Mapper, (lambda x: x,), {}), |
| ] |
| dp_compare_children = {dp.iter.Demultiplexer} |
| if HAS_DILL: |
| for dpipe, dp_args, dp_kwargs in unpicklable_datapipes: |
| if dpipe in dp_compare_children: |
| dp1, dp2 = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self._serialization_test_for_dp_with_children(dp1, dp2, use_dill=True) |
| else: |
| datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self._serialization_test_for_single_dp(datapipe, use_dill=True) |
| else: |
| for dpipe, dp_args, dp_kwargs in unpicklable_datapipes: |
| with warnings.catch_warnings(record=True) as wa: |
| datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"^Lambda function is not supported for pickle") |
| with self.assertRaises(AttributeError): |
| p = pickle.dumps(datapipe) |
| |
| def test_iterable_wrapper_datapipe(self): |
| |
| input_ls = list(range(10)) |
| input_dp = dp.iter.IterableWrapper(input_ls) |
| |
| # Functional Test: values are unchanged and in the same order |
| self.assertEqual(input_ls, list(input_dp)) |
| |
| # Functional Test: deep copy by default when an iterator is initialized (first element is read) |
| it = iter(input_dp) |
| self.assertEqual(0, next(it)) # The deep copy only happens when the first element is read |
| input_ls.append(50) |
| self.assertEqual(list(range(1, 10)), list(it)) |
| |
| # Functional Test: shallow copy |
| input_ls2 = [1, 2, 3] |
| input_dp_shallow = dp.iter.IterableWrapper(input_ls2, deepcopy=False) |
| input_ls2.append(10) |
| self.assertEqual([1, 2, 3, 10], list(input_dp_shallow)) |
| |
| # Reset Test: reset the DataPipe |
| input_ls = list(range(10)) |
| input_dp = dp.iter.IterableWrapper(input_ls) |
| n_elements_before_reset = 5 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(input_dp, n_elements_before_reset) |
| self.assertEqual(input_ls[:n_elements_before_reset], res_before_reset) |
| self.assertEqual(input_ls, res_after_reset) |
| |
| # __len__ Test: inherits length from sequence |
| self.assertEqual(len(input_ls), len(input_dp)) |
| |
| def test_concat_iterdatapipe(self): |
| input_dp1 = dp.iter.IterableWrapper(range(10)) |
| input_dp2 = dp.iter.IterableWrapper(range(5)) |
| |
| # Functional Test: Raises exception for empty input |
| with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"): |
| dp.iter.Concater() |
| |
| # Functional Test: Raises exception for non-IterDataPipe input |
| with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `IterDataPipe`"): |
| dp.iter.Concater(input_dp1, ()) # type: ignore[arg-type] |
| |
| # Functional Test: Concatenate DataPipes as expected |
| concat_dp = input_dp1.concat(input_dp2) |
| self.assertEqual(len(concat_dp), 15) |
| self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) |
| |
| # Reset Test: reset the DataPipe |
| n_elements_before_reset = 5 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(concat_dp, n_elements_before_reset) |
| self.assertEqual(list(range(5)), res_before_reset) |
| self.assertEqual(list(range(10)) + list(range(5)), res_after_reset) |
| |
| # __len__ Test: inherits length from source DataPipe |
| input_dp_nl = IDP_NoLen(range(5)) |
| concat_dp = input_dp1.concat(input_dp_nl) |
| with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): |
| len(concat_dp) |
| |
| self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) |
| |
| def test_fork_iterdatapipe(self): |
| input_dp = dp.iter.IterableWrapper(range(10)) |
| |
| with self.assertRaises(ValueError): |
| input_dp.fork(num_instances=0) |
| |
| dp0 = input_dp.fork(num_instances=1) |
| self.assertEqual(dp0, input_dp) |
| |
| # Functional Test: making sure all child DataPipe shares the same reference |
| dp1, dp2, dp3 = input_dp.fork(num_instances=3) |
| self.assertTrue(all(n1 is n2 and n1 is n3 for n1, n2, n3 in zip(dp1, dp2, dp3))) |
| |
| # Functional Test: one child DataPipe yields all value at a time |
| output1, output2, output3 = list(dp1), list(dp2), list(dp3) |
| self.assertEqual(list(range(10)), output1) |
| self.assertEqual(list(range(10)), output2) |
| self.assertEqual(list(range(10)), output3) |
| |
| # Functional Test: two child DataPipes yield value together |
| dp1, dp2 = input_dp.fork(num_instances=2) |
| output = [] |
| for n1, n2 in zip(dp1, dp2): |
| output.append((n1, n2)) |
| self.assertEqual([(i, i) for i in range(10)], output) |
| |
| # Functional Test: one child DataPipe yields all value first, but buffer_size = 5 being too small |
| dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=5) |
| it1 = iter(dp1) |
| for _ in range(5): |
| next(it1) |
| with self.assertRaises(BufferError): |
| next(it1) |
| with self.assertRaises(BufferError): |
| list(dp2) |
| |
| # Functional Test: one child DataPipe yields all value first with unlimited buffer |
| with warnings.catch_warnings(record=True) as wa: |
| dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=-1) |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Unlimited buffer size is set") |
| l1, l2 = list(dp1), list(dp2) |
| for d1, d2 in zip(l1, l2): |
| self.assertEqual(d1, d2) |
| |
| # Functional Test: two child DataPipes yield value together with buffer size 1 |
| dp1, dp2 = input_dp.fork(num_instances=2, buffer_size=1) |
| output = [] |
| for n1, n2 in zip(dp1, dp2): |
| output.append((n1, n2)) |
| self.assertEqual([(i, i) for i in range(10)], output) |
| |
| # Functional Test: make sure logic related to slowest_ptr is working properly |
| dp1, dp2, dp3 = input_dp.fork(num_instances=3) |
| output1, output2, output3 = [], [], [] |
| for i, (n1, n2) in enumerate(zip(dp1, dp2)): |
| output1.append(n1) |
| output2.append(n2) |
| if i == 4: # yield all of dp3 when halfway through dp1, dp2 |
| output3 = list(dp3) |
| break |
| self.assertEqual(list(range(5)), output1) |
| self.assertEqual(list(range(5)), output2) |
| self.assertEqual(list(range(10)), output3) |
| |
| # Reset Test: DataPipe doesn't reset if this pipe hasn't been read |
| dp1, dp2 = input_dp.fork(num_instances=2) |
| i1, i2 = iter(dp1), iter(dp2) |
| output2 = [] |
| for i, n2 in enumerate(i2): |
| output2.append(n2) |
| if i == 4: |
| i1 = iter(dp1) # Doesn't reset because i1 hasn't been read |
| self.assertEqual(list(range(10)), output2) |
| |
| # Reset Test: DataPipe reset when some of it have been read |
| dp1, dp2 = input_dp.fork(num_instances=2) |
| i1, i2 = iter(dp1), iter(dp2) |
| output1, output2 = [], [] |
| for i, (n1, n2) in enumerate(zip(i1, i2)): |
| output1.append(n1) |
| output2.append(n2) |
| if i == 4: |
| with warnings.catch_warnings(record=True) as wa: |
| i1 = iter(dp1) # Reset both all child DataPipe |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") |
| self.assertEqual(list(range(5)) + list(range(10)), output1) |
| self.assertEqual(list(range(5)) + list(range(10)), output2) |
| |
| # Reset Test: DataPipe reset, even when some other child DataPipes are not read |
| dp1, dp2, dp3 = input_dp.fork(num_instances=3) |
| output1, output2 = list(dp1), list(dp2) |
| self.assertEqual(list(range(10)), output1) |
| self.assertEqual(list(range(10)), output2) |
| with warnings.catch_warnings(record=True) as wa: |
| self.assertEqual(list(range(10)), list(dp1)) # Resets even though dp3 has not been read |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") |
| output3 = [] |
| for i, n3 in enumerate(dp3): |
| output3.append(n3) |
| if i == 4: |
| with warnings.catch_warnings(record=True) as wa: |
| output1 = list(dp1) # Resets even though dp3 is only partially read |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") |
| self.assertEqual(list(range(5)), output3) |
| self.assertEqual(list(range(10)), output1) |
| break |
