blob: f90d3bf82837b81443154f8800986954471a410a [file] [log] [blame]
# Owner(s): ["module: primTorch"]
import torch
from torch.utils._pytree import tree_map, tree_flatten
from torch.testing._internal.common_utils import (
TestCase,
skipIfCrossRef,
suppress_warnings,
TEST_WITH_ASAN,
run_tests,
)
from torch.overrides import push_torch_function_mode
from torch.testing._internal.common_device_type import (
onlyNativeDeviceTypes,
ops,
instantiate_device_type_tests,
)
from torch.testing._internal.common_methods_invocations import op_db
import functools
import re
from functools import partial
import unittest
import warnings
RE_NOT_IMPLEMENTED_MSG = re.compile(r"Could not run '([^']+)' with arguments ")
# These just need an implementation of meta tensors, once you
# implement them remove from this set. When doing comprehensive
# testing, we will verify that these raise errors when meta is run under
# OpInfo
meta_exclude_set = {
torch.Tensor.__lshift__, # MISSING aten::__lshift__.Scalar
torch.Tensor.__lshift__, # MISSING aten::__lshift__.Tensor
torch.Tensor.__rmatmul__, # MISSING aten::dot
torch.Tensor.__rshift__, # MISSING aten::__rshift__.Scalar
torch.Tensor.__rshift__, # MISSING aten::__rshift__.Tensor
torch.Tensor.addbmm, # MISSING aten::addbmm
torch.Tensor.addcmul, # MISSING aten::_local_scalar_dense
torch.Tensor.angle, # MISSING aten::angle
torch.Tensor.argsort, # MISSING aten::sort
torch.Tensor.bincount, # MISSING aten::bincount
torch.Tensor.cholesky, # MISSING aten::cholesky
torch.Tensor.cholesky_inverse, # MISSING aten::cholesky_inverse
torch.Tensor.cholesky_solve, # MISSING aten::_cholesky_solve_helper
torch.Tensor.clamp, # MISSING aten::clamp.Tensor
torch.Tensor.clamp_, # MISSING aten::clamp.Tensor_out
torch.Tensor.clip, # MISSING aten::clamp.Tensor
torch.Tensor.clip_, # MISSING aten::clamp.Tensor_out
torch.Tensor.conj_physical, # MISSING aten::conj_physical.out
torch.Tensor.corrcoef, # MISSING aten::_local_scalar_dense
torch.Tensor.count_nonzero, # MISSING aten::count_nonzero.dim_IntList
torch.Tensor.cov, # MISSING aten::_local_scalar_dense
torch.Tensor.cummax, # MISSING aten::_cummax_helper
torch.Tensor.cummin, # MISSING aten::_cummin_helper
torch.Tensor.cumprod_, # MISSING aten::logical_and.out
torch.Tensor.dequantize, # MISSING aten::dequantize.self
torch.Tensor.det, # MISSING aten::_det_lu_based_helper
torch.Tensor.diag, # MISSING aten::diag.out
torch.Tensor.diagflat, # MISSING aten::diag.out
torch.Tensor.dot, # MISSING aten::dot
torch.Tensor.eig, # MISSING aten::_local_scalar_dense
torch.Tensor.equal, # MISSING aten::equal
torch.Tensor.floor_divide, # MISSING aten::floor_divide
torch.Tensor.frexp, # MISSING aten::frexp.Tensor_out
torch.Tensor.geqrf, # MISSING aten::geqrf
torch.Tensor.histc, # MISSING aten::histc
torch.Tensor.histogram, # MISSING aten::histogram.bin_ct
torch.Tensor.inverse, # MISSING aten::_local_scalar_dense
torch.Tensor.is_set_to, # MISSING aten::is_set_to
torch.Tensor.istft, # MISSING aten::view_as_complex
torch.Tensor.kthvalue, # MISSING aten::kthvalue.values
torch.Tensor.logcumsumexp, # MISSING aten::_logcumsumexp
torch.Tensor.logdet, # MISSING aten::_local_scalar_dense
torch.Tensor.logical_and_, # MISSING aten::logical_and.out
torch.Tensor.logical_not, # MISSING aten::logical_not.out
torch.Tensor.logical_or_, # MISSING aten::logical_or.out
torch.Tensor.logical_xor, # MISSING aten::logical_xor.out
torch.Tensor.logical_xor_, # MISSING aten::logical_xor.out
torch.Tensor.logit, # MISSING aten::logit
torch.Tensor.logsumexp, # MISSING aten::abs
torch.Tensor.lstsq, # MISSING aten::lstsq
torch.Tensor.masked_select, # MISSING aten::masked_select
torch.Tensor.matmul, # MISSING aten::dot