| self.assertEqual(list(range(10)), list(dp3)) # dp3 has to read from the start again |
| |
| # __len__ Test: Each DataPipe inherits the source datapipe's length |
| dp1, dp2, dp3 = input_dp.fork(num_instances=3) |
| self.assertEqual(len(input_dp), len(dp1)) |
| self.assertEqual(len(input_dp), len(dp2)) |
| self.assertEqual(len(input_dp), len(dp3)) |
| |
| # Pickle Test: |
| dp1, dp2, dp3 = input_dp.fork(num_instances=3) |
| traverse(dp1) # This should not raise any error |
| for _ in zip(dp1, dp2, dp3): |
| pass |
| traverse(dp2) # This should not raise any error either |
| |
| def test_mux_iterdatapipe(self): |
| |
| # Functional Test: Elements are yielded one at a time from each DataPipe, until they are all exhausted |
| input_dp1 = dp.iter.IterableWrapper(range(4)) |
| input_dp2 = dp.iter.IterableWrapper(range(4, 8)) |
| input_dp3 = dp.iter.IterableWrapper(range(8, 12)) |
| output_dp = input_dp1.mux(input_dp2, input_dp3) |
| expected_output = [0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11] |
| self.assertEqual(len(expected_output), len(output_dp)) |
| self.assertEqual(expected_output, list(output_dp)) |
| |
| # Functional Test: Uneven input Data Pipes |
| input_dp1 = dp.iter.IterableWrapper([1, 2, 3, 4]) |
| input_dp2 = dp.iter.IterableWrapper([10]) |
| input_dp3 = dp.iter.IterableWrapper([100, 200, 300]) |
| output_dp = input_dp1.mux(input_dp2, input_dp3) |
| expected_output = [1, 10, 100, 2, 200, 3, 300, 4] |
| self.assertEqual(len(expected_output), len(output_dp)) |
| self.assertEqual(expected_output, list(output_dp)) |
| |
| # Functional Test: Empty Data Pipe |
| input_dp1 = dp.iter.IterableWrapper([0, 1, 2, 3]) |
| input_dp2 = dp.iter.IterableWrapper([]) |
| output_dp = input_dp1.mux(input_dp2) |
| self.assertEqual(len(input_dp1), len(output_dp)) |
| self.assertEqual(list(input_dp1), list(output_dp)) |
| |
| # __len__ Test: raises TypeError when __len__ is called and an input doesn't have __len__ |
| input_dp1 = dp.iter.IterableWrapper(range(10)) |
| input_dp_no_len = IDP_NoLen(range(10)) |
| output_dp = input_dp1.mux(input_dp_no_len) |
| with self.assertRaises(TypeError): |
| len(output_dp) |
| |
| def test_demux_iterdatapipe(self): |
| input_dp = dp.iter.IterableWrapper(range(10)) |
| |
| with self.assertRaises(ValueError): |
| input_dp.demux(num_instances=0, classifier_fn=lambda x: 0) |
| |
| # Functional Test: split into 2 DataPipes and output them one at a time |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) |
| output1, output2 = list(dp1), list(dp2) |
| self.assertEqual(list(range(0, 10, 2)), output1) |
| self.assertEqual(list(range(1, 10, 2)), output2) |
| |
| # Functional Test: split into 2 DataPipes and output them together |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) |
| output = [] |
| for n1, n2 in zip(dp1, dp2): |
| output.append((n1, n2)) |
| self.assertEqual([(i, i + 1) for i in range(0, 10, 2)], output) |
| |
| # Functional Test: values of the same classification are lumped together, and buffer_size = 3 being too small |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: 0 if x >= 5 else 1, buffer_size=4) |
| it1 = iter(dp1) |
| with self.assertRaises(BufferError): |
| next(it1) # Buffer raises because first 5 elements all belong to the a different child |
| with self.assertRaises(BufferError): |
| list(dp2) |
| |
| # Functional Test: values of the same classification are lumped together, and buffer_size = 5 is just enough |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: 0 if x >= 5 else 1, buffer_size=5) |
| output1, output2 = list(dp1), list(dp2) |
| self.assertEqual(list(range(5, 10)), output1) |
| self.assertEqual(list(range(0, 5)), output2) |
| |
| # Functional Test: values of the same classification are lumped together, and unlimited buffer |
| with warnings.catch_warnings(record=True) as wa: |
| dp1, dp2 = input_dp.demux( |
| num_instances=2, |
| classifier_fn=lambda x: 0 if x >= 5 else 1, |
| buffer_size=-1 |
| ) |
| exp_l = 1 if HAS_DILL else 2 |
| self.assertEqual(len(wa), exp_l) |
| self.assertRegex(str(wa[-1].message), r"Unlimited buffer size is set") |
| output1, output2 = list(dp1), list(dp2) |
| self.assertEqual(list(range(5, 10)), output1) |
| self.assertEqual(list(range(0, 5)), output2) |
| |
| # Functional Test: classifier returns a value outside of [0, num_instance - 1] |
| dp0 = input_dp.demux(num_instances=1, classifier_fn=lambda x: x % 2) |
| it = iter(dp0[0]) |
| with self.assertRaises(ValueError): |
| next(it) |
| next(it) |
| |
| # Reset Test: DataPipe doesn't reset when it has not been read |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) |
| i1 = iter(dp1) |
| output2 = [] |
| i = 0 |
| for i, n2 in enumerate(dp2): |
| output2.append(n2) |
| if i == 4: |
| i1 = iter(dp1) |
| self.assertEqual(list(range(1, 10, 2)), output2) |
| |
| # Reset Test: DataPipe reset when some of it has been read |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) |
| output1, output2 = [], [] |
| for n1, n2 in zip(dp1, dp2): |
| output1.append(n1) |
| output2.append(n2) |
| if n1 == 4: |
| break |
| with warnings.catch_warnings(record=True) as wa: |
| i1 = iter(dp1) # Reset all child DataPipes |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") |
| for n1, n2 in zip(dp1, dp2): |
| output1.append(n1) |
| output2.append(n2) |
| self.assertEqual([0, 2, 4] + list(range(0, 10, 2)), output1) |
| self.assertEqual([1, 3, 5] + list(range(1, 10, 2)), output2) |
| |
| # Reset Test: DataPipe reset, even when not all child DataPipes are exhausted |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) |
| output1 = list(dp1) |
| self.assertEqual(list(range(0, 10, 2)), output1) |
| with warnings.catch_warnings(record=True) as wa: |
| self.assertEqual(list(range(0, 10, 2)), list(dp1)) # Reset even when dp2 is not read |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") |
| output2 = [] |
| for i, n2 in enumerate(dp2): |
| output2.append(n2) |
| if i == 1: |
| self.assertEqual(list(range(1, 5, 2)), output2) |
| with warnings.catch_warnings(record=True) as wa: |
| self.assertEqual(list(range(0, 10, 2)), list(dp1)) # Can reset even when dp2 is partially read |
| self.assertEqual(len(wa), 1) |
| self.assertRegex(str(wa[0].message), r"Some child DataPipes are not exhausted") |
| break |
| output2 = list(dp2) # output2 has to read from beginning again |
| self.assertEqual(list(range(1, 10, 2)), output2) |
| |
| # Functional Test: drop_none = True |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2 if x % 5 != 0 else None, |
| drop_none=True) |
| self.assertEqual([2, 4, 6, 8], list(dp1)) |
| self.assertEqual([1, 3, 7, 9], list(dp2)) |
| |
| # Functional Test: drop_none = False |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2 if x % 5 != 0 else None, |
| drop_none=False) |
| it1 = iter(dp1) |
| with self.assertRaises(ValueError): |
| next(it1) |
| |
| # __len__ Test: __len__ not implemented |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) |
| with self.assertRaises(TypeError): |
| len(dp1) # It is not implemented as we do not know length for each child in advance |
| with self.assertRaises(TypeError): |
| len(dp2) |
| |
| # Pickle Test: |
| dp1, dp2 = input_dp.demux(num_instances=2, classifier_fn=odd_or_even) |
| traverse(dp1) # This should not raise any error |
| for _ in zip(dp1, dp2): |
| pass |
| traverse(dp2) # This should not raise any error either |
| |
| def test_map_iterdatapipe(self): |
| input_dp = dp.iter.IterableWrapper(range(10)) |
| |
| def fn(item, dtype=torch.float, *, sum=False): |
| data = torch.tensor(item, dtype=dtype) |
| return data if not sum else data.sum() |
| |
| # Functional Test: apply to each element correctly |
| map_dp = input_dp.map(fn) |
| self.assertEqual(len(input_dp), len(map_dp)) |
| for x, y in zip(map_dp, input_dp): |
| self.assertEqual(x, torch.tensor(y, dtype=torch.float)) |
| |
| # Functional Test: works with partial function |
| map_dp = input_dp.map(partial(fn, dtype=torch.int, sum=True)) |
| for x, y in zip(map_dp, input_dp): |
| self.assertEqual(x, torch.tensor(y, dtype=torch.int).sum()) |
| |
| # __len__ Test: inherits length from source DataPipe |
| self.assertEqual(len(input_dp), len(map_dp)) |
| |
| input_dp_nl = IDP_NoLen(range(10)) |
| map_dp_nl = input_dp_nl.map(lambda x: x) |
| for x, y in zip(map_dp_nl, input_dp_nl): |
| self.assertEqual(x, torch.tensor(y, dtype=torch.float)) |
| |
| # __len__ Test: inherits length from source DataPipe - raises error when invalid |
| with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): |
| len(map_dp_nl) |
| |
| # Reset Test: DataPipe resets properly |
| n_elements_before_reset = 5 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(map_dp, n_elements_before_reset) |
| self.assertEqual(list(range(n_elements_before_reset)), res_before_reset) |
| self.assertEqual(list(range(10)), res_after_reset) |
| |
| @suppress_warnings # Suppress warning for lambda fn |
| def test_map_tuple_list_with_col_iterdatapipe(self): |
| def fn_11(d): |
| return -d |
| |
| def fn_1n(d): |
| return -d, d |
| |
| def fn_n1(d0, d1): |
| return d0 + d1 |
| |
| def fn_nn(d0, d1): |
| return -d0, -d1, d0 + d1 |
| |
| def _helper(ref_fn, fn, input_col=None, output_col=None): |
| for constr in (list, tuple): |
| datapipe = dp.iter.IterableWrapper([constr((0, 1, 2)), constr((3, 4, 5)), constr((6, 7, 8))]) |
| res_dp = datapipe.map(fn, input_col, output_col) |
| ref_dp = datapipe.map(ref_fn) |
| self.assertEqual(list(res_dp), list(ref_dp)) |
| # Reset |
| self.assertEqual(list(res_dp), list(ref_dp)) |
| |
| # Replacing with one input column and default output column |
| _helper(lambda data: (data[0], -data[1], data[2]), fn_11, 1) |
| _helper(lambda data: (data[0], (-data[1], data[1]), data[2]), fn_1n, 1) |
| # The index of input column is out of range |
| with self.assertRaises(IndexError): |
| _helper(None, fn_1n, 3) |
| # Unmatched input columns with fn arguments |
| with self.assertRaises(TypeError): |
| _helper(None, fn_n1, 1) |
| # Replacing with multiple input columns and default output column (the left-most input column) |
| _helper(lambda data: (data[1], data[2] + data[0]), fn_n1, [2, 0]) |
| _helper(lambda data: (data[0], (-data[2], -data[1], data[2] + data[1])), fn_nn, [2, 1]) |
| |
| # output_col can only be specified when input_col is not None |
| with self.assertRaises(ValueError): |
| _helper(None, fn_n1, None, 1) |
| # output_col can only be single-element list or tuple |
| with self.assertRaises(ValueError): |
| _helper(None, fn_n1, None, [0, 1]) |
| # Single-element list as output_col |
| _helper(lambda data: (-data[1], data[1], data[2]), fn_11, 1, [0]) |
| # Replacing with one input column and single specified output column |
| _helper(lambda data: (-data[1], data[1], data[2]), fn_11, 1, 0) |
| _helper(lambda data: (data[0], data[1], (-data[1], data[1])), fn_1n, 1, 2) |
| # The index of output column is out of range |
| with self.assertRaises(IndexError): |
| _helper(None, fn_1n, 1, 3) |
| _helper(lambda data: (data[0], data[0] + data[2], data[2]), fn_n1, [0, 2], 1) |
| _helper(lambda data: ((-data[1], -data[2], data[1] + data[2]), data[1], data[2]), fn_nn, [1, 2], 0) |
| |
| # Appending the output at the end |
| _helper(lambda data: (*data, -data[1]), fn_11, 1, -1) |
| _helper(lambda data: (*data, (-data[1], data[1])), fn_1n, 1, -1) |
| _helper(lambda data: (*data, data[0] + data[2]), fn_n1, [0, 2], -1) |
| _helper(lambda data: (*data, (-data[1], -data[2], data[1] + data[2])), fn_nn, [1, 2], -1) |
| |
| @suppress_warnings # Suppress warning for lambda fn |
| def test_map_dict_with_col_iterdatapipe(self): |
| def fn_11(d): |
| return -d |
| |
| def fn_1n(d): |
| return -d, d |
| |
| def fn_n1(d0, d1): |
| return d0 + d1 |
| |
| def fn_nn(d0, d1): |
| return -d0, -d1, d0 + d1 |
| |
| # Prevent modification in-place to support resetting |
| def _dict_update(data, newdata, remove_idx=None): |
| _data = dict(data) |
| _data.update(newdata) |
| if remove_idx: |
| for idx in remove_idx: |
| del _data[idx] |
| return _data |
| |
| def _helper(ref_fn, fn, input_col=None, output_col=None): |
| datapipe = dp.iter.IterableWrapper( |
| [{"x": 0, "y": 1, "z": 2}, |
| {"x": 3, "y": 4, "z": 5}, |
| {"x": 6, "y": 7, "z": 8}] |
| ) |
| res_dp = datapipe.map(fn, input_col, output_col) |
| ref_dp = datapipe.map(ref_fn) |
| self.assertEqual(list(res_dp), list(ref_dp)) |
| # Reset |
| self.assertEqual(list(res_dp), list(ref_dp)) |
| |
| # Replacing with one input column and default output column |
| _helper(lambda data: _dict_update(data, {"y": -data["y"]}), fn_11, "y") |
| _helper(lambda data: _dict_update(data, {"y": (-data["y"], data["y"])}), fn_1n, "y") |
| # The key of input column is not in dict |
| with self.assertRaises(KeyError): |
| _helper(None, fn_1n, "a") |
| # Unmatched input columns with fn arguments |
| with self.assertRaises(TypeError): |
| _helper(None, fn_n1, "y") |
| # Replacing with multiple input columns and default output column (the left-most input column) |
| _helper(lambda data: _dict_update(data, {"z": data["x"] + data["z"]}, ["x"]), fn_n1, ["z", "x"]) |
| _helper(lambda data: _dict_update( |
| data, {"z": (-data["z"], -data["y"], data["y"] + data["z"])}, ["y"]), fn_nn, ["z", "y"]) |
| |
| # output_col can only be specified when input_col is not None |
| with self.assertRaises(ValueError): |
| _helper(None, fn_n1, None, "x") |
| # output_col can only be single-element list or tuple |
| with self.assertRaises(ValueError): |
| _helper(None, fn_n1, None, ["x", "y"]) |
| # Single-element list as output_col |
| _helper(lambda data: _dict_update(data, {"x": -data["y"]}), fn_11, "y", ["x"]) |
| # Replacing with one input column and single specified output column |
| _helper(lambda data: _dict_update(data, {"x": -data["y"]}), fn_11, "y", "x") |
| _helper(lambda data: _dict_update(data, {"z": (-data["y"], data["y"])}), fn_1n, "y", "z") |
| _helper(lambda data: _dict_update(data, {"y": data["x"] + data["z"]}), fn_n1, ["x", "z"], "y") |
| _helper(lambda data: _dict_update( |
| data, {"x": (-data["y"], -data["z"], data["y"] + data["z"])}), fn_nn, ["y", "z"], "x") |
| |
| # Adding new key to dict for the output |
| _helper(lambda data: _dict_update(data, {"a": -data["y"]}), fn_11, "y", "a") |
| _helper(lambda data: _dict_update(data, {"a": (-data["y"], data["y"])}), fn_1n, "y", "a") |
| _helper(lambda data: _dict_update(data, {"a": data["x"] + data["z"]}), fn_n1, ["x", "z"], "a") |
| _helper(lambda data: _dict_update( |
| data, {"a": (-data["y"], -data["z"], data["y"] + data["z"])}), fn_nn, ["y", "z"], "a") |
| |
| def test_collate_iterdatapipe(self): |
| arrs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] |
| input_dp = dp.iter.IterableWrapper(arrs) |
| |
| def _collate_fn(batch, default_type=torch.float): |
| return torch.tensor(sum(batch), dtype=default_type) |
| |
| # Functional Test: defaults to the default collate function when a custom one is not specified |
| collate_dp = input_dp.collate() |
| for x, y in zip(input_dp, collate_dp): |
| self.assertEqual(torch.tensor(x), y) |
| |
| # Functional Test: custom collate function |
| collate_dp = input_dp.collate(collate_fn=_collate_fn) |
| for x, y in zip(input_dp, collate_dp): |
| self.assertEqual(torch.tensor(sum(x), dtype=torch.float), y) |
| |