torch.Tensor.matrix_exp, # MISSING aten::linalg_matrix_exp
torch.Tensor.matrix_power, # MISSING aten::eye.m_out
torch.Tensor.median, # MISSING aten::median
torch.Tensor.median, # MISSING aten::median.dim_values
torch.Tensor.mode, # MISSING aten::mode
torch.Tensor.msort, # MISSING aten::sort
torch.Tensor.multinomial, # MISSING aten::multinomial
torch.Tensor.mvlgamma, # MISSING aten::_local_scalar_dense
torch.Tensor.mvlgamma_, # MISSING aten::_local_scalar_dense
torch.Tensor.nan_to_num, # MISSING aten::nan_to_num.out
torch.Tensor.nan_to_num_, # MISSING aten::nan_to_num.out
torch.Tensor.nanmean, # MISSING aten::logical_not.out
torch.Tensor.nanmedian, # MISSING aten::nanmedian
torch.Tensor.nanmedian, # MISSING aten::nanmedian.dim_values
torch.Tensor.nanquantile, # MISSING aten::sort
torch.Tensor.nansum, # MISSING aten::nansum
torch.Tensor.narrow, # MISSING aten::_local_scalar_dense
torch.Tensor.nonzero, # MISSING aten::nonzero
torch.Tensor.orgqr, # MISSING aten::linalg_householder_product
torch.Tensor.ormqr, # MISSING aten::ormqr
torch.Tensor.prod, # MISSING aten::prod
torch.Tensor.qr, # MISSING aten::_linalg_qr_helper
torch.Tensor.quantile, # MISSING aten::sort
torch.Tensor.relu, # MISSING aten::relu
torch.Tensor.renorm_, # MISSING aten::_local_scalar_dense
torch.Tensor.repeat_interleave, # MISSING aten::repeat_interleave.Tensor
torch.Tensor.roll, # MISSING aten::roll
torch.Tensor.slogdet, # MISSING aten::linalg_slogdet
torch.Tensor.solve, # MISSING aten::_solve_helper
torch.Tensor.sort, # MISSING aten::sort
torch.Tensor.std, # MISSING aten::std.correction
torch.Tensor.stft, # MISSING aten::_fft_r2c
torch.Tensor.symeig, # MISSING aten::_symeig_helper
torch.Tensor.take, # MISSING aten::take
torch.Tensor.to_mkldnn, # MISSING aten::to_mkldnn
torch.Tensor.to_sparse, # MISSING aten::to_sparse
torch.Tensor.to_sparse_csr, # MISSING aten::to_sparse_csr
torch.Tensor.topk, # MISSING aten::_local_scalar_dense
torch.Tensor.trace, # MISSING aten::trace
torch.Tensor.unique, # MISSING aten::_unique2
torch.Tensor.unique_consecutive, # MISSING aten::unique_consecutive
torch.Tensor.unsqueeze, # MISSING aten::_local_scalar_dense
torch.Tensor.var, # MISSING aten::var.correction
torch.Tensor.vdot, # MISSING aten::vdot
torch._add_relu, # MISSING aten::_add_relu.Tensor
torch._aminmax, # MISSING aten::_aminmax
torch._assert_async, # MISSING aten::_assert_async
torch._compute_linear_combination, # MISSING aten::_compute_linear_combination
torch._det_lu_based_helper, # MISSING aten::_det_lu_based_helper
torch._dirichlet_grad, # MISSING aten::_dirichlet_grad
torch._fake_quantize_learnable_per_channel_affine, # MISSING aten::_fake_quantize_learnable_per_channel_affine
torch._fake_quantize_learnable_per_tensor_affine, # MISSING aten::_fake_quantize_learnable_per_tensor_affine
torch._fake_quantize_per_tensor_affine_cachemask_tensor_qparams, # MISSING aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams # noqa: E501
torch._foreach_abs, # MISSING aten::_foreach_abs
torch._foreach_abs_, # MISSING aten::_foreach_abs_
torch._foreach_acos, # MISSING aten::_foreach_acos
torch._foreach_acos_, # MISSING aten::_foreach_acos_
torch._foreach_add, # MISSING aten::_foreach_add.Scalar
torch._foreach_add_, # MISSING aten::_foreach_add_.Scalar
torch._foreach_addcdiv, # MISSING aten::_foreach_addcdiv.Scalar
torch._foreach_addcdiv_, # MISSING aten::_foreach_addcdiv_.Scalar
torch._foreach_addcmul, # MISSING aten::_foreach_addcmul.Scalar
torch._foreach_addcmul_, # MISSING aten::_foreach_addcmul_.Scalar
torch._foreach_asin, # MISSING aten::_foreach_asin
torch._foreach_asin_, # MISSING aten::_foreach_asin_
torch._foreach_atan, # MISSING aten::_foreach_atan
torch._foreach_atan_, # MISSING aten::_foreach_atan_