| # Functional Test: custom, partial collate function |
| collate_dp = input_dp.collate(partial(_collate_fn, default_type=torch.int)) |
| for x, y in zip(input_dp, collate_dp): |
| self.assertEqual(torch.tensor(sum(x), dtype=torch.int), y) |
| |
| # Reset Test: reset the DataPipe and results are still correct |
| n_elements_before_reset = 1 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(collate_dp, n_elements_before_reset) |
| self.assertEqual([torch.tensor(6, dtype=torch.int)], res_before_reset) |
| for x, y in zip(input_dp, res_after_reset): |
| self.assertEqual(torch.tensor(sum(x), dtype=torch.int), y) |
| |
| # __len__ Test: __len__ is inherited |
| self.assertEqual(len(input_dp), len(collate_dp)) |
| |
| # __len__ Test: verify that it has no valid __len__ when the source doesn't have it |
| input_dp_nl = IDP_NoLen(arrs) |
| collate_dp_nl = input_dp_nl.collate() |
| with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): |
| len(collate_dp_nl) |
| for x, y in zip(input_dp_nl, collate_dp_nl): |
| self.assertEqual(torch.tensor(x), y) |
| |
| def test_batch_iterdatapipe(self): |
| arrs = list(range(10)) |
| input_dp = dp.iter.IterableWrapper(arrs) |
| |
| # Functional Test: raise error when input argument `batch_size = 0` |
| with self.assertRaises(AssertionError): |
| input_dp.batch(batch_size=0) |
| |
| # Functional Test: by default, do not drop the last batch |
| bs = 3 |
| batch_dp = input_dp.batch(batch_size=bs) |
| self.assertEqual(len(batch_dp), 4) |
| for i, batch in enumerate(batch_dp): |
| self.assertEqual(len(batch), 1 if i == 3 else bs) |
| self.assertEqual(batch, arrs[i * bs: i * bs + len(batch)]) |
| |
| # Functional Test: Drop the last batch when specified |
| bs = 4 |
| batch_dp = input_dp.batch(batch_size=bs, drop_last=True) |
| for i, batch in enumerate(batch_dp): |
| self.assertEqual(batch, arrs[i * bs: i * bs + len(batch)]) |
| |
| # __len__ test: verifying that the overall length and of each batch is correct |
| for i, batch in enumerate(batch_dp): |
| self.assertEqual(len(batch), bs) |
| |
| # __len__ Test: the length is missing if the source DataPipe doesn't have length |
| self.assertEqual(len(batch_dp), 2) |
| input_dp_nl = IDP_NoLen(range(10)) |
| batch_dp_nl = input_dp_nl.batch(batch_size=2) |
| with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): |
| len(batch_dp_nl) |
| |
| # Reset Test: Ensures that the DataPipe can properly reset |
| n_elements_before_reset = 1 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(batch_dp, n_elements_before_reset) |
| self.assertEqual([[0, 1, 2, 3]], res_before_reset) |
| self.assertEqual([[0, 1, 2, 3], [4, 5, 6, 7]], res_after_reset) |
| |
| def test_unbatch_iterdatapipe(self): |
| target_length = 6 |
| prebatch_dp = dp.iter.IterableWrapper(range(target_length)) |
| |
| # Functional Test: Unbatch DataPipe should be the same as pre-batch DataPipe |
| input_dp = prebatch_dp.batch(3) |
| unbatch_dp = input_dp.unbatch() |
| self.assertEqual(len(list(unbatch_dp)), target_length) # __len__ is as expected |
| for i, res in zip(prebatch_dp, unbatch_dp): |
| self.assertEqual(i, res) |
| |
| # Functional Test: unbatch works for an input with nested levels |
| input_dp = dp.iter.IterableWrapper([[0, 1, 2], [3, 4, 5]]) |
| unbatch_dp = input_dp.unbatch() |
| self.assertEqual(len(list(unbatch_dp)), target_length) |
| for i, res in zip(prebatch_dp, unbatch_dp): |
| self.assertEqual(i, res) |
| |
| input_dp = dp.iter.IterableWrapper([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) |
| |
| # Functional Test: unbatch works for an input with nested levels |
| unbatch_dp = input_dp.unbatch() |
| expected_dp = [[0, 1], [2, 3], [4, 5], [6, 7]] |
| self.assertEqual(len(list(unbatch_dp)), 4) |
| for i, res in zip(expected_dp, unbatch_dp): |
| self.assertEqual(i, res) |
| |
| # Functional Test: unbatching multiple levels at the same time |
| unbatch_dp = input_dp.unbatch(unbatch_level=2) |
| expected_dp2 = [0, 1, 2, 3, 4, 5, 6, 7] |
| self.assertEqual(len(list(unbatch_dp)), 8) |
| for i, res in zip(expected_dp2, unbatch_dp): |
| self.assertEqual(i, res) |
| |
| # Functional Test: unbatching all levels at the same time |
| unbatch_dp = input_dp.unbatch(unbatch_level=-1) |
| self.assertEqual(len(list(unbatch_dp)), 8) |
| for i, res in zip(expected_dp2, unbatch_dp): |
| self.assertEqual(i, res) |
| |
| # Functional Test: raises error when input unbatch_level is less than -1 |
| input_dp = dp.iter.IterableWrapper([[0, 1, 2], [3, 4, 5]]) |
| with self.assertRaises(ValueError): |
| unbatch_dp = input_dp.unbatch(unbatch_level=-2) |
| for i in unbatch_dp: |
| print(i) |
| |
| # Functional Test: raises error when input unbatch_level is too high |
| with self.assertRaises(IndexError): |
| unbatch_dp = input_dp.unbatch(unbatch_level=5) |
| for i in unbatch_dp: |
| print(i) |
| |
| # Reset Test: unbatch_dp resets properly |
| input_dp = dp.iter.IterableWrapper([[0, 1, 2], [3, 4, 5]]) |
| unbatch_dp = input_dp.unbatch(unbatch_level=-1) |
| n_elements_before_reset = 3 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(unbatch_dp, n_elements_before_reset) |
| self.assertEqual([0, 1, 2], res_before_reset) |
| self.assertEqual([0, 1, 2, 3, 4, 5], res_after_reset) |
| |
| def test_filter_datapipe(self): |
| input_ds = dp.iter.IterableWrapper(range(10)) |
| |
| def _filter_fn(data, val): |
| return data >= val |
| |
| # Functional Test: filter works with partial function |
| filter_dp = input_ds.filter(partial(_filter_fn, val=5)) |
| self.assertEqual(list(filter_dp), list(range(5, 10))) |
| |
| def _non_bool_fn(data): |
| return 1 |
| |
| # Functional Test: filter function must return bool |
| filter_dp = input_ds.filter(filter_fn=_non_bool_fn) |
| with self.assertRaises(ValueError): |
| temp = list(filter_dp) |
| |
| # Funtional Test: Specify input_col |
| tuple_input_ds = dp.iter.IterableWrapper([(d - 1, d, d + 1) for d in range(10)]) |
| |
| # Single input_col |
| input_col_1_dp = tuple_input_ds.filter(partial(_filter_fn, val=5), input_col=1) |
| self.assertEqual(list(input_col_1_dp), [(d - 1, d, d + 1) for d in range(5, 10)]) |
| |
| # Multiple input_col |
| def _mul_filter_fn(a, b): |
| return a + b < 10 |
| |
| input_col_2_dp = tuple_input_ds.filter(_mul_filter_fn, input_col=[0, 2]) |
| self.assertEqual(list(input_col_2_dp), [(d - 1, d, d + 1) for d in range(5)]) |
| |
| # __len__ Test: DataPipe has no valid len |
| with self.assertRaisesRegex(TypeError, r"has no len"): |
| len(filter_dp) |
| |
| # Reset Test: DataPipe resets correctly |
| filter_dp = input_ds.filter(partial(_filter_fn, val=5)) |
| n_elements_before_reset = 3 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(filter_dp, n_elements_before_reset) |
| self.assertEqual(list(range(5, 10))[:n_elements_before_reset], res_before_reset) |
| self.assertEqual(list(range(5, 10)), res_after_reset) |
| |
| def test_sampler_iterdatapipe(self): |
| input_dp = dp.iter.IterableWrapper(range(10)) |
| # Default SequentialSampler |
| sampled_dp = dp.iter.Sampler(input_dp) # type: ignore[var-annotated] |
| self.assertEqual(len(sampled_dp), 10) |
| for i, x in enumerate(sampled_dp): |
| self.assertEqual(x, i) |
| |
| # RandomSampler |
| random_sampled_dp = dp.iter.Sampler(input_dp, sampler=RandomSampler, sampler_kwargs={ |
| 'replacement': True}) # type: ignore[var-annotated] # noqa: B950 |
| |
| # Requires `__len__` to build SamplerDataPipe |
| input_dp_nolen = IDP_NoLen(range(10)) |
| with self.assertRaises(AssertionError): |
| sampled_dp = dp.iter.Sampler(input_dp_nolen) |
| |
| def test_stream_reader_iterdatapipe(self): |
| from io import StringIO |
| |