torch._foreach_ceil, # MISSING aten::_foreach_ceil
torch._foreach_ceil_, # MISSING aten::_foreach_ceil_
torch._foreach_cos, # MISSING aten::_foreach_cos
torch._foreach_cos_, # MISSING aten::_foreach_cos_
torch._foreach_cosh, # MISSING aten::_foreach_cosh
torch._foreach_cosh_, # MISSING aten::_foreach_cosh_
torch._foreach_div, # MISSING aten::_foreach_div.Scalar
torch._foreach_div_, # MISSING aten::_foreach_div_.ScalarList
torch._foreach_erf, # MISSING aten::_foreach_erf
torch._foreach_erf_, # MISSING aten::_foreach_erf_
torch._foreach_erfc, # MISSING aten::_foreach_erfc
torch._foreach_erfc_, # MISSING aten::_foreach_erfc_
torch._foreach_exp, # MISSING aten::_foreach_exp
torch._foreach_exp_, # MISSING aten::_foreach_exp_
torch._foreach_expm1, # MISSING aten::_foreach_expm1
torch._foreach_expm1_, # MISSING aten::_foreach_expm1_
torch._foreach_floor, # MISSING aten::_foreach_floor
torch._foreach_floor_, # MISSING aten::_foreach_floor_
torch._foreach_frac, # MISSING aten::_foreach_frac
torch._foreach_frac_, # MISSING aten::_foreach_frac_
torch._foreach_log, # MISSING aten::_foreach_log
torch._foreach_log10, # MISSING aten::_foreach_log10
torch._foreach_log10_, # MISSING aten::_foreach_log10_
torch._foreach_log1p, # MISSING aten::_foreach_log1p
torch._foreach_log1p_, # MISSING aten::_foreach_log1p_
torch._foreach_log2, # MISSING aten::_foreach_log2
torch._foreach_log2_, # MISSING aten::_foreach_log2_
torch._foreach_log_, # MISSING aten::_foreach_log_
torch._foreach_maximum, # MISSING aten::_foreach_maximum.List
torch._foreach_minimum, # MISSING aten::_foreach_minimum.List
torch._foreach_mul, # MISSING aten::_foreach_mul.Scalar
torch._foreach_mul_, # MISSING aten::_foreach_mul_.ScalarList
torch._foreach_neg, # MISSING aten::_foreach_neg
torch._foreach_neg_, # MISSING aten::_foreach_neg_
torch._foreach_norm, # MISSING aten::_foreach_norm.Scalar
torch._foreach_reciprocal, # MISSING aten::_foreach_reciprocal
torch._foreach_reciprocal_, # MISSING aten::_foreach_reciprocal_
torch._foreach_round, # MISSING aten::_foreach_round
torch._foreach_round_, # MISSING aten::_foreach_round_
torch._foreach_sigmoid, # MISSING aten::_foreach_sigmoid
torch._foreach_sigmoid_, # MISSING aten::_foreach_sigmoid_
torch._foreach_sin, # MISSING aten::_foreach_sin
torch._foreach_sin_, # MISSING aten::_foreach_sin_
torch._foreach_sinh, # MISSING aten::_foreach_sinh
torch._foreach_sinh_, # MISSING aten::_foreach_sinh_
torch._foreach_sqrt, # MISSING aten::_foreach_sqrt
torch._foreach_sqrt_, # MISSING aten::_foreach_sqrt_
torch._foreach_sub, # MISSING aten::_foreach_sub.Scalar
torch._foreach_sub_, # MISSING aten::_foreach_sub_.ScalarList
torch._foreach_tan, # MISSING aten::_foreach_tan
torch._foreach_tan_, # MISSING aten::_foreach_tan_
torch._foreach_tanh, # MISSING aten::_foreach_tanh
torch._foreach_tanh_, # MISSING aten::_foreach_tanh_
torch._foreach_trunc, # MISSING aten::_foreach_trunc
torch._foreach_trunc_, # MISSING aten::_foreach_trunc_
torch._foreach_zero_, # MISSING aten::_foreach_zero_
torch._fused_moving_avg_obs_fq_helper, # MISSING aten::_fused_moving_avg_obs_fq_helper
torch._make_per_tensor_quantized_tensor, # MISSING aten::_make_per_tensor_quantized_tensor
torch._masked_softmax, # MISSING aten::_masked_softmax
torch._sample_dirichlet, # MISSING aten::_sample_dirichlet
torch._standard_gamma, # MISSING aten::_standard_gamma
torch._unique, # MISSING aten::_unique
torch._unique2, # MISSING aten::_unique2
torch.addbmm, # MISSING aten::addbmm
torch.angle, # MISSING aten::angle
torch.batch_norm, # MISSING aten::native_batch_norm
torch.bernoulli, # MISSING aten::bernoulli.out
torch.bincount, # MISSING aten::bincount
torch.binomial, # MISSING aten::binomial
torch.bucketize, # MISSING aten::bucketize.Tensor
torch.cholesky, # MISSING aten::cholesky
torch.cholesky_inverse, # MISSING aten::cholesky_inverse
torch.cholesky_solve, # MISSING aten::_cholesky_solve_helper
torch.clip, # MISSING aten::clamp.Tensor
torch.combinations, # MISSING aten::masked_select
torch.complex, # MISSING aten::complex.out
torch.conj_physical, # MISSING aten::conj_physical.out
torch.corrcoef, # MISSING aten::_local_scalar_dense
torch.count_nonzero, # MISSING aten::count_nonzero.dim_IntList
torch.cov, # MISSING aten::_local_scalar_dense
torch.cummax, # MISSING aten::_cummax_helper
torch.cummin, # MISSING aten::_cummin_helper
torch.det, # MISSING aten::_det_lu_based_helper
torch.diag, # MISSING aten::diag.out
torch.diagflat, # MISSING aten::diag.out
torch.dot, # MISSING aten::dot
torch.eig, # MISSING aten::_local_scalar_dense
torch.equal, # MISSING aten::equal
torch.eye, # MISSING aten::eye.m_out
torch.fake_quantize_per_channel_affine, # MISSING aten::fake_quantize_per_channel_affine_cachemask
torch.fake_quantize_per_tensor_affine, # MISSING aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams
torch.fft.fft, # MISSING aten::_fft_r2c
torch.fft.fft2, # MISSING aten::_fft_c2c
torch.fft.fftn, # MISSING aten::_fft_c2c
torch.fft.fftshift, # MISSING aten::roll
torch.fft.hfft2, # MISSING aten::_fft_c2c
torch.fft.hfftn, # MISSING aten::_fft_c2c
torch.fft.ifft, # MISSING aten::_fft_r2c
torch.fft.ifft2, # MISSING aten::_fft_c2c
torch.fft.ifftn, # MISSING aten::_fft_c2c
torch.fft.ifftshift, # MISSING aten::roll
torch.fft.ihfft, # MISSING aten::_fft_r2c
torch.fft.ihfft2, # MISSING aten::_fft_r2c
torch.fft.ihfftn, # MISSING aten::_fft_r2c
torch.fft.irfft, # MISSING aten::_fft_c2r
torch.fft.irfft2, # MISSING aten::_fft_c2r
torch.fft.irfftn, # MISSING aten::_fft_c2r
torch.fft.rfft, # MISSING aten::_fft_r2c
torch.fft.rfft2, # MISSING aten::_fft_r2c
torch.fft.rfftn, # MISSING aten::_fft_r2c
torch.floor_divide, # MISSING aten::floor_divide
torch.frexp, # MISSING aten::frexp.Tensor_out
torch.functional.cdist, # MISSING aten::_cdist_forward
torch.functional.einsum, # MISSING aten::dot
torch.functional.istft, # MISSING aten::view_as_complex
torch.functional.pca_lowrank, # MISSING aten::_linalg_qr_helper
torch.functional.stft, # MISSING aten::_fft_r2c
torch.functional.svd_lowrank, # MISSING aten::_linalg_qr_helper
torch.functional.tensordot, # MISSING aten::tensordot.out
torch.functional.unique, # MISSING aten::_unique2
torch.functional.unique_consecutive, # MISSING aten::unique_consecutive
torch.fused_moving_avg_obs_fake_quant, # MISSING aten::_fused_moving_avg_obs_fq_helper
torch.geqrf, # MISSING aten::geqrf
torch.group_norm, # MISSING aten::native_batch_norm
torch.histc, # MISSING aten::histc.out
torch.histogram, # MISSING aten::histogram.bin_ct
torch.histogramdd, # MISSING aten::_histogramdd_bin_edges
torch.inner, # MISSING aten::tensordot.out
torch.inverse, # MISSING aten::_local_scalar_dense
torch.kthvalue, # MISSING aten::kthvalue.values
torch.layer_norm, # MISSING aten::native_batch_norm
torch.linalg.cholesky, # MISSING aten::linalg_cholesky_ex
torch.linalg.cholesky_ex, # MISSING aten::linalg_cholesky_ex
torch.linalg.det, # MISSING aten::_det_lu_based_helper
torch.linalg.eig, # MISSING aten::linalg_eig
torch.linalg.eig, # MISSING aten::linalg_eig.out
torch.linalg.eigh, # MISSING aten::linalg_eigh
torch.linalg.eigvals, # MISSING aten::linalg_eig
torch.linalg.eigvalsh, # MISSING aten::linalg_eigh
torch.linalg.eigvalsh, # MISSING aten::linalg_eigvalsh.out
torch.linalg.householder_product, # MISSING aten::linalg_householder_product
torch.linalg.inv, # MISSING aten::_local_scalar_dense
torch.linalg.lstsq, # MISSING aten::linalg_lstsq.out