| input_dp = dp.iter.IterableWrapper([("f1", StringIO("abcde")), ("f2", StringIO("bcdef"))]) |
| expected_res = ["abcde", "bcdef"] |
| |
| # Functional Test: Read full chunk |
| dp1 = input_dp.read_from_stream() |
| self.assertEqual([d[1] for d in dp1], expected_res) |
| |
| # Functional Test: Read full chunk |
| dp2 = input_dp.read_from_stream(chunk=1) |
| self.assertEqual([d[1] for d in dp2], [c for s in expected_res for c in s]) |
| |
| # `__len__` Test |
| with self.assertRaises(TypeError): |
| len(dp1) |
| |
| def test_shuffle_iterdatapipe(self): |
| exp = list(range(20)) |
| input_ds = dp.iter.IterableWrapper(exp) |
| |
| with self.assertRaises(AssertionError): |
| shuffle_dp = input_ds.shuffle(buffer_size=0) |
| |
| for bs in (5, 20, 25): |
| shuffle_dp = input_ds.shuffle(buffer_size=bs) |
| self.assertEqual(len(shuffle_dp), len(input_ds)) |
| |
| random.seed(123) |
| res = list(shuffle_dp) |
| self.assertEqual(sorted(res), exp) |
| |
| # Test Deterministic |
| for num_workers in (0, 1): |
| random.seed(123) |
| dl = DataLoader(shuffle_dp, num_workers=num_workers, worker_init_fn=_worker_init_fn, shuffle=True) |
| dl_res = list(dl) |
| self.assertEqual(res, dl_res) |
| |
| shuffle_dp_nl = IDP_NoLen(range(20)).shuffle(buffer_size=5) |
| with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): |
| len(shuffle_dp_nl) |
| |
| # Test: deactivate shuffling via set_shuffle |
| unshuffled_dp = input_ds.shuffle().set_shuffle(False) |
| self.assertEqual(list(unshuffled_dp), list(input_ds)) |
| |
| def test_zip_iterdatapipe(self): |
| |
| # Functional Test: raises TypeError when an input is not of type `IterDataPipe` |
| with self.assertRaises(TypeError): |
| dp.iter.Zipper(dp.iter.IterableWrapper(range(10)), list(range(10))) # type: ignore[arg-type] |
| |
| # Functional Test: raises TypeError when an input does not have valid length |
| zipped_dp = dp.iter.Zipper(dp.iter.IterableWrapper( |
| range(10)), IDP_NoLen(range(5))) # type: ignore[var-annotated] |
| with self.assertRaisesRegex(TypeError, r"instance doesn't have valid length$"): |
| len(zipped_dp) |
| |
| # Functional Test: zips the results properly |
| exp = list((i, i) for i in range(5)) |
| self.assertEqual(list(zipped_dp), exp) |
| |
| # Functional Test: zips the inputs properly even when lengths are different (zips to the shortest) |
| zipped_dp = dp.iter.Zipper(dp.iter.IterableWrapper(range(10)), dp.iter.IterableWrapper(range(5))) |
| |
| # __len__ Test: length matches the length of the shortest input |
| self.assertEqual(len(zipped_dp), 5) |
| |
| # Reset Test: |
| n_elements_before_reset = 3 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(zipped_dp, n_elements_before_reset) |
| self.assertEqual(list((i, i) for i in range(5))[:n_elements_before_reset], res_before_reset) |
| self.assertEqual(list((i, i) for i in range(5)), res_after_reset) |
| |
| |
| class TestFunctionalMapDataPipe(TestCase): |
| |
| def _serialization_test_helper(self, datapipe, use_dill): |
| if use_dill: |
| serialized_dp = dill.dumps(datapipe) |
| deserialized_dp = dill.loads(serialized_dp) |
| else: |
| serialized_dp = pickle.dumps(datapipe) |
| deserialized_dp = pickle.loads(serialized_dp) |
| try: |
| self.assertEqual(list(datapipe), list(deserialized_dp)) |
| except AssertionError as e: |
| print(f"{datapipe} is failing.") |
| raise e |
| |
| def _serialization_test_for_single_dp(self, dp, use_dill=False): |
| # 1. Testing for serialization before any iteration starts |
| self._serialization_test_helper(dp, use_dill) |
| # 2. Testing for serialization after DataPipe is partially read |
| it = iter(dp) |
| _ = next(it) |
| self._serialization_test_helper(dp, use_dill) |
| # 3. Testing for serialization after DataPipe is fully read |
| _ = list(it) |
| self._serialization_test_helper(dp, use_dill) |
| |
| def test_serializable(self): |
| picklable_datapipes: List = [ |
| (dp.map.Batcher, None, (2,), {}), |
| (dp.map.Concater, None, (dp.map.SequenceWrapper(range(10)),), {}), |
| (dp.map.Mapper, None, (), {}), |
| (dp.map.Mapper, None, (_fake_fn,), {}), |
| (dp.map.Mapper, None, (partial(_fake_add, 1),), {}), |
| (dp.map.SequenceWrapper, range(10), (), {}), |
| (dp.map.Shuffler, dp.map.SequenceWrapper([0] * 5), (), {}), |
| (dp.map.Zipper, None, (dp.map.SequenceWrapper(range(10)),), {}), |
| ] |
| for dpipe, custom_input, dp_args, dp_kwargs in picklable_datapipes: |
| if custom_input is None: |
| custom_input = dp.map.SequenceWrapper(range(10)) |
| datapipe = dpipe(custom_input, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self._serialization_test_for_single_dp(datapipe) |
| |
| def test_serializable_with_dill(self): |
| """Only for DataPipes that take in a function as argument""" |
| input_dp = dp.map.SequenceWrapper(range(10)) |
| unpicklable_datapipes: List[ |
| Tuple[Type[MapDataPipe], Tuple, Dict[str, Any]] |
| ] = [ |
| (dp.map.Mapper, (lambda x: x,), {}), |
| ] |
| if HAS_DILL: |
| for dpipe, dp_args, dp_kwargs in unpicklable_datapipes: |
| _ = dill.dumps(dpipe(input_dp, *dp_args, **dp_kwargs)) # type: ignore[call-arg] |
| else: |
| for dpipe, dp_args, dp_kwargs in unpicklable_datapipes: |
| with warnings.catch_warnings(record=True) as wa: |
| datapipe = dpipe(input_dp, *dp_args, **dp_kwargs) # type: ignore[call-arg] |
| self.assertEqual(len(wa), 1) |
| self.assertRegex( |
| str(wa[0].message), r"^Lambda function is not supported for pickle" |
| ) |
| with self.assertRaises(AttributeError): |
| p = pickle.dumps(datapipe) |
| |
| def test_sequence_wrapper_datapipe(self): |
| seq = list(range(10)) |
| input_dp = dp.map.SequenceWrapper(seq) |
| |
| # Functional Test: all elements are equal in the same order |
| self.assertEqual(seq, list(input_dp)) |
| |
| # Functional Test: confirm deepcopy works by default |
| seq.append(11) |
| self.assertEqual(list(range(10)), list(input_dp)) # input_dp shouldn't have 11 |
| |
| # Functional Test: non-deepcopy version is working |
| seq2 = [1, 2, 3] |
| input_dp_non_deep = dp.map.SequenceWrapper(seq2, deepcopy=False) |
| seq2.append(4) |
| self.assertEqual(list(seq2), list(input_dp_non_deep)) # should have 4 |
| |
| # Reset Test: reset the DataPipe |
| seq = list(range(10)) |
| n_elements_before_reset = 5 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(input_dp, n_elements_before_reset) |
| self.assertEqual(list(range(5)), res_before_reset) |
| self.assertEqual(seq, res_after_reset) |
| |
| # __len__ Test: inherits length from sequence |
| self.assertEqual(len(seq), len(input_dp)) |
| |
| def test_concat_mapdatapipe(self): |
| input_dp1 = dp.map.SequenceWrapper(range(10)) |
| input_dp2 = dp.map.SequenceWrapper(range(5)) |
| |
| with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"): |
| dp.map.Concater() |
| |
| with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `MapDataPipe`"): |
| dp.map.Concater(input_dp1, ()) # type: ignore[arg-type] |
| |
| concat_dp = input_dp1.concat(input_dp2) |
| self.assertEqual(len(concat_dp), 15) |
| for index in range(15): |
| self.assertEqual(concat_dp[index], (list(range(10)) + list(range(5)))[index]) |
| self.assertEqual(list(concat_dp), list(range(10)) + list(range(5))) |
| |
| def test_zip_mapdatapipe(self): |
| input_dp1 = dp.map.SequenceWrapper(range(10)) |
| input_dp2 = dp.map.SequenceWrapper(range(5)) |
| input_dp3 = dp.map.SequenceWrapper(range(15)) |
| |
| # Functional Test: requires at least one input DataPipe |
| with self.assertRaisesRegex(ValueError, r"Expected at least one DataPipe"): |
| dp.map.Zipper() |
| |
| # Functional Test: all inputs must be MapDataPipes |
| with self.assertRaisesRegex(TypeError, r"Expected all inputs to be `MapDataPipe`"): |
| dp.map.Zipper(input_dp1, ()) # type: ignore[arg-type] |
| |
| # Functional Test: Zip the elements up as a tuples |
| zip_dp = input_dp1.zip(input_dp2, input_dp3) |
| self.assertEqual([(i, i, i) for i in range(5)], [zip_dp[i] for i in range(5)]) |
| |
| # Functional Test: Raise IndexError when index equal or exceed the length of the shortest DataPipe |
| with self.assertRaisesRegex(IndexError, r"out of range"): |
| input_dp1.zip(input_dp2, input_dp3)[5] |
| |
| # __len__ Test: returns the length of the shortest DataPipe |
| zip_dp = input_dp1.zip(input_dp2, input_dp3) |
| self.assertEqual(5, len(zip_dp)) |
| |
| def test_shuffler_mapdatapipe(self): |
| input_dp1 = dp.map.SequenceWrapper(range(10)) |
| input_dp2 = dp.map.SequenceWrapper({'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}) |
| |
| # Functional Test: Assumes 0-index when indices is not given |
| shuffler_dp = input_dp1.shuffle() |
| self.assertEqual(set(range(10)), set(shuffler_dp)) |
| |
| # Functional Test: Custom indices are working |
| shuffler_dp = dp.map.Shuffler(input_dp2, indices=['a', 'b', 'c', 'd', 'e']) |
| self.assertEqual(set(range(1, 6)), set(shuffler_dp)) |
| |
| # # Reset Test: |
| shuffler_dp = input_dp1.shuffle() |
| n_elements_before_reset = 5 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(shuffler_dp, n_elements_before_reset) |
| self.assertEqual(5, len(res_before_reset)) |
| for x in res_before_reset: |
| self.assertTrue(x in set(range(10))) |
| self.assertEqual(set(range(10)), set(res_after_reset)) |
| |
| # __len__ Test: returns the length of the input DataPipe |
| shuffler_dp = input_dp1.shuffle() |
| self.assertEqual(10, len(shuffler_dp)) |
| |
| def test_map_mapdatapipe(self): |
| arr = range(10) |
| input_dp = dp.map.SequenceWrapper(arr) |
| |
| def fn(item, dtype=torch.float, *, sum=False): |
| data = torch.tensor(item, dtype=dtype) |
| return data if not sum else data.sum() |
| |
| map_dp = input_dp.map(fn) |
| self.assertEqual(len(input_dp), len(map_dp)) |
| for index in arr: |
| self.assertEqual( |
| map_dp[index], torch.tensor(input_dp[index], dtype=torch.float) |
| ) |
| |
| map_dp = input_dp.map(partial(fn, dtype=torch.int, sum=True)) |
| self.assertEqual(len(input_dp), len(map_dp)) |
| for index in arr: |
| self.assertEqual( |
| map_dp[index], torch.tensor(input_dp[index], dtype=torch.int).sum() |
| ) |
| |
| def test_batch_mapdatapipe(self): |
| arr = list(range(13)) |
| input_dp = dp.map.SequenceWrapper(arr) |
| |
| # Functional Test: batches top level by default |
| batch_dp = dp.map.Batcher(input_dp, batch_size=2) |
| self.assertEqual([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [12]], list(batch_dp)) |
| |
| # Functional Test: drop_last on command |
| batch_dp = dp.map.Batcher(input_dp, batch_size=2, drop_last=True) |
| self.assertEqual([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]], list(batch_dp)) |
| |
| # Functional Test: nested batching |
| batch_dp_2 = batch_dp.batch(batch_size=3) |
| self.assertEqual([[[0, 1], [2, 3], [4, 5]], [[6, 7], [8, 9], [10, 11]]], list(batch_dp_2)) |
| |
| # Reset Test: |
| n_elements_before_reset = 3 |
| res_before_reset, res_after_reset = reset_after_n_next_calls(batch_dp, n_elements_before_reset) |
| self.assertEqual([[0, 1], [2, 3], [4, 5]], res_before_reset) |
| self.assertEqual([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]], res_after_reset) |
| |
| # __len__ Test: |
| self.assertEqual(6, len(batch_dp)) |
| self.assertEqual(2, len(batch_dp_2)) |
| |
| |
| # Metaclass conflict for Python 3.6 |
| # Multiple inheritance with NamedTuple is not supported for Python 3.9 |
| _generic_namedtuple_allowed = sys.version_info >= (3, 7) and sys.version_info < (3, 9) |
| if _generic_namedtuple_allowed: |
| class InvalidData(Generic[T_co], NamedTuple): |
| name: str |
| data: T_co |
| |
| |
| class TestTyping(TestCase): |
| def test_isinstance(self): |
| class A(IterDataPipe): |
| pass |
| |
| class B(IterDataPipe): |
| pass |
| |
| a = A() |
| self.assertTrue(isinstance(a, A)) |
| self.assertFalse(isinstance(a, B)) |
| |
| def test_protocol(self): |
| try: |
| from typing import Protocol # type: ignore[attr-defined] |
| except ImportError: |
| from typing import _Protocol # type: ignore[attr-defined] |
| Protocol = _Protocol |
| |
| class P(Protocol): |
| pass |
| |
| class A(IterDataPipe[P]): |
| pass |
| |
| @skipTyping |
| def test_subtype(self): |
| from torch.utils.data.datapipes._typing import issubtype |
| |
| basic_type = (int, str, bool, float, complex, |
| list, tuple, dict, set, T_co) |
| for t in basic_type: |
| self.assertTrue(issubtype(t, t)) |
| self.assertTrue(issubtype(t, Any)) |
| if t == T_co: |
| self.assertTrue(issubtype(Any, t)) |
| else: |
| self.assertFalse(issubtype(Any, t)) |
| for t1, t2 in itertools.product(basic_type, basic_type): |
| if t1 == t2 or t2 == T_co: |
| self.assertTrue(issubtype(t1, t2)) |
| else: |
| self.assertFalse(issubtype(t1, t2)) |
| |
| T = TypeVar('T', int, str) |
| S = TypeVar('S', bool, Union[str, int], Tuple[int, T]) # type: ignore[valid-type] |
| types = ((int, Optional[int]), |
| (List, Union[int, list]), |
| (Tuple[int, str], S), |
| (Tuple[int, str], tuple), |
| (T, S), |
| (S, T_co), |
| (T, Union[S, Set])) |
| for sub, par in types: |
| self.assertTrue(issubtype(sub, par)) |
| self.assertFalse(issubtype(par, sub)) |
| |
| subscriptable_types = { |
| List: 1, |
| Tuple: 2, # use 2 parameters |
| Set: 1, |
| Dict: 2, |
| } |
| for subscript_type, n in subscriptable_types.items(): |
| for ts in itertools.combinations(types, n): |
| subs, pars = zip(*ts) |
| sub = subscript_type[subs] # type: ignore[index] |
| par = subscript_type[pars] # type: ignore[index] |
| self.assertTrue(issubtype(sub, par)) |
| self.assertFalse(issubtype(par, sub)) |
| # Non-recursive check |
| self.assertTrue(issubtype(par, sub, recursive=False)) |
| |
| @skipTyping |
| def test_issubinstance(self): |
| from torch.utils.data.datapipes._typing import issubinstance |
| |
| basic_data = (1, '1', True, 1., complex(1., 0.)) |
| basic_type = (int, str, bool, float, complex) |
| S = TypeVar('S', bool, Union[str, int]) |
| for d in basic_data: |
| self.assertTrue(issubinstance(d, Any)) |
| self.assertTrue(issubinstance(d, T_co)) |
| if type(d) in (bool, int, str): |
| self.assertTrue(issubinstance(d, S)) |
| else: |
| self.assertFalse(issubinstance(d, S)) |
| for t in basic_type: |
| if type(d) == t: |
| self.assertTrue(issubinstance(d, t)) |
| else: |
| self.assertFalse(issubinstance(d, t)) |
| # list/set |
| dt = (([1, '1', 2], List), (set({1, '1', 2}), Set)) |
| for d, t in dt: |
| self.assertTrue(issubinstance(d, t)) |
| self.assertTrue(issubinstance(d, t[T_co])) # type: ignore[index] |
| self.assertFalse(issubinstance(d, t[int])) # type: ignore[index] |
| |
| # dict |
| d = dict({'1': 1, '2': 2.}) |
| self.assertTrue(issubinstance(d, Dict)) |
| self.assertTrue(issubinstance(d, Dict[str, T_co])) |
| self.assertFalse(issubinstance(d, Dict[str, int])) |
| |
| # tuple |
| d = (1, '1', 2) |
| self.assertTrue(issubinstance(d, Tuple)) |
| self.assertTrue(issubinstance(d, Tuple[int, str, T_co])) |
| self.assertFalse(issubinstance(d, Tuple[int, Any])) |
| self.assertFalse(issubinstance(d, Tuple[int, int, int])) |
| |
| # Static checking annotation |
| @skipTyping |
| def test_compile_time(self): |
| with self.assertRaisesRegex(TypeError, r"Expected 'Iterator' as the return"): |
| class InvalidDP1(IterDataPipe[int]): |
| def __iter__(self) -> str: # type: ignore[misc, override] |
| yield 0 |
| |
| with self.assertRaisesRegex(TypeError, r"Expected return type of '__iter__'"): |
| class InvalidDP2(IterDataPipe[Tuple]): |