torch.linalg.lu_factor, # MISSING aten::_local_scalar_dense
torch.linalg.matmul, # MISSING aten::dot
torch.linalg.matrix_exp, # MISSING aten::linalg_matrix_exp
torch.linalg.matrix_power, # MISSING aten::_local_scalar_dense
torch.linalg.matrix_power, # MISSING aten::eye.m_out
torch.linalg.norm, # MISSING aten::linalg_vector_norm
torch.linalg.qr, # MISSING aten::_linalg_qr_helper
torch.linalg.slogdet, # MISSING aten::linalg_slogdet
torch.linalg.solve, # MISSING aten::linalg_solve
torch.linalg.solve_triangular, # MISSING aten::linalg_solve_triangular
torch.linalg.tensorinv, # MISSING aten::_local_scalar_dense
torch.linalg.tensorsolve, # MISSING aten::linalg_solve
torch.linalg.vector_norm, # MISSING aten::linalg_vector_norm
torch.logcumsumexp, # MISSING aten::_logcumsumexp
torch.logdet, # MISSING aten::_local_scalar_dense
torch.logical_not, # MISSING aten::logical_not.out
torch.logical_xor, # MISSING aten::logical_xor.out
torch.logit, # MISSING aten::logit
torch.lstsq, # MISSING aten::lstsq
torch.lu_solve, # MISSING aten::lu_solve
torch.masked_select, # MISSING aten::masked_select
torch.matmul, # MISSING aten::dot
torch.matrix_exp, # MISSING aten::linalg_matrix_exp
torch.matrix_power, # MISSING aten::eye.m_out
torch.matrix_rank, # MISSING aten::linalg_eigvalsh.out
torch.median, # MISSING aten::median
torch.median, # MISSING aten::median.dim_values
torch.mode, # MISSING aten::mode
torch.multinomial, # MISSING aten::multinomial
torch.mvlgamma, # MISSING aten::_local_scalar_dense
torch.nan_to_num, # MISSING aten::nan_to_num.out
torch.nanmean, # MISSING aten::logical_not.out
torch.nanmedian, # MISSING aten::nanmedian
torch.nanmedian, # MISSING aten::nanmedian.dim_values
torch.nansum, # MISSING aten::nansum
torch.nn.functional.adaptive_avg_pool1d, # MISSING aten::_adaptive_avg_pool2d
torch.nn.functional.adaptive_avg_pool2d, # MISSING aten::_adaptive_avg_pool2d
torch.nn.functional.adaptive_avg_pool3d, # MISSING aten::_adaptive_avg_pool3d
torch.nn.functional.batch_norm, # MISSING aten::native_batch_norm
torch.nn.functional.binary_cross_entropy, # MISSING aten::binary_cross_entropy
torch.nn.functional.channel_shuffle, # MISSING aten::channel_shuffle
torch.nn.functional.cross_entropy, # MISSING aten::_local_scalar_dense
torch.nn.functional.cross_entropy, # MISSING aten::nll_loss2d_forward
torch.nn.functional.ctc_loss, # MISSING aten::_ctc_loss
torch.nn.functional.embedding_bag, # MISSING aten::_embedding_bag
torch.nn.functional.fold, # MISSING aten::col2im
torch.nn.functional.gaussian_nll_loss, # MISSING aten::_local_scalar_dense
torch.nn.functional.grid_sample, # MISSING aten::grid_sampler_2d
torch.nn.functional.group_norm, # MISSING aten::native_batch_norm
torch.nn.functional.hardswish, # MISSING aten::hardswish
torch.nn.functional.hardtanh, # MISSING aten::hardtanh
torch.nn.functional.instance_norm, # MISSING aten::native_batch_norm
torch.nn.functional.layer_norm, # MISSING aten::native_batch_norm
torch.nn.functional.logsigmoid, # MISSING aten::log_sigmoid_forward
torch.nn.functional.max_pool3d, # MISSING aten::max_pool3d_with_indices
torch.nn.functional.max_pool3d_with_indices, # MISSING aten::max_pool3d_with_indices
torch.nn.functional.max_unpool1d, # MISSING aten::max_unpool2d
torch.nn.functional.max_unpool2d, # MISSING aten::max_unpool2d
torch.nn.functional.max_unpool3d, # MISSING aten::max_unpool3d
torch.nn.functional.multi_head_attention_forward, # MISSING aten::logical_or.out
torch.nn.functional.multi_margin_loss, # MISSING aten::multi_margin_loss
torch.nn.functional.multilabel_margin_loss, # MISSING aten::multilabel_margin_loss_forward
torch.nn.functional.multilabel_soft_margin_loss, # MISSING aten::log_sigmoid_forward
torch.nn.functional.nll_loss, # MISSING aten::nll_loss2d_forward
torch.nn.functional.one_hot, # MISSING aten::_local_scalar_dense
torch.nn.functional.pdist, # MISSING aten::_pdist_forward
torch.nn.functional.prelu, # MISSING aten::prelu
torch.nn.functional.relu, # MISSING aten::relu
torch.nn.functional.relu6, # MISSING aten::hardtanh
torch.nn.functional.rrelu, # MISSING aten::rrelu_with_noise
torch.nn.functional.unfold, # MISSING aten::im2col
torch.nonzero, # MISSING aten::nonzero
torch.normal, # MISSING aten::_local_scalar_dense
torch.orgqr, # MISSING aten::linalg_householder_product
torch.ormqr, # MISSING aten::ormqr
torch.poisson, # MISSING aten::poisson
torch.polar, # MISSING aten::polar.out
torch.prod, # MISSING aten::prod
torch.qr, # MISSING aten::_linalg_qr_helper
torch.quantize_per_channel, # MISSING aten::quantize_per_channel
torch.quantize_per_tensor, # MISSING aten::quantize_per_tensor
torch.quantize_per_tensor_dynamic, # MISSING aten::quantize_per_tensor_dynamic
torch.relu, # MISSING aten::relu
torch.repeat_interleave, # MISSING aten::repeat_interleave.Tensor
torch.rnn_relu, # MISSING aten::relu
torch.rnn_relu_cell, # MISSING aten::relu
torch.roll, # MISSING aten::roll
torch.rsub, # MISSING aten::rsub.Tensor
torch.searchsorted, # MISSING aten::searchsorted.Tensor
torch.slogdet, # MISSING aten::linalg_slogdet
torch.solve, # MISSING aten::_solve_helper
torch.special.logit, # MISSING aten::logit
torch.special.logsumexp, # MISSING aten::abs.out
torch.special.multigammaln, # MISSING aten::_local_scalar_dense
torch.square, # MISSING aten::square.out
torch.std, # MISSING aten::std.correction
torch.std_mean, # MISSING aten::std_mean.correction
torch.symeig, # MISSING aten::_symeig_helper
torch.take, # MISSING aten::take
torch.threshold, # MISSING aten::_local_scalar_dense
torch.trace, # MISSING aten::trace
torch.var, # MISSING aten::var.correction
torch.var_mean, # MISSING aten::var_mean.correction
torch.vdot, # MISSING aten::vdot
torch.nanquantile, # MISSING aten::logical_not.out
}
# Only some overloads/configurations are covered with meta tensors,
# so we can't use these to toggle expected failure. Try to prioritize these
overload_exclude_set = {
torch.clamp, # MISSING aten::clamp.Tensor
torch.nn.functional.interpolate, # MISSING aten::upsample_nearest3d.vec
torch.nn.functional.upsample_nearest, # MISSING aten::upsample_nearest3d.vec
torch.nn.functional.pad, # MISSING aten::reflection_pad2d
torch.remainder, # MISSING aten::remainder.Scalar_Tensor
torch.linalg.matrix_rank, # MISSING aten::linalg_eigh
torch.diff, # MISSING aten::logical_xor.out
torch.linalg.pinv, # CompositeExplicitAutograd but mH fails
}
# These are fine in OpInfo tests, but triggered errors in full test suite
# crossref testing, which means there is probably not enough coverage from
# OpInfo. Patch in https://github.com/pytorch/pytorch/pull/75994 and find
# out where these fails come from.
suspicious_exclude_set = {
torch.add, # MISSING aten::_local_scalar_dense
torch.cat, # MISSING aten::_local_scalar_dense
torch.cumprod, # MISSING aten::logical_and.out
torch.cumsum, # MISSING aten::_local_scalar_dense
torch.functional.norm, # MISSING aten::isnan
# RuntimeError: Expected 3D or 4D (batch mode) tensor with optional 0 dim
# batch size for input, but got:[1, 1, 0]
# in test_nn.py TestNNDeviceTypeCPU.test_max_pool1d_corner_cases_cpu_float64
torch.nn.functional.max_pool1d,
# Factory functions need tricky kwarg handling
torch.zeros_like,
}
# These also are known to not work, but they fail in a more special way
# than the regular "Meta not implemented for aten op" way
meta_exclude_set |= {
# Convolutions have a special error message
torch.nn.functional.conv1d,
torch.nn.functional.conv2d,
torch.nn.functional.conv3d,
torch.nn.functional.conv_transpose1d,
torch.nn.functional.conv_transpose2d,
torch.nn.functional.conv_transpose3d,
# complex stuff handle it specially
torch.view_as_complex,
torch.view_as_real,
# These operators happen very frequently, although they should
# work with meta we intentionally don't test them to speed
# up the test suite
torch.Tensor.__getitem__,
torch.Tensor.__rsub__,
torch.Tensor.__setitem__,
torch.Tensor.add,
torch.Tensor.add_,
torch.Tensor.clone,
torch.Tensor.detach,
torch.Tensor.div,
torch.Tensor.mul,
torch.Tensor.reshape,
torch.Tensor.sub,
torch.Tensor.sum,
torch.rand,
# These correctly report NotImplemented but they don't print
# correctly from resolve_name
torch.ops.quantized.linear_dynamic,
torch._VF.unique_dim,
torch._C._nn.binary_cross_entropy,
torch._C._nn.adaptive_avg_pool2d,
torch._C._nn._test_optional_filled_intlist,
torch._C._nn._test_optional_floatlist,
torch._C._nn._test_optional_intlist,
# Meta tensors don't support storage Python bindings at the
# moment, to be fixed
torch.Tensor.storage,
torch.Tensor.storage_type,
torch.Tensor.share_memory_,
# Weird stuff that hypothetically should work but it's weird
torch._make_dual,
torch._unpack_dual, # fails because we don't preserve forward ad tangent in test code