| def __iter__(self) -> Iterator[int]: # type: ignore[override] |
| yield 0 |
| |
| with self.assertRaisesRegex(TypeError, r"Expected return type of '__iter__'"): |
| class InvalidDP3(IterDataPipe[Tuple[int, str]]): |
| def __iter__(self) -> Iterator[tuple]: # type: ignore[override] |
| yield (0,) |
| |
| if _generic_namedtuple_allowed: |
| with self.assertRaisesRegex(TypeError, r"is not supported by Python typing"): |
| class InvalidDP4(IterDataPipe["InvalidData[int]"]): # type: ignore[type-arg, misc] |
| pass |
| |
| class DP1(IterDataPipe[Tuple[int, str]]): |
| def __init__(self, length): |
| self.length = length |
| |
| def __iter__(self) -> Iterator[Tuple[int, str]]: |
| for d in range(self.length): |
| yield d, str(d) |
| |
| self.assertTrue(issubclass(DP1, IterDataPipe)) |
| dp1 = DP1(10) |
| self.assertTrue(DP1.type.issubtype(dp1.type) and dp1.type.issubtype(DP1.type)) # type: ignore[attr-defined] |
| dp1_ = DP1(5) |
| self.assertEqual(dp1.type, dp1_.type) |
| |
| with self.assertRaisesRegex(TypeError, r"is not a generic class"): |
| class InvalidDP5(DP1[tuple]): # type: ignore[type-arg] |
| def __iter__(self) -> Iterator[tuple]: # type: ignore[override] |
| yield (0,) |
| |
| class DP2(IterDataPipe[T_co]): |
| def __iter__(self) -> Iterator[T_co]: |
| for d in range(10): |
| yield d # type: ignore[misc] |
| |
| self.assertTrue(issubclass(DP2, IterDataPipe)) |
| dp2 = DP2() # type: ignore[var-annotated] |
| self.assertTrue(DP2.type.issubtype(dp2.type) and dp2.type.issubtype(DP2.type)) # type: ignore[attr-defined] |
| dp2_ = DP2() # type: ignore[var-annotated] |
| self.assertEqual(dp2.type, dp2_.type) |
| |
| class DP3(IterDataPipe[Tuple[T_co, str]]): |
| r""" DataPipe without fixed type with __init__ function""" |
| |
| def __init__(self, datasource): |
| self.datasource = datasource |
| |
| def __iter__(self) -> Iterator[Tuple[T_co, str]]: |
| for d in self.datasource: |
| yield d, str(d) |
| |
| self.assertTrue(issubclass(DP3, IterDataPipe)) |
| dp3 = DP3(range(10)) # type: ignore[var-annotated] |
| self.assertTrue(DP3.type.issubtype(dp3.type) and dp3.type.issubtype(DP3.type)) # type: ignore[attr-defined] |
| dp3_ = DP3(5) # type: ignore[var-annotated] |
| self.assertEqual(dp3.type, dp3_.type) |
| |
| class DP4(IterDataPipe[tuple]): |
| r""" DataPipe without __iter__ annotation""" |
| |
| def __iter__(self): |
| raise NotImplementedError |
| |
| self.assertTrue(issubclass(DP4, IterDataPipe)) |
| dp4 = DP4() |
| self.assertTrue(dp4.type.param == tuple) |
| |
| class DP5(IterDataPipe): |
| r""" DataPipe without type annotation""" |
| |
| def __iter__(self) -> Iterator[str]: |
| raise NotImplementedError |
| |
| self.assertTrue(issubclass(DP5, IterDataPipe)) |
| dp5 = DP5() |
| from torch.utils.data.datapipes._typing import issubtype |
| self.assertTrue(issubtype(dp5.type.param, Any) and issubtype(Any, dp5.type.param)) |
| |
| class DP6(IterDataPipe[int]): |
| r""" DataPipe with plain Iterator""" |
| |
| def __iter__(self) -> Iterator: |
| raise NotImplementedError |
| |
| self.assertTrue(issubclass(DP6, IterDataPipe)) |
| dp6 = DP6() |
| self.assertTrue(dp6.type.param == int) |
| |
| class DP7(IterDataPipe[Awaitable[T_co]]): |
| r""" DataPipe with abstract base class""" |
| |
| self.assertTrue(issubclass(DP7, IterDataPipe)) |
| self.assertTrue(DP7.type.param == Awaitable[T_co]) # type: ignore[attr-defined] |
| |
| class DP8(DP7[str]): |
| r""" DataPipe subclass from a DataPipe with abc type""" |
| |
| self.assertTrue(issubclass(DP8, IterDataPipe)) |
| self.assertTrue(DP8.type.param == Awaitable[str]) # type: ignore[attr-defined] |
| |
| @skipTyping |
| def test_construct_time(self): |
| class DP0(IterDataPipe[Tuple]): |
| @argument_validation |
| def __init__(self, dp: IterDataPipe): |
| self.dp = dp |
| |
| def __iter__(self) -> Iterator[Tuple]: |
| for d in self.dp: |
| yield d, str(d) |
| |
| class DP1(IterDataPipe[int]): |
| @argument_validation |
| def __init__(self, dp: IterDataPipe[Tuple[int, str]]): |
| self.dp = dp |
| |
| def __iter__(self) -> Iterator[int]: |
| for a, b in self.dp: |
| yield a |
| |
| # Non-DataPipe input with DataPipe hint |
| datasource = [(1, '1'), (2, '2'), (3, '3')] |
| with self.assertRaisesRegex(TypeError, r"Expected argument 'dp' as a IterDataPipe"): |
| dp0 = DP0(datasource) |
| |
| dp0 = DP0(dp.iter.IterableWrapper(range(10))) |
| with self.assertRaisesRegex(TypeError, r"Expected type of argument 'dp' as a subtype"): |
| dp1 = DP1(dp0) |
| |
| @skipTyping |
| def test_runtime(self): |
| class DP(IterDataPipe[Tuple[int, T_co]]): |
| def __init__(self, datasource): |
| self.ds = datasource |
| |
| @runtime_validation |
| def __iter__(self) -> Iterator[Tuple[int, T_co]]: |
| for d in self.ds: |
| yield d |
| |
| dss = ([(1, '1'), (2, '2')], |
| [(1, 1), (2, '2')]) |
| for ds in dss: |
| dp0 = DP(ds) # type: ignore[var-annotated] |
| self.assertEqual(list(dp0), ds) |
| # Reset __iter__ |
| self.assertEqual(list(dp0), ds) |
| |
| dss = ([(1, 1), ('2', 2)], # type: ignore[assignment, list-item] |
| [[1, '1'], [2, '2']], # type: ignore[list-item] |
| [1, '1', 2, '2']) |
| for ds in dss: |
| dp0 = DP(ds) |
| with self.assertRaisesRegex(RuntimeError, r"Expected an instance as subtype"): |
| list(dp0) |
| |
| with runtime_validation_disabled(): |
| self.assertEqual(list(dp0), ds) |
| with runtime_validation_disabled(): |
| self.assertEqual(list(dp0), ds) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Expected an instance as subtype"): |
| list(dp0) |
| |
| @skipTyping |
| def test_reinforce(self): |
| T = TypeVar('T', int, str) |
| |
| class DP(IterDataPipe[T]): |
| def __init__(self, ds): |
| self.ds = ds |
| |
| @runtime_validation |
| def __iter__(self) -> Iterator[T]: |
| for d in self.ds: |
| yield d |
| |
| ds = list(range(10)) |
| # Valid type reinforcement |
| dp0 = DP(ds).reinforce_type(int) |
| self.assertTrue(dp0.type, int) |
| self.assertEqual(list(dp0), ds) |
| |
| # Invalid type |
| with self.assertRaisesRegex(TypeError, r"'expected_type' must be a type"): |
| dp1 = DP(ds).reinforce_type(1) |
| |
| # Type is not subtype |
| with self.assertRaisesRegex(TypeError, r"Expected 'expected_type' as subtype of"): |
| dp2 = DP(ds).reinforce_type(float) |
| |
| # Invalid data at runtime |
| dp3 = DP(ds).reinforce_type(str) |
| with self.assertRaisesRegex(RuntimeError, r"Expected an instance as subtype"): |
| list(dp3) |
| |
| # Context Manager to disable the runtime validation |
| with runtime_validation_disabled(): |
| self.assertEqual(list(d for d in dp3), ds) |
| |
| |
| class NumbersDataset(IterDataPipe): |
| def __init__(self, size=10): |
| self.size = size |
| |
| def __iter__(self): |
| for i in range(self.size): |
| yield i |
| |
| |
| class TestGraph(TestCase): |
| @skipIfNoDill |
| def test_simple_traverse(self): |
| numbers_dp = NumbersDataset(size=50) |
| mapped_dp = numbers_dp.map(lambda x: x * 10) |
| graph = torch.utils.data.graph.traverse(mapped_dp) |
| expected: Dict[Any, Any] = {mapped_dp: {numbers_dp: {}}} |
| self.assertEqual(expected, graph) |
| |
| @skipIfNoDill |
| def test_traverse_forked(self): |
| numbers_dp = NumbersDataset(size=50) |
| dp0, dp1, dp2 = numbers_dp.fork(num_instances=3) |
| dp0_upd = dp0.map(lambda x: x * 10) |
| dp1_upd = dp1.filter(lambda x: x % 3 == 1) |
| combined_dp = dp0_upd.mux(dp1_upd, dp2) |
| graph = torch.utils.data.graph.traverse(combined_dp) |
| expected = {combined_dp: {dp0_upd: {dp0: {dp0.main_datapipe: {dp0.main_datapipe.main_datapipe: {}}}}, |
| dp1_upd: {dp1: {dp1.main_datapipe: {dp1.main_datapipe.main_datapipe: {}}}}, |
| dp2: {dp2.main_datapipe: {dp2.main_datapipe.main_datapipe: {}}}}} |