# These functions cannot, even in principle, be implemented on meta
# tensors (because they involve accessing data somehow), so don't test
# them.
torch.Tensor.__bool__,
torch.Tensor.__float__,
torch.Tensor.__int__,
torch.Tensor.__complex__,
torch.Tensor.__index__,
torch.Tensor.__contains__,
torch.Tensor.cpu,
torch.Tensor.to,
torch.Tensor.tolist,
torch.Tensor.unbind,
torch.Tensor.item,
torch.Tensor.is_nonzero,
torch.Tensor.copy_,
torch.Tensor.numpy,
torch.Tensor.allclose,
torch.Tensor.argwhere,
torch.allclose,
torch.argwhere,
torch.tensor_split,
torch.Tensor.tensor_split,
torch.Tensor.__array__, # doesn't raise NotImplementedError
torch.Tensor.__dlpack_device__, # doesn't raise NotImplementedError
torch.Tensor.__dlpack__, # doesn't raise NotImplementedError
torch.to_dlpack, # doesn't raise NotImplementedError
# Utility functions that get frequently invoked; don't test
torch.Tensor.__format__,
torch.Tensor.__repr__,
# These are getters/setters for properties on tensors; it's not
# really useful to test meta tensors on them
torch.Tensor.device.__get__,
torch.Tensor.dtype.__get__,
torch.Tensor.grad.__get__,
torch.Tensor.grad.__set__,
torch.Tensor.is_sparse.__get__,
torch.Tensor.layout.__get__,
torch.Tensor.shape.__get__,
torch.Tensor.requires_grad.__get__,
torch.Tensor.requires_grad.__set__,
torch.Tensor.data.__get__,
torch.Tensor.data.__set__,
torch.Tensor._base.__get__,
torch.Tensor.is_shared,
torch.Tensor.imag.__get__,
torch.Tensor.real.__get__,
torch.Tensor.__setstate__,
torch.Tensor.is_complex,
torch.Tensor.is_floating_point,
torch.Tensor.numel,
torch.Tensor.requires_grad_,
torch.Tensor.size,
# These perturb RNG and can cause tests to fail, so don't run
# them (TODO: this is not a complete list)
torch.randint,
torch.randn,
# Indirect use of conjugate fallback
torch.fft.hfft,
# These don't raise NotImplementedError, which suggests something
# is wrong with how they're registered with the dispatcher
torch.fbgemm_pack_gemm_matrix_fp16,
torch.fbgemm_pack_quantized_matrix,
torch.fbgemm_linear_fp16_weight,
torch._empty_per_channel_affine_quantized,
torch.fbgemm_linear_int8_weight,
torch._grid_sampler_2d_cpu_fallback, # WAT
torch._nnpack_spatial_convolution,
torch.lstm,
torch.Tensor.conj_physical_,
torch.rnn_tanh,
torch.fbgemm_linear_quantize_weight,
torch._reshape_from_tensor,
torch.gru,
torch.Tensor.unflatten,
torch._saturate_weight_to_fp16,
torch.choose_qparams_optimized,
torch._validate_sparse_coo_tensor_args,
torch.sparse.mm,
torch.Tensor.new,
torch.Tensor.resize, # WTF is this
torch._sobol_engine_initialize_state_,
torch._sobol_engine_draw,
torch._sobol_engine_scramble_,
torch._sobol_engine_ff_,
torch._pack_padded_sequence,
torch._pad_packed_sequence,
torch.sparse_coo_tensor,
torch.linalg.ldl_factor,
torch.index_reduce,
# IndexError: select() cannot be applied to a 0-dim tensor.
# e.g. test_fn_fwgrad_bwgrad_index_add_cpu_complex128 (__main__.TestGradientsCPU)
torch.index_add,
torch.Tensor.index_add,
torch.Tensor.index_add_,
# Can't copy out of meta tensor
torch.linalg.eigvals,
torch.linalg.lu_factor,
torch.nn.functional.ctc_loss,
# Our conversion to meta is not accurate enough (doesn't
# preserve storage_offset, e.g.)
torch.Tensor.as_strided,
# This one segfaults when you call it
torch.Tensor.type,
# We don't clone autograd history, so this will generally not work
torch.autograd.grad,
torch.Tensor.backward,
torch.Tensor.__deepcopy__,
# Don't do factories
torch.ones,
torch.full,
torch.empty,
torch.randperm,
torch.logspace,
torch.zeros,
torch.arange,
torch.vander,
torch.as_tensor,
torch.tensor,
torch.randn_like,
torch.sparse_csr_tensor,
torch._sparse_coo_tensor_unsafe,
torch._sparse_csr_tensor_unsafe,
torch._validate_sparse_csr_tensor_args,
}
# This is a __torch_function__ mode that, when enabled, interposes every
# Torch API call and runs the operator as normal, and then reruns it
# with meta inputs, and then checks that everything about the output agrees.
# Most of the logic deals with faithfully replicating the original tensor
# as a meta tensor, which is nontrivial because there are a lot of subsystems
# that may potentially be exercised.
#
# That being said, this class is a little overkill for what it is doing in
# this test file (since I could have just inlined __torch_function__ on the
# OpInfo call, and OpInfos generally have very regular inputs), but it will be
# useful for more comprehensive testing e.g., as seen in
# https://github.com/pytorch/pytorch/pull/75994
class MetaCrossRefMode(torch.overrides.TorchFunctionMode):
test_case: TestCase
run_excludes_anyway: bool
def __init__(self, test_case, *, run_excludes_anyway):
self.test_case = test_case
self.run_excludes_anyway = run_excludes_anyway
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
hit = 0
miss = 0
# Doesn't actually return a storage
@functools.lru_cache(None)
def meta_storage(s):
return torch.empty(s.size(), dtype=s.dtype, device='meta')
def safe_is_leaf(t):
try:
return t.is_leaf
except RuntimeError:
# inference mode can trigger this
return False
@functools.lru_cache(None)
def meta_tensor(t):
with torch.inference_mode(t.is_inference()):
s = meta_storage(t.storage())
is_leaf = safe_is_leaf(t)
if is_leaf or not t._is_view():
r = torch.empty(
(0,), dtype=t.dtype, device='meta'
)
r.set_(s, t.storage_offset(), t.size(), t.stride())
r.requires_grad = t.requires_grad
if not is_leaf and t.requires_grad:
with torch.enable_grad():
r = r.clone()
else:
base = torch.empty(
(0,), dtype=t.dtype, device='meta'
)
base.set_(s, 0, s.size(), (1,))
base.requires_grad = t.requires_grad
with torch.enable_grad():
if t._is_view() and not safe_is_leaf(t._base):
base = base.clone()
r = base.as_strided(t.size(), t.stride(), t.storage_offset())
torch._C._set_conj(r, t.is_conj())
torch._C._set_neg(r, t.is_neg())
return r
def to_meta(t):
nonlocal hit, miss
# TODO: zero tensors? We appear to have eliminated them by
# excluding complex for now
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
if any([
t.is_sparse_csr, t.is_sparse, t.is_mkldnn, t.is_quantized,
t.is_nested, torch._is_functional_tensor(t),
# these are supported in meta conversion but the fallbacks
# don't work
t.is_neg(), t.is_conj(),
# conjugate fallback does not support meta tensors
t.dtype in (torch.complex128, torch.complex64),
]):
# TODO: sparse should support meta
# NB technically to('meta') does work but our logging
# instrumentation will see the meta conversions and the
# tests all break so we just exclude this. In any case
# the to conversion isn't really right anyhow.
miss += 1
return t
elif any([
t.device.type in ("lazy", "meta"), t.is_complex(),
# We need a way to test if a tensor is batched but there
# is no official APi to do it
# torch._C._is_batched(t),
]):
# TODO: this stuff should support storage
# (well, maybe not batched)
hit += 1
return t.to("meta")
else:
hit += 1
r = meta_tensor(t)
if type(t) is torch.nn.Parameter:
r = torch.nn.Parameter(r, requires_grad=r.requires_grad)
return r
elif torch.overrides.is_tensor_like(t):
# Blindly converting tensor subclasses to meta can cause
# unpredictable problems; e.g., FX tests will trace meta
# tensors into their trace / some subclasses don't correctly
# support meta. Trying to YOLO this is more trouble than it's
# worth.
miss += 1
return t
else:
# non-Tensor types don't count as hit or miss
return t
do_meta = (
(self.run_excludes_anyway or func not in meta_exclude_set) and
not torch.jit.is_tracing() and
not isinstance(func, torch.ScriptMethod)
)
if do_meta:
try:
meta_args = tree_map(to_meta, args)
meta_kwargs = tree_map(to_meta, kwargs)
except Exception as e:
raise RuntimeError(
f"failed to convert args to meta; "
f"originally (*{args}, **{kwargs})") from e
rs = func(*args, **kwargs)
# TODO: also handle cases where func raise an exception
# For now, only attempt if we managed to convert all tensor types
# (if any of them failed, we're in a mixed device situation and
# this isn't well supported)
if do_meta and hit > 0 and miss == 0:
try:
# suppress warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
meta_rs = func(*meta_args, **meta_kwargs)
except Exception as e:
suppress = False
"""
# This code can be helpful for full crossref test to filter
# out "pedestrian" omissions
if isinstance(e, NotImplementedError):
m = RE_NOT_IMPLEMENTED_MSG.search(e.args[0])
if m and m.group(1) not in ("aten::_efficientzerotensor", "aten::view_as_real"):
suppress = True
"""
if not suppress:
raise RuntimeError(f"""\
failed to run: {func}(
*{meta_args},
**{meta_kwargs}
)""") from e
else:
def test_assert(cond, msg):
if not cond:
raise RuntimeError(f"""\
meta disagrees with real impl:
{func}(
*{meta_args},
**{meta_kwargs}
) = {meta_r}
{msg}
""")
flat_meta_rs, _ = tree_flatten(meta_rs)
flat_rs, _ = tree_flatten(rs)
self.test_case.assertEqual(len(flat_meta_rs), len(flat_rs))
for i, meta_r, r in zip(range(len(flat_rs)), flat_meta_rs, flat_rs):
if isinstance(r, torch.Tensor):
test_assert(isinstance(meta_r, torch.Tensor), f"but real {i}th result is Tensor")
test_assert(meta_r.dtype == r.dtype, f"but real dtype was {r.dtype}")
test_assert(meta_r.shape == r.shape, f"but real shape was {r.shape}")
test_assert(meta_r.stride() == r.stride(), f"but real stride was {r.stride()}")
test_assert(
meta_r.storage_offset() == r.storage_offset(),
f"but real storage_offset was {r.storage_offset()}")
test_assert(meta_r.requires_grad == r.requires_grad, f"but real requires_grad was {r.requires_grad}")
test_assert(meta_r.is_conj() == r.is_conj(), f"but real is_conj was {r.is_conj()}")
test_assert(meta_r.is_neg() == r.is_neg(), f"but real is_neg was {r.is_neg()}")
return rs
class TestMeta(TestCase):
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_meta(self, device, dtype, op):
# run the OpInfo sample inputs, cross-referencing them with the
# meta implementation and check the results are the same. All
# the heavy lifting happens in MetaCrossRefMode
func = op.get_op()
def do_test(run_excludes_anyway=False):
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with push_torch_function_mode(partial(MetaCrossRefMode, self, run_excludes_anyway=run_excludes_anyway)):
expected = func(*args, **kwargs)
if isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
if func in overload_exclude_set:
self.skipTest('permanently excluded')
elif func in meta_exclude_set and dtype not in (torch.complex128, torch.complex64):
try:
do_test(run_excludes_anyway=True)
except Exception:
pass
else:
self.fail('expected failure, but succeeded')
else:
do_test()
instantiate_device_type_tests(TestMeta, globals())
if __name__ == "__main__":
run_tests()