| self.assertEqual(expected, graph) |
| |
| def test_traverse_mapdatapipe(self): |
| source_dp = dp.map.SequenceWrapper(range(10)) |
| map_dp = source_dp.map(partial(_fake_add, 1)) |
| graph = torch.utils.data.graph.traverse(map_dp) |
| expected: Dict[Any, Any] = {map_dp: {source_dp: {}}} |
| self.assertEqual(expected, graph) |
| |
| def test_traverse_mixdatapipe(self): |
| source_map_dp = dp.map.SequenceWrapper(range(10)) |
| iter_dp = dp.iter.IterableWrapper(source_map_dp) |
| graph = torch.utils.data.graph.traverse(iter_dp) |
| expected: Dict[Any, Any] = {iter_dp: {source_map_dp: {}}} |
| self.assertEqual(expected, graph) |
| |
| |
| class TestCircularSerialization(TestCase): |
| class CustomIterDataPipe(IterDataPipe): |
| |
| @staticmethod |
| def add_one(x): |
| return x + 1 |
| |
| @classmethod |
| def classify(cls, x): |
| return 0 |
| |
| def add_v(self, x): |
| return x + self.v |
| |
| def __init__(self, fn, source_dp=None): |
| self.fn = fn |
| self.source_dp = source_dp if source_dp else dp.iter.IterableWrapper([1, 2, 4]) |
| self._dp = self.source_dp.map(self.add_one).map(self.add_v).demux(2, self.classify)[0] |
| self.v = 1 |
| |
| def __iter__(self): |
| yield from self._dp |
| |
| def test_circular_serialization_with_pickle(self): |
| from torch.utils.data.datapipes.iter.combining import _ChildDataPipe, _DemultiplexerIterDataPipe |
| |
| def _get_name(datapipe): |
| return datapipe.__name__ |
| |
| # Test for circular reference issue with pickle |
| source_dp = TestCircularSerialization.CustomIterDataPipe(fn=_fake_fn) |
| self.assertTrue(list(source_dp) == |
| list(pickle.loads(pickle.dumps(TestCircularSerialization.CustomIterDataPipe(fn=_fake_fn))))) |
| res1 = traverse(source_dp, only_datapipe=True) |
| res2 = traverse(source_dp, only_datapipe=False) |
| expected_str1 = str({source_dp: |
| {_get_name(dp.iter.IterableWrapper): {}, |
| _get_name(_ChildDataPipe): |
| {_get_name(_DemultiplexerIterDataPipe): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.IterableWrapper): {}}}}}}} |
| ).replace("'", "") |
| expected_str2 = str({source_dp: |
| {_get_name(dp.iter.IterableWrapper): {}, |
| _get_name(_ChildDataPipe): |
| {_get_name(_DemultiplexerIterDataPipe): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.IterableWrapper): {}}, |
| _get_name(dp.iter.IterableWrapper): {}}}}}} |
| ).replace("'", "") |
| # For simplicity, compare the resulting string instead of trying to recreate the object |
| self.assertEqual(expected_str1, str(res1)) |
| self.assertEqual(expected_str2, str(res2)) |
| |
| dp1 = TestCircularSerialization.CustomIterDataPipe(fn=_fake_fn) |
| dp2 = TestCircularSerialization.CustomIterDataPipe(fn=_fake_fn, source_dp=dp1) |
| self.assertTrue(list(dp2) == list(pickle.loads(pickle.dumps(dp2)))) |
| res3 = traverse(dp2, only_datapipe=True) |
| res4 = traverse(dp2, only_datapipe=False) |
| self.assertTrue(str(dp2) in str(res3)) # Quick check to ensure the result isn't blank |
| self.assertTrue(str(dp2) in str(res4)) |
| |
| class LambdaIterDataPipe(CustomIterDataPipe): |
| |
| def __init__(self, fn, source_dp=None): |
| super().__init__(fn, source_dp) |
| self.container = [lambda x: x + 1, ] |
| self.lambda_fn = lambda x: x + 1 |
| self._dp = self.source_dp.map(self.add_one).map(self.lambda_fn).map(self.add_v).demux(2, self.classify)[0] |
| |
| @skipIfNoDill |
| def test_circular_serialization_with_dill(self): |
| from torch.utils.data.datapipes.iter.combining import _ChildDataPipe, _DemultiplexerIterDataPipe |
| |
| def _get_name(datapipe): |
| return datapipe.__name__ |
| |
| # Test for circular reference issue with dill |
| self.assertTrue(list(TestCircularSerialization.LambdaIterDataPipe(lambda x: x + 1)) == |
| list(dill.loads(dill.dumps(TestCircularSerialization.LambdaIterDataPipe(lambda x: x + 1))))) |
| source_dp = TestCircularSerialization.LambdaIterDataPipe(fn=_fake_fn) |
| res1 = traverse(source_dp, only_datapipe=True) |
| res2 = traverse(source_dp, only_datapipe=False) |
| expected_str1 = str({source_dp: |
| {_get_name(dp.iter.IterableWrapper): {}, |
| _get_name(_ChildDataPipe): |
| {_get_name(_DemultiplexerIterDataPipe): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.IterableWrapper): {}}}}}}}} |
| ).replace("'", "") |
| expected_str2 = str({source_dp: |
| {_get_name(dp.iter.IterableWrapper): {}, |
| _get_name(_ChildDataPipe): |
| {_get_name(_DemultiplexerIterDataPipe): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.Mapper): |
| {_get_name(dp.iter.IterableWrapper): {}}}, |
| _get_name(dp.iter.IterableWrapper): {}}}}}} |
| ).replace("'", "") |
| # For simplicity, compare the resulting string instead of trying to recreate the object |
| self.assertEqual(expected_str1, str(res1)) |
| self.assertEqual(expected_str2, str(res2)) |
| |
| dp1 = TestCircularSerialization.LambdaIterDataPipe(fn=_fake_fn) |
| dp2 = TestCircularSerialization.LambdaIterDataPipe(fn=_fake_fn, source_dp=dp1) |
| self.assertTrue(list(dp2) == list(dill.loads(dill.dumps(dp2)))) |
| res3 = traverse(dp2, only_datapipe=True) |
| res4 = traverse(dp2, only_datapipe=False) |
| self.assertTrue(str(dp2) in str(res3)) # Quick check to ensure the result isn't blank |
| self.assertTrue(str(dp2) in str(res4)) |
| |
| |
| class TestSharding(TestCase): |
| |
| def _get_pipeline(self): |
| numbers_dp = NumbersDataset(size=10) |
| dp0, dp1 = numbers_dp.fork(num_instances=2) |
| dp0_upd = dp0.map(_mul_10) |
| dp1_upd = dp1.filter(_mod_3_test) |
| combined_dp = dp0_upd.mux(dp1_upd) |
| return combined_dp |
| |
| def _get_dill_pipeline(self): |
| numbers_dp = NumbersDataset(size=10) |
| dp0, dp1 = numbers_dp.fork(num_instances=2) |
| dp0_upd = dp0.map(lambda x: x * 10) |
| dp1_upd = dp1.filter(lambda x: x % 3 == 1) |
| combined_dp = dp0_upd.mux(dp1_upd) |
| return combined_dp |
| |
| def test_simple_sharding(self): |
| sharded_dp = self._get_pipeline().sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp, 3, 1) |
| items = list(sharded_dp) |
| self.assertEqual([1, 20, 40, 70], items) |
| |
| all_items = list(self._get_pipeline()) |
| items = [] |
| for i in range(3): |
| sharded_dp = self._get_pipeline().sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp, 3, i) |
| items += list(sharded_dp) |
| |
| self.assertEqual(sorted(all_items), sorted(items)) |
| |
| def test_sharding_length(self): |
| numbers_dp = dp.iter.IterableWrapper(range(13)) |
| sharded_dp0 = numbers_dp.sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp0, 3, 0) |
| sharded_dp1 = numbers_dp.sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp1, 3, 1) |
| sharded_dp2 = numbers_dp.sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp2, 3, 2) |
| self.assertEqual(13, len(numbers_dp)) |
| self.assertEqual(5, len(sharded_dp0)) |
| self.assertEqual(4, len(sharded_dp1)) |
| self.assertEqual(4, len(sharded_dp2)) |
| |
| numbers_dp = dp.iter.IterableWrapper(range(1)) |
| sharded_dp0 = numbers_dp.sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp0, 2, 0) |
| sharded_dp1 = numbers_dp.sharding_filter() |
| torch.utils.data.graph_settings.apply_sharding(sharded_dp1, 2, 1) |
| self.assertEqual(1, len(sharded_dp0)) |
| self.assertEqual(0, len(sharded_dp1)) |
| |
| def test_old_dataloader(self): |
| dp0 = self._get_pipeline() |
| expected = list(dp0) |
| |
| dp0 = self._get_pipeline().sharding_filter() |
| dl = DataLoader(dp0, batch_size=1, shuffle=False, num_workers=2, |
| worker_init_fn=torch.utils.data.backward_compatibility.worker_init_fn) |
| items = [] |
| for i in dl: |
| items.append(i) |
| |
| self.assertEqual(sorted(expected), sorted(items)) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |