blob: 04804261505f66c37e4b338f6ea2c4231473bf9d [file] [log] [blame]
# -*- coding: utf-8 -*-
# Owner(s): ["module: mps"]
import sys
import math
import random
import unittest
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
import itertools
from torch.nn import Parameter
from torch.testing._internal.common_utils import run_tests, TestCase, download_file, TEST_WITH_UBSAN
import torch.backends.mps
from torch.distributions import (Uniform)
from torch.testing._internal.common_nn import NNTestCase
import numpy as np
import torch
# Same logic as test_cuda.py
if not torch.backends.mps.is_available():
print('MPS not available, skipping tests', file=sys.stderr)
TestCase = object # noqa: F811
NNTestCase = object # noqa: F811
class MPSReluTest(TestCase):
def _npRelu(self, np_features):
return np.maximum(np_features, np.zeros(np_features.shape)).astype(np_features.dtype)
def testNpRelu(self):
torch.testing.assert_allclose(
np.array([[0., 0.7, 0.0, 0.3, 0.0], [0.1, 0.0, 0.5, 0.0, 0.9]]),
self._npRelu(
np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7,
0.9]])))
def _testRelu(self, np_features, device):
np_relu = self._npRelu(np_features)
# Convert the numpy array to a PyTorch Tensor,
# and move the Tensor to the CPU/GPU based on the "device" parameter
py_tensor = torch.from_numpy(np_features).to(device)
py_relu = torch.nn.ReLU(inplace=False)(py_tensor)
py_relu_cpu = py_relu.to("cpu")
torch.testing.assert_allclose(np_relu, py_relu_cpu)
def _testReluInPlace(self, np_features, device):
np_relu = self._npRelu(np_features)
# Convert the numpy array to a PyTorch Tensor,
# and move the Tensor to the CPU/GPU based on the "device" parameter
py_tensor = torch.from_numpy(np_features).to(device)
py_relu = torch.nn.ReLU(inplace=True)(py_tensor)
py_relu_cpu = py_relu.to("cpu")
torch.testing.assert_allclose(np_relu, py_relu_cpu)
# Inplace Relu modifies the initial input and it should match the output of Relu
torch.testing.assert_allclose(np_relu, py_tensor.to("cpu"))
def testNumbersCPU(self):
for t in [np.int32]:
# Force execution on CPU even if a GPU kernel is available for the type.
self._testRelu(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
device="cpu")
self._testReluInPlace(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
device="cpu")
def testNumbersGPU(self):
for t in [np.float16, np.float32]:
self._testRelu(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
device="mps")
self._testReluInPlace(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
device="mps")
class MatmulTest(TestCase):
def _helper(self, shape_tensor_1, shape_tensor_2, expand_tensor_1_shape=None, expand_tensor_2_shape=None):
if expand_tensor_1_shape:
tensor1_mps = torch.randn(shape_tensor_1, device="mps").expand(expand_tensor_1_shape)
else:
tensor1_mps = torch.randn(shape_tensor_1, device="mps")
if expand_tensor_2_shape:
tensor2_mps = torch.randn(shape_tensor_2, device="mps").expand(expand_tensor_2_shape)
else:
tensor2_mps = torch.randn(shape_tensor_2, device="mps")
tensor1_cpu = tensor1_mps.to("cpu")
tensor2_cpu = tensor2_mps.to("cpu")
matmul_cpu = torch.matmul(tensor1_cpu, tensor2_cpu)
matmul_mps = torch.matmul(tensor1_mps, tensor2_mps)
self.assertEqual(matmul_cpu, matmul_mps.to("cpu"))
def test_vector_x_vector(self):
# uses `dot`
self._helper(3, 3)
def test_matrix_x_vector(self):
# uses `addmv`
self._helper((3, 4), 4)
def test_batched_matrix_x_broadcasted_vector(self):
self._helper((10, 3, 4), 4)
def test_batched_matrix_x_batched_matrix(self):
# uses `bmm.out`
self._helper((10, 3, 4), (10, 4, 5))
def test_batched_matrix_x_broadcasted_matrix(self):
self._helper((10, 3, 4), (4, 5))
class MPSLeakyReluTest(TestCase):
def _npLeakyRelu(self, np_features, negative_slope=0.1):
return np.maximum(np_features, negative_slope * np_features).astype(np_features.dtype)
def testNpLeakyRelu(self):
torch.testing.assert_allclose(
np.array([[-0.09, 0.7, -0.05, 0.3, -0.01],
[0.1, -0.03, 0.5, -0.07, 0.9]]),
self._npLeakyRelu(
np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7,
0.9]]),
negative_slope=0.1))
def _testLeakyRelu(self, np_features, negative_slope, device):
cpu_x = torch.from_numpy(np_features).requires_grad_()
mps_x = torch.from_numpy(np_features).to('mps').requires_grad_()
relu_op = torch.nn.LeakyReLU(negative_slope)
cpu_leaky_relu = relu_op(cpu_x)
mps_leaky_relu = relu_op(mps_x)
torch.testing.assert_allclose(cpu_leaky_relu, mps_leaky_relu.to('cpu'))
# test backward pass
cpu_grad = torch.ones_like(cpu_leaky_relu)
mps_grad = cpu_grad.to('mps')
cpu_leaky_relu.backward(gradient=cpu_grad)
mps_leaky_relu.backward(gradient=mps_grad)
torch.testing.assert_allclose(cpu_x.grad, mps_x.grad.to('cpu'))
def testNumbersCPU(self):
for t in [np.float32]:
self._testLeakyRelu(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
negative_slope=0.2,
device="cpu")
class TestAvgPool(TestCase):
def _sum_pool2d(self, x, kernel_size):
windows = torch.nn.functional.unfold(x, kernel_size=kernel_size, stride=kernel_size)
return torch.sum(windows, dim=1)
def _sum_pool3d(self, x, kernel_size):
# Because unfold does not support 3D sliding window we will split tensor to multiple tensors and calculate sum
h = kernel_size[0]
splited_x = [t.sum(0) for t in x.split(h) if t.size(0) == h]
# sum_pool2d assumes tensor in (1, 1, n, m) view, so unsqueeze two times
splited_x = [self._sum_pool2d(t.unsqueeze(0).unsqueeze(0), kernel_size[1:]) for t in splited_x]
joined_x = torch.cat(splited_x)
return joined_x.view(1, joined_x.numel())
def _avg_pool2d(self, x, kernel_size):
size = reduce((lambda x, y: x * y), kernel_size)
return self._sum_pool2d(x, kernel_size) / size
def _avg_pool3d(self, x, kernel_size):
size = reduce((lambda x, y: x * y), kernel_size)
return self._sum_pool3d(x, kernel_size) / size
def test_avg_pool2d_with_zero_divisor(self):
self.assertRaisesRegex(RuntimeError, "divisor must be not zero",
lambda: F.avg_pool2d(torch.zeros(3, 3, 3), (2, 2), divisor_override=0))
def test_doubletensor_avg_pool2d_with_divisor(self):
n, m = 3, 3
input = torch.rand(1, 1, n, m)
for i in range(1, n + 1):
for j in range(1, m + 1):
for divisor in [1, 7, i * j]:
actual = F.avg_pool2d(input[0], (i, j), divisor_override=divisor)
actual = actual.view(1, actual.numel())
expected = self._sum_pool2d(input, (i, j)) / divisor
self.assertEqual(actual, expected, rtol=0, atol=1e-5)
def test_avg_pool2d_ceil_mode(self):
# Regression test for gh-36977
x = 10 * torch.randn((1, 16, 4, 4))
y = torch.nn.functional.avg_pool2d(
x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2),
padding=(0, 1), stride=2)
self.assertTrue(not torch.isnan(y).any())
y = torch.nn.functional.avg_pool2d(
x.to('mps'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2),
padding=(0, 1), stride=2)
self.assertTrue(not torch.isnan(y).any())
class TestMPS(TestCase):
# @dtypes(*product([torch.float32, torch.int32], (torch.uint8, torch.bool)))
def test_masked_fill(self):
device = "mps"
dtype = torch.float32
mask_dtype = torch.bool
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
num_dest = 10
dst = torch.zeros(num_dest, dtype=dtype, device=device)
mask = torch.randint(2, (num_dest,), dtype=mask_dtype, device=device)
val = random.random()
dst2 = torch.zeros(num_dest, dtype=dtype)
mask_cpu = mask.to("cpu")
dst.masked_fill_(mask, val)
for i in range(num_dest):
if mask_cpu[i]:
dst2[i] = val
self.assertEqual(dst.to("cpu"), dst2, atol=0, rtol=0)
# test non-contiguous case
dst = ((torch.randn(num_dest, num_dest, num_dest) * 10).to(dtype)).permute((2, 0, 1))
dst2 = dst.contiguous()
if dtype.is_complex:
mask = dst.abs() > 0
else:
mask = dst > 0
self.assertTrue(not dst.is_contiguous())
self.assertTrue(dst2.is_contiguous())
dst.masked_fill_(mask.to(mask_dtype), val)
dst2.masked_fill_(mask.to(mask_dtype), val)
self.assertEqual(dst, dst2, atol=0, rtol=0)
if mask_dtype == torch.uint8:
self.assertEqual(len(w), 3)
warn = 'masked_fill_ received a mask with dtype torch.uint8,'
for wi in w:
self.assertEqual(str(wi.message)[0:52], str(warn))
else:
self.assertEqual(len(w), 0)
def test_exp(self, device="mps", dtype=torch.float):
for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()):
b = torch.arange(18, device="cpu") / 3 * math.pi
a = torch.tensor(v, dtype=dtype, device="cpu") * b
a = a.to(dtype).to("mps")
self.compare_with_numpy(torch.exp, np.exp, a)
def test_exp1(self, device="mps", dtype=torch.float):
input = torch.tensor([-0.1, 3.0, -0.9]).to('mps')
output = torch.exp(input).to('cpu')
print(output)
def _testLeakyRelu(self, np_features, negative_slope, device):
cpu_x = torch.from_numpy(np_features).requires_grad_()
mps_x = torch.from_numpy(np_features).to('mps').requires_grad_()
relu_op = torch.nn.LeakyReLU(negative_slope)
cpu_leaky_relu = relu_op(cpu_x)
mps_leaky_relu = relu_op(mps_x)
torch.testing.assert_allclose(cpu_leaky_relu, mps_leaky_relu.to('cpu'))
# test backward pass
cpu_grad = torch.ones_like(cpu_leaky_relu)
mps_grad = cpu_grad.to('mps')
cpu_leaky_relu.backward(gradient=cpu_grad)
mps_leaky_relu.backward(gradient=mps_grad)
torch.testing.assert_allclose(cpu_x.grad, mps_x.grad.to('cpu'))
def testNumbersGPU(self):
for t in [np.float32]:
self._testLeakyRelu(
np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t),
negative_slope=0.1,
device="mps")
def test_fill(self):
def helper(val, shape):
tensor = torch.zeros(shape, device='mps')
tensor_mps = tensor.fill_(val)
tensor_mps = torch.tanh(tensor_mps)
tensor_0 = torch.zeros(shape, device='cpu')
tensor_cpu = tensor_0.fill_(val)
tensor_cpu = torch.tanh(tensor_cpu)
self.assertEqual(tensor_mps, tensor_cpu)
helper(0, [1024])
helper(0.2, [2, 3])
def test_mm(self):
B = torch.ones(5, 6).to("mps")
C = torch.ones(6, 5).to("mps")
D = torch.mm(B, C).cpu()
torch.testing.assert_allclose(D, torch.full((5, 5), 6.0))
def test_addmm(self):
A = torch.ones(5, 5).to("mps")
B = torch.ones(5, 6).to("mps")
C = torch.ones(6, 5).to("mps")
D = torch.addmm(A, B, C).to("cpu")
torch.testing.assert_allclose(D, torch.full((5, 5), 7.0))
def test_bmm(self):
batch1_cpu = torch.randn(10, 3, 4)
batch2_cpu = torch.randn(10, 4, 5)
batch1_mps = batch1_cpu.detach().clone().to("mps")
batch2_mps = batch2_cpu.detach().clone().to("mps")
output_cpu = torch.bmm(batch1_cpu, batch2_cpu)
output_mps = torch.bmm(batch1_mps, batch2_mps)
self.assertEqual(output_cpu, output_mps)
self.assertEqual(output_cpu.size(), output_mps.size())
def test_addbmm(self):
M_cpu = torch.randn(3, 5)
batch1_cpu = torch.randn(10, 3, 4)
batch2_cpu = torch.randn(10, 4, 5)
M_mps = M_cpu.detach().clone().to("mps")
batch1_mps = batch1_cpu.detach().clone().to("mps")
batch2_mps = batch2_cpu.detach().clone().to("mps")
output_cpu = torch.addbmm(M_cpu, batch1_cpu, batch2_cpu)
output_mps = torch.addbmm(M_mps, batch1_mps, batch2_mps)
self.assertEqual(output_cpu, output_mps)
self.assertEqual(output_cpu.size(), output_mps.size())
def test_baddbmm(self):
M_cpu = torch.randn(3, 5)
batch1_cpu = torch.randn(10, 3, 4)
batch2_cpu = torch.randn(10, 4, 5)
alpha = 1.2
beta = 0.8
M_mps = M_cpu.detach().clone().to("mps")
batch1_mps = batch1_cpu.detach().clone().to("mps")
batch2_mps = batch2_cpu.detach().clone().to("mps")
output_cpu = torch.baddbmm(M_cpu, batch1_cpu, batch2_cpu, beta=beta, alpha=alpha)
output_mps = torch.baddbmm(M_mps, batch1_mps, batch2_mps, beta=beta, alpha=alpha)
self.assertEqual(output_cpu, output_mps)
self.assertEqual(output_cpu.size(), output_mps.size())
def test_local_scalar_dense_mps(self):
x_cpu = torch.randn(1)
y_mps = x_cpu.to("mps")
torch.testing.assert_allclose(x_cpu.item(), y_mps.item())
def _linear_helper(self, in_features, out_features, shape, bias=True, backward_pass=False):
cpu_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="cpu", bias=bias)
mps_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="mps", bias=bias)
# Use the same weights and bias as the ones from the cpu
mps_linear.weight.data = cpu_linear.weight.data.detach().clone().to("mps")
if bias:
mps_linear.bias.data = cpu_linear.bias.data.detach().clone().to("mps")
linear_mps_input = torch.randn(shape).to('mps')
linear_cpu_input = linear_mps_input.detach().clone().to('cpu')
if backward_pass:
linear_mps_input = linear_mps_input.requires_grad_()
linear_cpu_input = linear_cpu_input.requires_grad_()
linear_cpu_output = cpu_linear(linear_cpu_input)
linear_mps_output = mps_linear(linear_mps_input)
self.assertEqual(linear_cpu_output, linear_mps_output.to('cpu'))
self.assertEqual(linear_cpu_output.size(), linear_mps_output.size())
if backward_pass:
cpu_grad = torch.ones_like(linear_cpu_output)
grad = cpu_grad.to('mps')
linear_cpu_output.backward(gradient=cpu_grad)
linear_mps_output.backward(gradient=grad)
self.assertEqual(linear_cpu_input.grad.size(), linear_mps_input.grad.size())
self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad.to("cpu"), atol=8e-04, rtol=10.4e-05)
self.assertEqual(cpu_linear.weight.grad.size(), mps_linear.weight.grad.size())
self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad.to("cpu"), atol=8e-04, rtol=10.4e-05)
if bias:
self.assertEqual(cpu_linear.bias.grad.size(), mps_linear.bias.grad.size())
self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad.to("cpu"), atol=8e-04, rtol=10.4e-05)
def test_linear2D(self):
self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=True, backward_pass=False)
def test_linear2D_backward(self):
self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=True, backward_pass=True)
def test_linear2D_no_bias(self):
self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=False, backward_pass=False)
def test_linear2D_no_bias_backward(self):
self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=False, backward_pass=True)
def test_linear3D(self):
self._linear_helper(in_features=200, out_features=33278, shape=((35, 20, 200)), bias=True, backward_pass=False)
def test_linear3D_backwarwd(self):
self._linear_helper(in_features=200, out_features=33278, shape=((35, 20, 200)), bias=True, backward_pass=True)
def test_linear3D_no_bias(self):
self._linear_helper(in_features=200, out_features=33278, shape=((35, 20, 200)), bias=True, backward_pass=False)
def test_linear3D_no_bias_backward(self):
self._linear_helper(in_features=200, out_features=33278, shape=((35, 20, 200)), bias=True, backward_pass=True)
def test_uniform(self):
low = torch.zeros(5, 5, requires_grad=True)
high = (torch.ones(5, 5) * 3).requires_grad_()
low_1d = torch.zeros(1, requires_grad=True)
high_1d = (torch.ones(1) * 3).requires_grad_()
self.assertEqual(Uniform(low, high).sample().size(), (5, 5))
self.assertEqual(Uniform(low, high).sample((7,)).size(), (7, 5, 5))
# self.assertEqual(Uniform(low_1d, high_1d).sample().size(), (1,))
# self.assertEqual(Uniform(low_1d, high_1d).sample((1,)).size(), (1, 1))
# self.assertEqual(Uniform(0.0, 1.0).sample((1,)).size(), (1,))
# # Check log_prob computation when value outside range
# uniform = Uniform(low_1d, high_1d, validate_args=False)
# above_high = torch.tensor([4.0])
# below_low = torch.tensor([-1.0])
# self.assertEqual(uniform.log_prob(above_high).item(), -inf)
# self.assertEqual(uniform.log_prob(below_low).item(), -inf)
# # check cdf computation when value outside range
# self.assertEqual(uniform.cdf(below_low).item(), 0)
# self.assertEqual(uniform.cdf(above_high).item(), 1)
# set_rng_seed(1)
# self._gradcheck_log_prob(Uniform, (low, high))
# self._gradcheck_log_prob(Uniform, (low, 1.0))
# self._gradcheck_log_prob(Uniform, (0.0, high))
# state = torch.get_rng_state()
# rand = low.new(low.size()).uniform_()
# torch.set_rng_state(state)
# u = Uniform(low, high).rsample()
# u.backward(torch.ones_like(u))
# self.assertEqual(low.grad, 1 - rand)
# self.assertEqual(high.grad, rand)
# low.grad.zero_()
# high.grad.zero_()
# Test forward maxpool2d
def test_max_pool2d(self):
def helper(shape, ks, padding=0, dilation=1, ceil_mode=False, return_indices=False, test_ties=False):
cpu_x = None
if(test_ties):
cpu_x = torch.ones(shape, device='cpu', dtype=torch.float, requires_grad=True)
else:
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
pool = torch.nn.MaxPool2d(kernel_size=ks, padding=padding, dilation=dilation,
ceil_mode=ceil_mode, return_indices=return_indices)
if(return_indices is False):
y = pool(x)
ref_y = pool(cpu_x)
cpu_grad = torch.ones_like(ref_y)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y)
self.assertEqual(x.grad, cpu_x.grad)
else:
y, idx = pool(x)
ref_y, ref_idx = pool(cpu_x)
cpu_grad = torch.ones_like(ref_y)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y)
self.assertEqual(idx, ref_idx)
self.assertEqual(x.grad, cpu_x.grad)
# Test with no batch dimension
helper((8, 4, 4), ks=2)
helper((2, 8, 4, 4), ks=2)
helper((1, 100000, 32, 32), ks=4)
helper((1, 100000, 1, 4), ks=(1, 4)) # test for max_pool1d
# Test padding
helper((1, 100000, 32, 32), ks=4, padding=1)
helper((1, 100000, 1, 4), ks=(1, 4), padding=(0, 1)) # test for max_pool1d
# Test dilation
helper((1, 100000, 32, 32), ks=4, dilation=2)
helper((1, 100000, 1, 4), ks=(1, 4), padding=(0, 2)) # test for max_pool1d
# Test ceil mode
helper((1, 100000, 32, 32), ks=4, ceil_mode=True)
helper((1, 100000, 1, 4), ks=(1, 4), ceil_mode=True) # test for max_pool1d
# Test return indices
for test_ties in [False, True]:
# Test with no batch dimension
helper((8, 4, 4), ks=2, return_indices=True, test_ties=test_ties)
helper((2, 8, 4, 4), ks=2, return_indices=True, test_ties=test_ties)
helper((1, 100000, 32, 32), ks=4, return_indices=True, test_ties=test_ties)
helper((1, 100000, 1, 4), ks=(1, 4), return_indices=True, test_ties=test_ties) # test for max_pool1d
# Test padding
helper((1, 100000, 32, 32), ks=4, padding=1, return_indices=True, test_ties=test_ties)
helper((1, 100000, 1, 4), ks=(1, 4), padding=(0, 1),
return_indices=True, test_ties=test_ties) # test for max_pool1d
# Test dilation
helper((1, 100000, 32, 32), ks=4, dilation=2, return_indices=True, test_ties=test_ties)
helper((1, 100000, 1, 4), ks=(1, 4), padding=(0, 2),
return_indices=True, test_ties=test_ties) # test for max_pool1d
# Test ceil mode
helper((1, 100000, 32, 32), ks=4, ceil_mode=True, return_indices=True, test_ties=test_ties)
helper((1, 100000, 1, 4), ks=(1, 4), ceil_mode=True,
return_indices=True, test_ties=test_ties) # test for max_pool1d
def test_adaptive_avg_pool2d_output_size_one(self):
def helper(size, memory_format):
x = torch.randint(1, 10, size, dtype=torch.float, device='mps', requires_grad=True)
x = x.to(memory_format=memory_format)
net = torch.nn.AdaptiveAvgPool2d((1, 1))
out = net(x)
ref_out = x.contiguous().mean((-1, -2)).view((x.size(0), x.size(1), 1, 1))
out.sum().backward() # make sure it doesn't crash
self.assertEqual(out, ref_out)
if memory_format == torch.channels_last:
self.assertTrue(out.is_contiguous(memory_format=torch.channels_last))
c = out.size(1)
self.assertEqual(out.stride(), [c, 1, c, c])
else:
self.assertTrue(out.is_contiguous())
c = out.size(1)
self.assertEqual(out.stride(), [c, 1, 1, 1])
helper((2, 3, 6, 6), torch.contiguous_format)
# Test forward batch norm
def test_batch_norm(self):
def helper(shape, eps=1, momentum=0.1, wts=False, training=False, channels_last=False,
track_running_stats=True, test_module=False):
import numpy as np
np.random.seed(332)
arr = (256 - 128) * np.random.random_sample(size=shape) + 128
cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True)
if(channels_last):
cpu_x = cpu_x.to(memory_format=torch.channels_last)
cpu_x.retain_grad()
x = cpu_x.detach().clone().to('mps').requires_grad_()
mean_shape = [shape[1]]
cpu_running_mean = None
cpu_running_var = None
running_mean = None
running_var = None
if(track_running_stats):
mean_arr = (240 - 140) * np.random.random_sample(size=mean_shape) + 140
cpu_running_mean = torch.tensor(mean_arr, device='cpu', dtype=torch.float)
var_arr = 32 * np.random.random_sample(size=mean_shape)
cpu_running_var = torch.tensor(var_arr, device='cpu', dtype=torch.float)
running_mean = cpu_running_mean.detach().clone().to('mps')
running_var = cpu_running_var.detach().clone().to('mps')
weight = None
cpu_weight = None
bias = None
cpu_bias = None
if(wts):
cpu_weight = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True)
weight = cpu_weight.detach().clone().to('mps').requires_grad_()
cpu_bias = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True)
bias = cpu_bias.detach().clone().to('mps').requires_grad_()
y = None
ref_y = None
if(not test_module):
y = torch.nn.functional.batch_norm(x, running_mean, running_var,
weight=weight,
bias=bias,
training=training,
momentum=momentum, eps=eps)
ref_y = torch.nn.functional.batch_norm(cpu_x, cpu_running_mean, cpu_running_var,
weight=cpu_weight,
bias=cpu_bias,
training=training,
momentum=momentum, eps=eps)
else:
batchnorm_op = None
mps_batchnorm_op = None
if(len(shape) == 3):
batchnorm_op = torch.nn.BatchNorm1d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='cpu')
mps_batchnorm_op = torch.nn.BatchNorm1d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='mps')
elif(len(shape) == 4):
batchnorm_op = torch.nn.BatchNorm2d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='cpu')
mps_batchnorm_op = torch.nn.BatchNorm2d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='mps')
elif(len(shape) == 5):
batchnorm_op = torch.nn.BatchNorm3d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='cpu')
mps_batchnorm_op = torch.nn.BatchNorm3d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='mps')
if(track_running_stats):
batchnorm_op.running_mean = cpu_running_mean
batchnorm_op.running_var = cpu_running_var
mps_batchnorm_op.running_mean = running_mean
mps_batchnorm_op.running_var = running_var
if(wts):
batchnorm_op.weight = torch.nn.Parameter(cpu_weight)
batchnorm_op.bias = torch.nn.Parameter(cpu_bias)
mps_batchnorm_op.weight = torch.nn.Parameter(weight)
mps_batchnorm_op.bias = torch.nn.Parameter(bias)
ref_y = batchnorm_op(cpu_x)
y = mps_batchnorm_op(x)
self.assertEqual(y, ref_y)
if(not test_module):
self.assertEqual(running_mean, cpu_running_mean)
self.assertEqual(running_var, cpu_running_var)
else:
self.assertEqual(mps_batchnorm_op.running_mean, batchnorm_op.running_mean)
self.assertEqual(mps_batchnorm_op.running_var, batchnorm_op.running_var)
cpu_grad = torch.randn(ref_y.shape)
grad = cpu_grad.to('mps')
ref_y.backward(gradient=cpu_grad)
y.backward(gradient=grad)
self.assertEqual(x.grad, cpu_x.grad)
if(wts):
if(not test_module):
self.assertEqual(weight.grad, cpu_weight.grad)
self.assertEqual(bias.grad, cpu_bias.grad)
else:
self.assertEqual(mps_batchnorm_op.weight.grad, batchnorm_op.weight.grad)
self.assertEqual(mps_batchnorm_op.bias.grad, batchnorm_op.bias.grad)
for shape in [(2, 3, 2, 2), (2, 3, 2, 2, 2), (2, 3, 2)]:
for test_module in [False, True]:
for track_running_stats in [True, False]:
for channels_last in [False, True]:
if(channels_last and len(shape) != 4):
continue
# Running stats must be tracked in eval mode
if(track_running_stats):
helper(shape, eps=0, momentum=1, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1e-05, momentum=0.1, wts=False, training=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=0, momentum=1.0, wts=False, training=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1, momentum=1, wts=True, training=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=3, momentum=0.67, wts=True, training=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1e-05, momentum=0.1, wts=False, training=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=0, momentum=1.0, wts=False, training=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1, momentum=1, wts=True, training=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=3, momentum=0.67, wts=True, training=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
# Test forward instance norm
def test_instance_norm(self):
def helper(shape, eps=1, momentum=0.1, wts=False, channels_last=False, track_running_stats=True, test_module=False):
import numpy as np
np.random.seed(332)
arr = (256 - 128) * np.random.random_sample(size=shape) + 128
cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True)
if(channels_last):
cpu_x = cpu_x.to(memory_format=torch.channels_last)
cpu_x.retain_grad()
x = cpu_x.detach().clone().to('mps').requires_grad_()
mean_shape = [shape[1]]
cpu_running_mean = None
cpu_running_var = None
running_mean = None
running_var = None
if(track_running_stats):
mean_arr = (240 - 140) * np.random.random_sample(size=mean_shape) + 140
cpu_running_mean = torch.tensor(mean_arr, device='cpu', dtype=torch.float)
var_arr = 32 * np.random.random_sample(size=mean_shape)
cpu_running_var = torch.tensor(var_arr, device='cpu', dtype=torch.float)
running_mean = cpu_running_mean.detach().clone().to('mps')
running_var = cpu_running_var.detach().clone().to('mps')
weight = None
cpu_weight = None
bias = None
cpu_bias = None
if(wts):
cpu_weight = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True)
weight = cpu_weight.detach().clone().to('mps').requires_grad_()
cpu_bias = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True)
bias = cpu_bias.detach().clone().to('mps').requires_grad_()
y = None
ref_y = None
if(not test_module):
ref_y = torch.nn.functional.instance_norm(cpu_x, cpu_running_mean, cpu_running_var,
weight=cpu_weight,
bias=cpu_bias,
momentum=momentum, eps=eps)
y = torch.nn.functional.instance_norm(x, running_mean, running_var,
weight=weight,
bias=bias,
momentum=momentum, eps=eps)
else:
instancenorm_op = None
mps_instancenorm_op = None
if(len(shape) == 3):
instancenorm_op = torch.nn.InstanceNorm1d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='cpu')
mps_instancenorm_op = torch.nn.InstanceNorm1d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='mps')
elif(len(shape) == 4):
instancenorm_op = torch.nn.InstanceNorm2d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='cpu')
mps_instancenorm_op = torch.nn.InstanceNorm2d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='mps')
elif(len(shape) == 5):
instancenorm_op = torch.nn.InstanceNorm3d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='cpu')
mps_instancenorm_op = torch.nn.InstanceNorm3d(shape[1],
eps=eps,
momentum=momentum,
affine=wts,
track_running_stats=track_running_stats,
device='mps')
if(track_running_stats):
instancenorm_op.running_mean = cpu_running_mean
instancenorm_op.running_var = cpu_running_var
mps_instancenorm_op.running_mean = running_mean
mps_instancenorm_op.running_var = running_var
if(wts):
instancenorm_op.weight = torch.nn.Parameter(cpu_weight)
instancenorm_op.bias = torch.nn.Parameter(cpu_bias)
mps_instancenorm_op.weight = torch.nn.Parameter(weight)
mps_instancenorm_op.bias = torch.nn.Parameter(bias)
ref_y = instancenorm_op(cpu_x)
y = mps_instancenorm_op(x)
self.assertEqual(y, ref_y)
if(not test_module):
self.assertEqual(running_mean, cpu_running_mean)
self.assertEqual(running_var, cpu_running_var)
else:
self.assertEqual(mps_instancenorm_op.running_mean, instancenorm_op.running_mean)
self.assertEqual(mps_instancenorm_op.running_var, instancenorm_op.running_var)
cpu_grad = torch.randn(ref_y.shape)
grad = cpu_grad.to('mps')
ref_y.backward(gradient=cpu_grad)
y.backward(gradient=grad)
self.assertEqual(x.grad, cpu_x.grad)
if(wts):
if(not test_module):
self.assertEqual(weight.grad, cpu_weight.grad)
self.assertEqual(bias.grad, cpu_bias.grad)
else:
self.assertEqual(mps_instancenorm_op.weight.grad, instancenorm_op.weight.grad)
self.assertEqual(mps_instancenorm_op.bias.grad, instancenorm_op.bias.grad)
for shape in [(2, 3, 2, 2), (2, 3, 2, 2, 2), (2, 3, 2)]:
for test_module in [False, True]:
for track_running_stats in [True, False]:
for channels_last in [False]:
if(channels_last and len(shape) != 4):
continue
# Running stats must be tracked in eval mode
if(track_running_stats):
helper(shape, eps=0, momentum=1, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1e-05, momentum=0.1, wts=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=0, momentum=1.0, wts=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1, momentum=1, wts=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=3, momentum=0.67, wts=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1e-05, momentum=0.1, wts=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=0, momentum=1.0, wts=False, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=1, momentum=1, wts=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
helper(shape, eps=3, momentum=0.67, wts=True, channels_last=channels_last,
track_running_stats=track_running_stats, test_module=test_module)
# Test conv2d
def test_conv2d_unit(self):
def helper(input_shape, wt_shape,
stride=1, padding=0,
dilation=1, groups=1,
bias_shape=None):
cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
cpu_wt = torch.randn(wt_shape, device='cpu', dtype=torch.float, requires_grad=True)
wt = cpu_wt.detach().clone().to('mps').requires_grad_()
cpu_bias = None
bias = None
if(bias_shape is not None):
cpu_bias = torch.randn(bias_shape, device='cpu', dtype=torch.float, requires_grad=True)
bias = cpu_bias.detach().clone().to('mps').requires_grad_()
y = torch.nn.functional.conv2d(x, wt, bias=bias, stride=stride,
padding=padding, dilation=dilation, groups=groups)
ref_y = torch.nn.functional.conv2d(cpu_x, cpu_wt, bias=cpu_bias, stride=stride,
padding=padding, dilation=dilation, groups=groups)
cpu_grad = torch.ones_like(ref_y)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y, rtol=2.6e-05, atol=2e-04)
self.assertEqual(x.grad, cpu_x.grad, rtol=2.6e-06, atol=2e-05)
self.assertEqual(wt.grad, cpu_wt.grad, atol=8e-04, rtol=10.4e-05)
# if(bias_shape is not None):
# print(cpu_bias.grad)
# print(bias.grad.to('cpu'))
# self.assertEqual(bias.grad, cpu_bias.grad, atol=8e-04, rtol=10.4e-05)
N = 1
C_in = 3
C_out = 64
H = 64
W = 64
kH = 4
kW = 4
stride = 2
padding = 1
helper((N, C_in, H, W), (C_out, C_in, kH, kW), stride=stride, padding=padding)
N = 4
C_in = 16
H = 32
W = 32
C_out = 8
kH = 3
kW = 3
for groups in [1, 2, 4]:
helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), groups=groups)
helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), groups=groups)
helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), bias_shape=(C_out), groups=groups)
helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), bias_shape=(C_out), groups=groups)
helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, kH + 2, kW + 2), groups=groups)
helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, kH + 2, kW + 2), groups=groups)
helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups,
kH + 2, kW + 2), bias_shape=(C_out * 2), groups=groups)
helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups,
kH + 2, kW + 2), bias_shape=(C_out * 2), groups=groups)
# Test conv transpose 2d
def test_conv_transpose2d(self):
def helper(input_shape, wt_shape,
stride=1, padding=0,
output_padding=0,
dilation=1, groups=1,
bias_shape=None):
cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
cpu_wt = torch.randn(wt_shape, device='cpu', dtype=torch.float, requires_grad=True)
wt = cpu_wt.detach().clone().to('mps').requires_grad_()
cpu_bias = None
bias = None
if(bias_shape is not None):
cpu_bias = torch.randn(bias_shape, device='cpu', dtype=torch.float, requires_grad=True)
bias = cpu_bias.detach().clone().to('mps').requires_grad_()
y = torch.nn.functional.conv_transpose2d(
x, wt, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
ref_y = torch.nn.functional.conv_transpose2d(
cpu_x, cpu_wt, bias=cpu_bias, stride=stride, padding=padding,
output_padding=output_padding, groups=groups, dilation=dilation)
cpu_grad = torch.randn(ref_y.shape)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y, rtol=2.6e-05, atol=2e-04)
self.assertEqual(x.grad, cpu_x.grad, rtol=2.6e-06, atol=2e-05)
self.assertEqual(wt.grad, cpu_wt.grad, atol=8e-04, rtol=10.4e-05)
# if(bias_shape is not None):
# print(cpu_bias.grad)
# print(bias.grad.to('cpu'))
# self.assertEqual(bias.grad, cpu_bias.grad)
N = 4
C_in = 16
H = 32
W = 32
C_out = 8
groups = 1
kH = 3
kW = 3
for stride in [1, 2, 3]:
for padding in [0, 1, 2]:
for output_padding in [0, 1, 2]:
for dilation in [1, 2]:
if(output_padding >= stride or output_padding >= dilation):
continue
helper((N, C_out, H, W), (C_out, C_in, kH, kW), stride=stride,
padding=padding, output_padding=output_padding, dilation=dilation)
helper((N, C_out, H, W), (C_out, C_in, kH, kW), stride=stride,
padding=padding, output_padding=output_padding, dilation=dilation)
helper((N, C_out, H, W), (C_out, C_in, kH, kW), bias_shape=(C_in), stride=stride,
padding=padding, output_padding=output_padding, dilation=dilation)
helper((N, C_out, H, W), (C_out, C_in, kH, kW), bias_shape=(C_in), stride=stride,
padding=padding, output_padding=output_padding, dilation=dilation)
# Test sigmoid
def test_sigmoid(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
sigmoid_op = torch.nn.Sigmoid()
y = sigmoid_op(x)
ref_y = sigmoid_op(cpu_x)
cpu_grad = torch.ones_like(ref_y)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 3, 4, 5))
helper((2, 3, 4))
helper((2, 8, 4, 5))
# Test tanh
def test_tanh(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
tanh_op = torch.nn.Tanh()
y = tanh_op(x)
ref_y = tanh_op(cpu_x)
cpu_grad = torch.ones_like(ref_y)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 3, 4, 5))
helper((2, 3, 4))
helper((2, 8, 4, 5))
def test_threshold(self):
def helper(threshold, value, num_elems, inplace=False, requires_grad=True):
m = nn.Threshold(threshold=threshold, value=value, inplace=inplace)
input_cpu = torch.randn(num_elems, requires_grad=requires_grad, dtype=torch.float)
input_mps = input_cpu.detach().clone().to('mps').requires_grad_(requires_grad)
output_cpu = m(input_cpu)
output_mps = m(input_mps)
cpu_grad = torch.ones_like(output_cpu)
mps_grad = cpu_grad.to('mps')
self.assertEqual(output_cpu, output_mps)
if requires_grad:
output_cpu.backward(gradient=cpu_grad)
output_mps.backward(gradient=mps_grad)
self.assertEqual(input_cpu.grad, input_mps.grad)
helper(threshold=0.1, value=20, num_elems=2)
helper(threshold=-0.1, value=10, num_elems=10)
helper(threshold=0.5, value=-15, num_elems=100)
helper(threshold=1, value=10, num_elems=100, inplace=True, requires_grad=False)
# Test pow
def test_pow(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
z = torch.pow(x, y)
ref_z = torch.pow(cpu_x, cpu_y)
self.assertEqual(z, ref_z)
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
exp = random.random()
z = torch.pow(x, exp)
ref_z = torch.pow(cpu_x, exp)
self.assertEqual(z, ref_z)
helper((2, 8, 4, 5))
# Test addcmul
def test_addcmul(self):
def helper(shape, value):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
z = cpu_z.detach().clone().to('mps')
y = torch.addcmul(x, y, z, value=value)
ref_y = torch.addcmul(cpu_x, cpu_y, cpu_z, value=value)
self.assertEqual(y, ref_y)
helper((2, 3, 4, 5), 0.1)
helper((2, 8, 4, 5), 0.1)
helper((2, 3, 4, 5), 0.2)
helper((2, 8, 4, 5), 0.2)
# Test addcdiv
def test_addcdiv(self):
def helper(shape, value):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
# clamp to avoid division by 0
cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False).clamp_min_(0.1)
cpu_out = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
mps_z = cpu_z.detach().clone().to('mps')
mps_out = cpu_out.detach().clone().to('mps')
result_div_mps = torch.addcdiv(mps_x, mps_y, mps_z, value=value)
result_div_cpu = torch.addcdiv(cpu_x, cpu_y, cpu_z, value=value)
self.assertEqual(result_div_mps, result_div_cpu)
# test .out variant
self.assertEqual(torch.addcdiv(mps_x, mps_y, mps_z, out=mps_out, value=value), result_div_cpu)
helper((2, 3, 4, 5), 0.1)
helper((2, 8, 4, 5), 0.2)
helper((2, 3, 4, 5), 1.0) # value of 1 should be ignored internally
def test_transpose_inplace(self):
values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
cpu_x = torch.tensor(values, device='cpu')
mps_x = torch.tensor(values, device='mps')
cpu_x.transpose_(0, 1)
mps_x.transpose_(0, 1)
self.assertEqual(cpu_x, mps_x.to('cpu'))
def test_slice(self):
values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
cpu_x = torch.tensor(values, device='cpu')
mps_x = (torch.tensor(values, device='mps', dtype=torch.float))
cpu_slice1 = cpu_x[:2, :]
mps_slice1 = mps_x[:2, :]
print(mps_slice1)
self.assertEqual(cpu_slice1, mps_slice1)
cpu_slice2 = cpu_x[:, :1]
mps_slice2 = mps_x[:, :1]
print(cpu_slice2)
print(mps_slice2.to('cpu'))
self.assertEqual(cpu_slice2, mps_slice2)
cpu_slice3 = cpu_x[1:2, :]
mps_slice3 = mps_x[1:2, :]
self.assertEqual(cpu_slice3, mps_slice3.to('cpu'))
cpu_slice4 = cpu_x[1, :]
mps_slice4 = mps_x[1, :].to('cpu')
self.assertEqual(cpu_slice4, mps_slice4)
def test_flatten(self):
values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]]
cpu_x = torch.tensor(values, device='cpu')
mps_x = torch.tensor(values, device='mps')
cpu_flatten1 = cpu_x.flatten()
mps_flatten1 = mps_x.flatten().to('cpu')
self.assertEqual(cpu_flatten1, mps_flatten1)
cpu_flatten2 = cpu_x.flatten(start_dim=1)
mps_flatten2 = mps_x.flatten(start_dim=1).to('cpu')
self.assertEqual(cpu_flatten2, mps_flatten2)
cpu_flatten3 = cpu_x.flatten(end_dim=1)
mps_flatten3 = mps_x.flatten(end_dim=1).to('cpu')
self.assertEqual(cpu_flatten3, mps_flatten3)
# Test repeat
def test_repeat(self):
def helper(shape, repeats):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
y = x.repeat(repeats)
ref_y = cpu_x.repeat(repeats)
cpu_grad = torch.randn(ref_y.shape)
grad = cpu_grad.to('mps')
y.backward(gradient=grad)
ref_y.backward(gradient=cpu_grad)
self.assertEqual(y, ref_y)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 3, 4, 5), (2, 3, 4, 5))
helper((2, 3, 4), (4, 3, 2, 5, 7, 2))
helper((3, 4, 5), (2, 3, 4, 5))
helper((3, 4, 5), (2, 2, 2))
def _test_module_empty_input(self, module, inp, check_size=True):
inp.requires_grad_(True)
out = module(inp)
gO = torch.rand_like(out)
out.backward(gO)
if check_size:
self.assertEqual(out.size(), inp.size())
for p in module.parameters():
if p.requires_grad:
self.assertEqual(p.grad, torch.zeros_like(p.grad))
self.assertEqual(inp.grad, torch.zeros_like(inp))
class TestSmoothL1Loss(TestCase):
def _smooth_l1_loss_helper(self, reduction="mean", requires_grad=False):
# CPU
input_cpu = torch.randn(4, 7, requires_grad=requires_grad)
target_cpu = torch.randn(4, 7)
# MPS
input_mps = input_cpu.detach().clone().to('mps').requires_grad_()
target_mps = target_cpu.detach().clone().to('mps')
smooth_l1_loss_cpu = F.smooth_l1_loss(input_cpu, target_cpu, beta=1.0, reduction=reduction)
smooth_l1_loss_mps = F.smooth_l1_loss(input_mps, target_mps, beta=1.0, reduction=reduction)
self.assertEqual(smooth_l1_loss_cpu, smooth_l1_loss_mps)
if requires_grad:
smooth_l1_loss_cpu.backward()
smooth_l1_loss_mps.backward()
self.assertEqual(input_cpu.grad, input_mps.grad.to("cpu"))
return smooth_l1_loss_cpu, smooth_l1_loss_mps
def test_smooth_l1_loss_reduction_none(self):
self._smooth_l1_loss_helper(reduction="none")
def test_smooth_l1_loss_reduction_mean(self):
self._smooth_l1_loss_helper(reduction="mean")
def test_smooth_l1_loss_reduction_sum(self):
self._smooth_l1_loss_helper(reduction="sum")
def test_smooth_l1_loss_reduction_mean_backward(self):
self._smooth_l1_loss_helper(reduction="mean", requires_grad=True)
def test_smooth_l1_loss_reduction_mean_sum_backward(self):
self._smooth_l1_loss_helper(reduction="sum", requires_grad=True)
class TestNLLLoss(TestCase):
def test_nll_loss_mismatched_batch(self, device='mps'):
x = torch.randn((10, 3), requires_grad=True, device=device)
# t should have size (10,)
t = torch.zeros((3,), dtype=torch.int64, device=device)
with self.assertRaisesRegex(ValueError, 'Expected.*batch_size'):
F.nll_loss(x, t)
def test_nll_loss_out_of_bounds_ignore_index(self):
def _test_nll_loss_out_of_bounds_ignore_index(device):
output = []
x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [
0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device)
t = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device)
for reduction in ['mean', 'none']:
output.append(F.nll_loss(x, t, ignore_index=255, reduction=reduction))
return output
output_cpu = _test_nll_loss_out_of_bounds_ignore_index(device='cpu')
output_mps = _test_nll_loss_out_of_bounds_ignore_index(device='mps')
for cpu, mps in zip(output_cpu, output_mps):
self.assertEqual(cpu, mps.to('cpu'))
def test_nll_loss_invalid_target_dim(self):
def _test_nll_loss_invalid_target_dim(device):
output = []
x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [
0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device)
t = torch.zeros((6, 2), dtype=torch.int64, device=device)
with self.assertRaisesRegex(RuntimeError, "1D target tensor expected"):
F.nll_loss(x, t)
_test_nll_loss_invalid_target_dim(device='cpu')
_test_nll_loss_invalid_target_dim(device='mps')
def test_nll_loss_invalid_weights(self):
def _test_nll_loss_invalid_weights(device):
x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [
0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device)
t = torch.tensor([0, 1, 2, 1, 1, 2], dtype=torch.int64, device=device)
invalid_weights = [
torch.zeros(4, device=device),
torch.zeros((1, 3), device=device),
]
msg = "weight tensor should be defined either for all 3 classes or no classes"
for weight in invalid_weights:
with self.assertRaisesRegex(RuntimeError, msg):
F.nll_loss(x, t, weight=weight)
_test_nll_loss_invalid_weights(device='cpu')
_test_nll_loss_invalid_weights(device='mps')
def _nll_loss_helper(self, input_size, reduction, expected):
# CPU
input = torch.rand(input_size, requires_grad=True, device='cpu')
num_channels = input_size[1]
target_size = (input_size[0], ) + tuple(input_size[2:])
target = torch.randint(num_channels, target_size, device='cpu')
# MPS
input_mps = input.detach().clone().to('mps').requires_grad_()
target_mps = target.detach().clone().to('mps')
output_cpu = F.nll_loss(input, target, reduction=reduction)
output_mps = F.nll_loss(input_mps, target_mps, reduction=reduction)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(output_cpu, output_mps.to('cpu'))
output_cpu.sum().backward()
output_mps.sum().backward()
self.assertEqual(input.grad, input_mps.grad.to('cpu'))
def test_as_strided(self):
def helper(n, c):
values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
values_1 = [[1.0, 1.0], [1.0, 1.0]]
cpu_x = torch.tensor(values, device='cpu')
ones1 = torch.tensor(values_1, device='mps')
x = cpu_x.detach().clone().to('mps').requires_grad_()
strided_cpu = torch.as_strided(cpu_x, (2, 2), (2, 2))
strided_mps = torch.as_strided(x, (2, 2), (2, 2))
print("Strided MPS {}".format(strided_mps.to('cpu')))
print("Strided cpu {}".format(strided_cpu))
self.assertEqual(strided_mps, strided_cpu)
helper(3, 3)
def test_nll_loss_empty_tensor_reduction_none(self, device='cpu'):
self._nll_loss_helper([1, 3], "none", torch.empty([0], device=device))
self._nll_loss_helper([3, 5, 7], "none", torch.empty([5, 7], device=device))
self._nll_loss_helper([2, 3, 1, 7], "none", torch.empty([2, 1, 7], device=device))
self._nll_loss_helper([2, 3, 5, 1], "none", torch.empty([2, 5, 1], device=device))
self._nll_loss_helper([2, 3, 5, 7, 1], "none", torch.empty([2, 5, 7, 1], device=device))
@unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN")
def test_nll_loss_empty_tensor_reduction_mean(self, device='cpu'):
nan = torch.tensor(float('nan'), device=device)
self._nll_loss_helper([1, 3], "mean", nan)
self._nll_loss_helper([1, 3, 5, 7], "mean", nan)
self._nll_loss_helper([2, 3, 1, 7], "mean", nan)
self._nll_loss_helper([2, 3, 5, 1], "mean", nan)
self._nll_loss_helper([2, 3, 5, 7, 1], "mean", nan)
def test_nll_loss_empty_tensor_reduction_sum(self, device='cpu'):
zero = torch.tensor(0, device=device)
self._nll_loss_helper([1, 3], "sum", zero)
self._nll_loss_helper([1, 3, 5, 7], "sum", zero)
self._nll_loss_helper([2, 3, 1, 7], "sum", zero)
self._nll_loss_helper([2, 3, 5, 1], "sum", zero)
self._nll_loss_helper([2, 3, 5, 7, 1], "sum", zero)
def test_nll_loss_byte_target_matches_long(self, device='cpu'):
N, C = 10, 4
input = torch.randn(N, C, device=device, requires_grad=True)
target = torch.empty(N, dtype=torch.long, device=device).random_(0, C)
def compute_result_and_gradient(reduction, target_dtype):
result, grad = {}, {}
for dev in ['cpu', 'mps']:
input_dev = input.to(dev)
input_ = input_dev.detach()
input_.requires_grad_()
target_dev = target.to(dev)
prob = F.log_softmax(input_, dim=-1)
loss = nn.NLLLoss(reduction=reduction)
result[dev] = loss(prob, target_dev.to(target_dtype))
result[dev].sum().backward()
grad[dev] = input_.grad
return result, grad
for reduction in ["none", "mean", "sum"]:
result_long, grad_long = compute_result_and_gradient(reduction, torch.long)
result_byte, grad_byte = compute_result_and_gradient(reduction, torch.uint8)
self.assertEqual(result_long['mps'].to('cpu'), result_long['cpu'])
self.assertEqual(grad_long['mps'].to('cpu'), grad_long['cpu'])
# Mean Squared Error
def test_mse_loss(self):
def helper(shape, reduction):
# create the criterion
loss = torch.nn.MSELoss(reduction=reduction)
inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
targetCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
inputMPS = inputCPU.detach().clone().to('mps').requires_grad_()
targetMPS = targetCPU.detach().clone().to('mps')
# forward pass
outputCPU = loss(inputCPU, targetCPU)
outputMPS = loss(inputMPS, targetMPS)
self.assertEqual(outputCPU, outputMPS)
# backward pass
if reduction != 'none':
# chose 2 just to make the grad_output > 1 in backward pass
outputCPU.backward(gradient=torch.full_like(outputCPU, 2))
outputMPS.backward(gradient=torch.full_like(outputMPS, 2))
self.assertEqual(inputCPU.grad, inputMPS.grad)
helper([8, 5, 4], 'none')
helper([7, 5, 2, 4], 'sum')
# verify if changes in shape would cause cached graph lookup problems
helper([7, 5, 2, 4, 6], 'sum')
helper([8, 4, 5, 7, 6], 'mean')
# Binary Cross Enropy
def test_bce_loss(self):
def helper(shape, reduction):
# create the criterion
loss = torch.nn.BCELoss(reduction=reduction)
# input and target must be within [0..1]
input_t = np.random.random_sample(size=shape).astype(np.float32)
target_t = np.random.random_sample(size=shape).astype(np.float32)
inputCPU = torch.tensor(input_t, device='cpu', dtype=torch.float, requires_grad=True)
targetCPU = torch.tensor(target_t, device='cpu', dtype=torch.float, requires_grad=False)
inputMPS = inputCPU.detach().clone().to('mps').requires_grad_()
targetMPS = targetCPU.detach().clone().to('mps')
# forward pass
outputCPU = loss(inputCPU, targetCPU)
outputMPS = loss(inputMPS, targetMPS)
self.assertEqual(outputCPU, outputMPS)
# backward pass
if reduction != 'none':
# chose 0.6 just to have the grad_output != 1
outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6))
outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6))
self.assertEqual(inputCPU.grad, inputMPS.grad)
helper([8, 5, 4], 'none')
helper([7, 5, 2, 4], 'sum')
# verify if changes in shape would cause cached graph lookup problems
helper([7, 5, 2, 4, 6], 'sum')
helper([8, 4, 5, 7, 6], 'mean')
def test_log_softmax(self):
values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]]
cpu_x = torch.tensor(values, device='cpu', requires_grad=True)
mps_x = torch.tensor(values, device='mps', requires_grad=True)
cpu_log_softmax = F.log_softmax(cpu_x, dim=0)
mps_log_softmax = F.log_softmax(mps_x, dim=0)
self.assertEqual(cpu_log_softmax, mps_log_softmax.to('cpu'))
cpu_grad = torch.ones_like(cpu_log_softmax)
mps_grad = torch.ones_like(cpu_log_softmax).to('mps')
cpu_log_softmax.backward(gradient=cpu_grad)
mps_log_softmax.backward(gradient=mps_grad)
self.assertEqual(cpu_x.grad, mps_x.grad.to('cpu'))
def test_eq(self):
values1 = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]]
values2 = [[[1.0, 2.0, 15.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [0.0, 11.0, 12.0]]]
mps_x = torch.tensor(values1, device='mps')
mps_y = torch.tensor(values2, device='mps')
cpu_x = torch.tensor(values1, device='cpu')
cpu_y = torch.tensor(values2, device='cpu')
result_mps = torch.eq(mps_x, mps_y)
result_cpu = torch.eq(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
def test_eq_int64(self):
values1 = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
values2 = [[[1, 2, 15], [4, 5, 6]], [[7, 8, 9], [0, 11, 12]]]
mps_x = torch.tensor(values1, device='mps')
mps_y = torch.tensor(values2, device='mps')
cpu_x = torch.tensor(values1, device='cpu')
cpu_y = torch.tensor(values2, device='cpu')
result_mps = torch.eq(mps_x, mps_y)
result_cpu = torch.eq(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
def test_ne(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
result_mps = torch.ne(mps_x, mps_y)
result_cpu = torch.ne(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_ne_scalar(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
result_mps = torch.ne(mps_x, 0.0)
result_cpu = torch.ne(cpu_x, 0.0)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_lt(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
result_mps = torch.lt(mps_x, mps_y)
result_cpu = torch.lt(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_lt_scalar(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
result_mps = torch.lt(mps_x, 0.0)
result_cpu = torch.lt(cpu_x, 0.0)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_le(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
result_mps = torch.le(mps_x, mps_y)
result_cpu = torch.le(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_le_scalar(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
result_mps = torch.le(mps_x, 0.0)
result_cpu = torch.le(cpu_x, 0.0)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_ge(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
result_mps = torch.ge(mps_x, mps_y)
result_cpu = torch.ge(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_ge_scalar(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
result_mps = torch.ge(mps_x, 0.0)
result_cpu = torch.ge(cpu_x, 0.0)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_gt(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
result_mps = torch.gt(mps_x, mps_y)
result_cpu = torch.gt(cpu_x, cpu_y)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
def test_gt_scalar(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float)
mps_x = cpu_x.detach().clone().to('mps')
result_mps = torch.gt(mps_x, 0.0)
result_cpu = torch.gt(cpu_x, 0.0)
self.assertEqual(result_cpu, result_mps.to('cpu'))
helper((2, 3, 4, 5))
# Test forward argmax
def test_argmax(self):
def helper(n, c, h, w, dtype=torch.float32):
cpu_x = None
x = None
if(dtype not in [torch.float32, torch.bool]):
cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
elif (dtype == torch.bool):
cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
else:
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
y = torch.argmax(x)
ref_y = torch.argmax(cpu_x)
self.assertEqual(y, ref_y)
y_0 = torch.argmax(x, dim=0)
refy_0 = torch.argmax(cpu_x, dim=0)
self.assertEqual(y_0, refy_0)
y_0dim = torch.argmax(x, dim=0, keepdim=True)
refy_0dim = torch.argmax(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
y_1 = torch.argmax(x, dim=1)
refy_1 = torch.argmax(cpu_x, dim=1)
self.assertEqual(y_1, refy_1)
y_1dim = torch.argmax(x, dim=1, keepdim=True)
refy_1dim = torch.argmax(cpu_x, dim=1, keepdim=True)
self.assertEqual(y_1dim, refy_1dim)
y_2 = torch.argmax(x, dim=2)
refy_2 = torch.argmax(cpu_x, dim=2)
self.assertEqual(y_2, refy_2)
y_2dim = torch.argmax(x, dim=2, keepdim=True)
refy_2dim = torch.argmax(cpu_x, dim=2, keepdim=True)
self.assertEqual(y_2dim, refy_2dim)
y_3 = torch.argmax(x, dim=3)
refy_3 = torch.argmax(cpu_x, dim=3)
self.assertEqual(y_3, refy_3)
y_3dim = torch.argmax(x, dim=3, keepdim=True)
refy_3dim = torch.argmax(cpu_x, dim=3, keepdim=True)
self.assertEqual(y_3dim, refy_3dim)
helper(2, 8, 4, 4, torch.float32)
helper(2, 8, 4, 4, torch.int32)
helper(2, 8, 4, 4, torch.float16)
helper(2, 8, 4, 4, torch.int64)
# Test forward max
# Note - don't test grad now
def test_max_el(self):
def helper(n, c, h, w, dtype=torch.float32):
if(dtype not in [torch.float32, torch.bool]):
cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
elif (dtype == torch.bool):
cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
else:
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True)
x = cpu_x.detach().clone().to('mps')
ref_y = torch.max(cpu_x)
y = torch.max(x)
self.assertEqual(y, ref_y)
for dim in [0, 1, 2, 3]:
for keepdim in [True, False]:
y, idx = torch.max(x, dim=dim, keepdim=keepdim)
refy, refidx = torch.max(cpu_x, dim=dim, keepdim=keepdim)
self.assertEqual(y, refy)
self.assertEqual(idx, refidx)
y_0 = torch.ones(c, h, w, device='mps', dtype=dtype)
idx_0 = torch.ones(c, h, w, device='mps', dtype=torch.int64)
torch.max(x, dim=0, out=(y_0, idx_0))
refy_0, refidx_0 = torch.max(cpu_x, dim=0)
self.assertEqual(y_0, refy_0)
self.assertEqual(idx_0, refidx_0)
y_0dim = torch.ones(1, c, h, w, device='mps', dtype=dtype)
idx_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.int64)
torch.max(x, dim=0, keepdim=True, out=(y_0dim, idx_0dim))
refy_0dim, refidx_0dim = torch.max(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
self.assertEqual(idx_0dim, refidx_0dim)
y_1 = torch.ones(n, h, w, device='mps', dtype=dtype)
idx_1 = torch.ones(n, h, w, device='mps', dtype=torch.int64)
torch.max(x, dim=1, out=(y_1, idx_1))
refy_1, refidx_1 = torch.max(cpu_x, dim=1)
self.assertEqual(y_1, refy_1)
self.assertEqual(idx_1, refidx_1)
y_1dim = torch.ones(n, 1, h, w, device='mps', dtype=dtype)
idx_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.int64)
torch.max(x, dim=1, keepdim=True, out=(y_1dim, idx_1dim))
refy_1dim, refidx_1dim = torch.max(cpu_x, keepdim=True, dim=1)
self.assertEqual(y_1dim, refy_1dim)
self.assertEqual(idx_1dim, refidx_1dim)
y_2 = torch.ones(n, c, w, device='mps', dtype=dtype)
idx_2 = torch.ones(n, c, w, device='mps', dtype=torch.int64)
torch.max(x, dim=2, out=(y_2, idx_2))
refy_2, refidx_2 = torch.max(cpu_x, dim=2)
self.assertEqual(y_2, refy_2)
self.assertEqual(idx_2, refidx_2)
y_2dim = torch.ones(n, c, 1, w, device='mps', dtype=dtype)
idx_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.int64)
torch.max(x, dim=2, keepdim=True, out=(y_2dim, idx_2dim))
refy_2dim, refidx_2dim = torch.max(cpu_x, dim=2, keepdim=True,)
self.assertEqual(y_2dim, refy_2dim)
self.assertEqual(idx_2dim, refidx_2dim)
y_3 = torch.ones(n, c, h, device='mps', dtype=dtype)
idx_3 = torch.ones(n, c, h, device='mps', dtype=torch.int64)
torch.max(x, dim=3, out=(y_3, idx_3))
refy_3, refidx_3 = torch.max(cpu_x, dim=3)
self.assertEqual(y_3, refy_3)
self.assertEqual(idx_3, refidx_3)
y_3dim = torch.ones(n, c, h, 1, device='mps', dtype=dtype)
idx_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.int64)
torch.max(x, dim=3, keepdim=True, out=(y_3dim, idx_3dim))
refy_3dim, refidx_3dim = torch.max(cpu_x, dim=3, keepdim=True,)
self.assertEqual(y_3dim, refy_3dim)
self.assertEqual(idx_3dim, refidx_3dim)
helper(2, 8, 4, 5, torch.float32)
helper(2, 8, 4, 5, torch.int32)
# helper(2, 8, 4, 5, torch.int64)
def test_any(self):
def helper(shape):
input_xs = []
prod = 1
for i in range(len(shape)):
prod *= shape[i]
input_xs.append(torch.randn(prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.arange(0, prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.ones(prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.zeros(prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape))
input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape))
input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape))
input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape).bool())
input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool())
input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool())
for i, cpu_x in enumerate(input_xs):
x = cpu_x.detach().clone().to('mps')
y = torch.any(x)
ref_y = torch.any(cpu_x)
self.assertEqual(y, ref_y)
y_0 = torch.any(x, dim=0)
refy_0 = torch.any(cpu_x, dim=0)
self.assertEqual(y_0, refy_0)
y_0dim = torch.any(x, dim=0, keepdim=True)
refy_0dim = torch.any(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
y_0dim = torch.any(x, dim=0, keepdim=True)
refy_0dim = torch.any(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
y_1 = torch.any(x, dim=1)
refy_1 = torch.any(cpu_x, dim=1)
self.assertEqual(y_1, refy_1)
y_1dim = torch.any(x, dim=1, keepdim=True)
refy_1dim = torch.any(cpu_x, dim=1, keepdim=True)
self.assertEqual(y_1dim, refy_1dim)
if (len(shape) > 2):
y_2 = torch.any(x, dim=2)
refy_2 = torch.any(cpu_x, dim=2)
self.assertEqual(y_2, refy_2)
y_2dim = torch.any(x, dim=2, keepdim=True)
refy_2dim = torch.any(cpu_x, dim=2, keepdim=True)
self.assertEqual(y_2dim, refy_2dim)
y_3 = torch.any(x, dim=3)
refy_3 = torch.any(cpu_x, dim=3)
self.assertEqual(y_3, refy_3)
y_3dim = torch.any(x, dim=3, keepdim=True)
refy_3dim = torch.any(cpu_x, dim=3, keepdim=True)
self.assertEqual(y_3dim, refy_3dim)
helper((1, 1, 1, 1))
helper((1, 1, 3, 3))
helper((7, 13))
helper((2, 8, 4, 5))
def test_all(self):
def helper(shape):
input_xs = []
prod = 1
for i in range(len(shape)):
prod *= shape[i]
input_xs.append(torch.randn(prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.arange(0, prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.ones(prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.zeros(prod, dtype=torch.float).reshape(shape))
input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape))
input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape))
input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape))
input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape).bool())
input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool())
input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool())
for i, cpu_x in enumerate(input_xs):
x = cpu_x.detach().clone().to('mps')
y = torch.all(x)
ref_y = torch.all(cpu_x)
self.assertEqual(y, ref_y)
y_0 = torch.all(x, dim=0)
refy_0 = torch.all(cpu_x, dim=0)
self.assertEqual(y_0, refy_0)
y_0dim = torch.all(x, dim=0, keepdim=True)
refy_0dim = torch.all(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
y_0dim = torch.all(x, dim=0, keepdim=True)
refy_0dim = torch.all(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
y_1 = torch.all(x, dim=1)
refy_1 = torch.all(cpu_x, dim=1)
self.assertEqual(y_1, refy_1)
y_1dim = torch.all(x, dim=1, keepdim=True)
refy_1dim = torch.all(cpu_x, dim=1, keepdim=True)
self.assertEqual(y_1dim, refy_1dim)
if (len(shape) > 2):
y_2 = torch.all(x, dim=2)
refy_2 = torch.all(cpu_x, dim=2)
self.assertEqual(y_2, refy_2)
y_2dim = torch.all(x, dim=2, keepdim=True)
refy_2dim = torch.all(cpu_x, dim=2, keepdim=True)
self.assertEqual(y_2dim, refy_2dim)
y_3 = torch.all(x, dim=3)
refy_3 = torch.all(cpu_x, dim=3)
self.assertEqual(y_3, refy_3)
y_3dim = torch.all(x, dim=3, keepdim=True)
refy_3dim = torch.all(cpu_x, dim=3, keepdim=True)
self.assertEqual(y_3dim, refy_3dim)
helper((1, 1, 1, 1))
helper((1, 1, 3, 3))
helper((7, 13))
helper((2, 8, 4, 5))
# Test forward min
def test_min_el(self):
def helper(n, c, h, w):
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
y = torch.min(x)
ref_y = torch.min(cpu_x)
self.assertEqual(y, ref_y)
y_0, idx_0 = torch.min(x, dim=0)
refy_0, refidx_0 = torch.min(cpu_x, dim=0)
self.assertEqual(y_0, refy_0)
self.assertEqual(idx_0, refidx_0)
y_0 = torch.ones(c, h, w, device='mps', dtype=torch.float)
idx_0 = torch.ones(c, h, w, device='mps', dtype=torch.int64)
torch.min(x, dim=0, out=(y_0, idx_0))
refy_0, refidx_0 = torch.min(cpu_x, dim=0)
self.assertEqual(y_0, refy_0)
self.assertEqual(idx_0, refidx_0)
y_0dim, idx_0dim = torch.min(x, dim=0, keepdim=True)
refy_0dim, refidx_0dim = torch.min(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
self.assertEqual(idx_0dim, refidx_0dim)
y_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.float)
idx_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.int64)
torch.min(x, dim=0, keepdim=True, out=(y_0dim, idx_0dim))
refy_0dim, refidx_0dim = torch.min(cpu_x, dim=0, keepdim=True)
self.assertEqual(y_0dim, refy_0dim)
self.assertEqual(idx_0dim, refidx_0dim)
y_1, idx_1 = torch.min(x, dim=1)
refy_1, refidx_1 = torch.min(cpu_x, dim=1)
self.assertEqual(y_1, refy_1)
self.assertEqual(idx_1, refidx_1)
y_1 = torch.ones(n, h, w, device='mps', dtype=torch.float)
idx_1 = torch.ones(n, h, w, device='mps', dtype=torch.int64)
torch.min(x, dim=1, out=(y_1, idx_1))
refy_1, refidx_1 = torch.min(cpu_x, dim=1)
self.assertEqual(y_1, refy_1)
self.assertEqual(idx_1, refidx_1)
y_1dim, idx_1dim = torch.min(x, dim=1, keepdim=True)
refy_1dim, refidx_1dim = torch.min(cpu_x, dim=1, keepdim=True)
self.assertEqual(y_1dim, refy_1dim)
self.assertEqual(idx_1dim, refidx_1dim)
y_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.float)
idx_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.int64)
torch.min(x, dim=1, keepdim=True, out=(y_1dim, idx_1dim))
refy_1dim, refidx_1dim = torch.min(cpu_x, keepdim=True, dim=1)
self.assertEqual(y_1dim, refy_1dim)
self.assertEqual(idx_1dim, refidx_1dim)
y_2, idx_2 = torch.min(x, dim=2)
refy_2, refidx_2 = torch.min(cpu_x, dim=2)
self.assertEqual(y_2, refy_2)
self.assertEqual(idx_2, refidx_2)
y_2 = torch.ones(n, c, w, device='mps', dtype=torch.float)
idx_2 = torch.ones(n, c, w, device='mps', dtype=torch.int64)
torch.min(x, dim=2, out=(y_2, idx_2))
refy_2, refidx_2 = torch.min(cpu_x, dim=2)
self.assertEqual(y_2, refy_2)
self.assertEqual(idx_2, refidx_2)
y_2dim, idx_2dim = torch.min(x, dim=2, keepdim=True)
refy_2dim, refidx_2dim = torch.min(cpu_x, dim=2, keepdim=True)
self.assertEqual(y_2dim, refy_2dim)
self.assertEqual(idx_2dim, refidx_2dim)
y_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.float)
idx_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.int64)
torch.min(x, dim=2, keepdim=True, out=(y_2dim, idx_2dim))
refy_2dim, refidx_2dim = torch.min(cpu_x, dim=2, keepdim=True,)
self.assertEqual(y_2dim, refy_2dim)
self.assertEqual(idx_2dim, refidx_2dim)
y_3, idx_3 = torch.min(x, dim=3)
refy_3, refidx_3 = torch.min(cpu_x, dim=3)
self.assertEqual(y_3, refy_3)
self.assertEqual(idx_3, refidx_3)
y_3 = torch.ones(n, c, h, device='mps', dtype=torch.float)
idx_3 = torch.ones(n, c, h, device='mps', dtype=torch.int64)
torch.min(x, dim=3, out=(y_3, idx_3))
refy_3, refidx_3 = torch.min(cpu_x, dim=3)
self.assertEqual(y_3, refy_3)
self.assertEqual(idx_3, refidx_3)
y_3dim, idx_3dim = torch.min(x, dim=3, keepdim=True)
refy_3dim, refidx_3dim = torch.min(cpu_x, dim=3, keepdim=True)
self.assertEqual(y_3dim, refy_3dim)
self.assertEqual(idx_3dim, refidx_3dim)
y_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.float)
idx_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.int64)
torch.min(x, dim=3, keepdim=True, out=(y_3dim, idx_3dim))
refy_3dim, refidx_3dim = torch.min(cpu_x, dim=3, keepdim=True,)
self.assertEqual(y_3dim, refy_3dim)
self.assertEqual(idx_3dim, refidx_3dim)
helper(2, 8, 4, 5)
# Test forward sum
def test_sum(self):
def helper(n, c, h, w, dtype=torch.float32):
cpu_x = None
x = None
if(dtype not in [torch.float32, torch.bool]):
cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
elif (dtype == torch.bool):
cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
else:
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
all_sum = torch.sum(x)
all_sum_cpu = torch.sum(cpu_x)
self.assertEqual(all_sum, all_sum_cpu)
nil_dim_sum = torch.sum(x, dim=[])
nil_dim_sum_cpu = torch.sum(cpu_x, dim=[])
self.assertEqual(nil_dim_sum, nil_dim_sum_cpu)
nil_dim_sum_keepdim = torch.sum(x, dim=[], keepdim=True)
nil_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[], keepdim=True)
self.assertEqual(nil_dim_sum_keepdim, nil_dim_sum_cpu_keepdim)
zero_dim_sum = torch.sum(x, dim=[0])
zero_dim_sum_cpu = torch.sum(cpu_x, dim=[0])
self.assertEqual(zero_dim_sum, zero_dim_sum_cpu)
zero_dim_sum_keepdim = torch.sum(x, dim=[0], keepdim=True)
zero_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[0], keepdim=True)
self.assertEqual(zero_dim_sum_keepdim, zero_dim_sum_cpu_keepdim)
zero_one_dim_sum = torch.sum(x, dim=[0, 1])
zero_one_dim_sum_cpu = torch.sum(cpu_x, dim=[0, 1])
self.assertEqual(zero_one_dim_sum, zero_one_dim_sum_cpu)
zero_one_dim_sum_keepdim = torch.sum(x, dim=[0, 1], keepdim=True)
zero_one_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[0, 1], keepdim=True)
self.assertEqual(zero_one_dim_sum_keepdim, zero_one_dim_sum_cpu_keepdim)
two_three_dim_sum = torch.sum(x, dim=[2, 3])
two_three_dim_sum_cpu = torch.sum(cpu_x, dim=[2, 3])
self.assertEqual(two_three_dim_sum, two_three_dim_sum_cpu)
two_three_keepdim_sum = torch.sum(x, dim=[2, 3], keepdim=True)
two_three_dim_keepsum_cpu = torch.sum(cpu_x, dim=[2, 3], keepdim=True)
self.assertEqual(two_three_keepdim_sum, two_three_dim_keepsum_cpu)
helper(2, 8, 4, 5)
helper(2, 8, 4, 5, dtype=torch.int32)
helper(2, 8, 4, 5, dtype=torch.int64)
helper(2, 8, 4, 5, dtype=torch.bool)
# Test forward prod
def test_prod(self):
def helper(shape, dtype=torch.float32):
cpu_x = None
x = None
if(dtype not in [torch.float32, torch.bool]):
cpu_x = torch.randint(1, 6, shape, device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
elif (dtype == torch.bool):
cpu_x = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
else:
cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
all_prod = torch.prod(x)
all_prod_cpu = torch.prod(cpu_x)
self.assertEqual(all_prod, all_prod_cpu)
for dim in range(len(shape)):
dim_prod = torch.prod(x, dim=dim)
dim_prod_cpu = torch.prod(cpu_x, dim=dim)
self.assertEqual(dim_prod, dim_prod_cpu)
dim_prod_keepdim = torch.prod(x, dim=dim, keepdim=True)
dim_prod_cpu_keepdim = torch.prod(cpu_x, dim=dim, keepdim=True)
self.assertEqual(dim_prod_keepdim, dim_prod_cpu_keepdim)
for dtype in [torch.float32, torch.int32, torch.int64, torch.bool]:
helper((2, 3), dtype)
# Test forward mean
def test_mean(self):
def helper(n, c, h, w):
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
all_mean = torch.mean(x)
all_mean_cpu = torch.mean(cpu_x)
self.assertEqual(all_mean, all_mean_cpu)
nil_dim_mean = torch.mean(x, dim=[])
nil_dim_mean_cpu = torch.mean(cpu_x, dim=[])
self.assertEqual(nil_dim_mean, nil_dim_mean_cpu)
nil_dim_mean_keepdim = torch.mean(x, dim=[], keepdim=True)
nil_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[], keepdim=True)
self.assertEqual(nil_dim_mean_keepdim, nil_dim_mean_cpu_keepdim)
zero_dim_mean = torch.mean(x, dim=[0])
zero_dim_mean_cpu = torch.mean(cpu_x, dim=[0])
self.assertEqual(zero_dim_mean, zero_dim_mean_cpu)
zero_dim_mean_keepdim = torch.mean(x, dim=[0], keepdim=True)
zero_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[0], keepdim=True)
self.assertEqual(zero_dim_mean_keepdim, zero_dim_mean_cpu_keepdim)
zero_one_dim_mean = torch.mean(x, dim=[0, 1])
zero_one_dim_mean_cpu = torch.mean(cpu_x, dim=[0, 1])
self.assertEqual(zero_one_dim_mean, zero_one_dim_mean_cpu)
zero_one_dim_mean_keepdim = torch.mean(x, dim=[0, 1], keepdim=True)
zero_one_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[0, 1], keepdim=True)
self.assertEqual(zero_one_dim_mean_keepdim, zero_one_dim_mean_cpu_keepdim)
two_three_dim_mean = torch.mean(x, dim=[2, 3])
two_three_dim_mean_cpu = torch.mean(cpu_x, dim=[2, 3])
self.assertEqual(two_three_dim_mean, two_three_dim_mean_cpu)
two_three_keepdim_mean = torch.mean(x, dim=[2, 3], keepdim=True)
two_three_dim_keepmean_cpu = torch.mean(cpu_x, dim=[2, 3], keepdim=True)
self.assertEqual(two_three_keepdim_mean, two_three_dim_keepmean_cpu)
helper(2, 8, 4, 5)
# Test std
def test_std(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
all_std = torch.std(x, unbiased=False)
all_std_cpu = torch.std(cpu_x, unbiased=False)
self.assertEqual(all_std, all_std_cpu)
nil_dim_std = torch.std(x, dim=[], unbiased=False)
nil_dim_std_cpu = torch.std(cpu_x, dim=[], unbiased=False)
self.assertEqual(nil_dim_std, nil_dim_std_cpu)
nil_dim_std_keepdim = torch.std(x, dim=[], keepdim=True, unbiased=False)
nil_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[], keepdim=True, unbiased=False)
self.assertEqual(nil_dim_std_keepdim, nil_dim_std_cpu_keepdim)
zero_dim_std = torch.std(x, dim=[0], unbiased=False)
zero_dim_std_cpu = torch.std(cpu_x, dim=[0], unbiased=False)
self.assertEqual(zero_dim_std, zero_dim_std_cpu)
zero_dim_std_keepdim = torch.std(x, dim=[0], keepdim=True, unbiased=False)
zero_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0], keepdim=True, unbiased=False)
self.assertEqual(zero_dim_std_keepdim, zero_dim_std_cpu_keepdim)
zero_one_dim_std = torch.std(x, dim=[0, 1], unbiased=False)
zero_one_dim_std_cpu = torch.std(cpu_x, dim=[0, 1], unbiased=False)
self.assertEqual(zero_one_dim_std, zero_one_dim_std_cpu)
zero_one_dim_std_keepdim = torch.std(x, dim=[0, 1], keepdim=True, unbiased=False)
zero_one_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0, 1], keepdim=True, unbiased=False)
self.assertEqual(zero_one_dim_std_keepdim, zero_one_dim_std_cpu_keepdim)
two_three_dim_std = torch.std(x, dim=[2, 3], unbiased=False)
two_three_dim_std_cpu = torch.std(cpu_x, dim=[2, 3], unbiased=False)
self.assertEqual(two_three_dim_std, two_three_dim_std_cpu)
two_three_keepdim_std = torch.std(x, dim=[2, 3], keepdim=True, unbiased=False)
two_three_dim_keepstd_cpu = torch.std(cpu_x, dim=[2, 3], keepdim=True, unbiased=False)
self.assertEqual(two_three_keepdim_std, two_three_dim_keepstd_cpu)
all_std = torch.std(x, unbiased=True)
all_std_cpu = torch.std(cpu_x, unbiased=True)
self.assertEqual(all_std, all_std_cpu)
nil_dim_std = torch.std(x, dim=[], unbiased=True)
nil_dim_std_cpu = torch.std(cpu_x, dim=[], unbiased=True)
self.assertEqual(nil_dim_std, nil_dim_std_cpu)
nil_dim_std_keepdim = torch.std(x, dim=[], keepdim=True, unbiased=True)
nil_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[], keepdim=True, unbiased=True)
self.assertEqual(nil_dim_std_keepdim, nil_dim_std_cpu_keepdim)
zero_dim_std = torch.std(x, dim=[0], unbiased=True)
zero_dim_std_cpu = torch.std(cpu_x, dim=[0], unbiased=True)
self.assertEqual(zero_dim_std, zero_dim_std_cpu)
zero_dim_std_keepdim = torch.std(x, dim=[0], keepdim=True, unbiased=True)
zero_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0], keepdim=True, unbiased=True)
self.assertEqual(zero_dim_std_keepdim, zero_dim_std_cpu_keepdim)
zero_one_dim_std = torch.std(x, dim=[0, 1], unbiased=True)
zero_one_dim_std_cpu = torch.std(cpu_x, dim=[0, 1], unbiased=True)
self.assertEqual(zero_one_dim_std, zero_one_dim_std_cpu)
zero_one_dim_std_keepdim = torch.std(x, dim=[0, 1], keepdim=True, unbiased=True)
zero_one_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0, 1], keepdim=True, unbiased=True)
self.assertEqual(zero_one_dim_std_keepdim, zero_one_dim_std_cpu_keepdim)
two_three_dim_std = torch.std(x, dim=[2, 3], unbiased=True)
two_three_dim_std_cpu = torch.std(cpu_x, dim=[2, 3], unbiased=True)
self.assertEqual(two_three_dim_std, two_three_dim_std_cpu)
two_three_keepdim_std = torch.std(x, dim=[2, 3], keepdim=True, unbiased=True)
two_three_dim_keepstd_cpu = torch.std(cpu_x, dim=[2, 3], keepdim=True, unbiased=True)
self.assertEqual(two_three_keepdim_std, two_three_dim_keepstd_cpu)
helper((4, 5, 6, 7))
# Test var
def test_var(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
all_var = torch.var(x, unbiased=False)
all_var_cpu = torch.var(cpu_x, unbiased=False)
self.assertEqual(all_var, all_var_cpu)
nil_dim_var = torch.var(x, dim=[], unbiased=False)
nil_dim_var_cpu = torch.var(cpu_x, dim=[], unbiased=False)
self.assertEqual(nil_dim_var, nil_dim_var_cpu)
nil_dim_var_keepdim = torch.var(x, dim=[], keepdim=True, unbiased=False)
nil_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[], keepdim=True, unbiased=False)
self.assertEqual(nil_dim_var_keepdim, nil_dim_var_cpu_keepdim)
zero_dim_var = torch.var(x, dim=[0], unbiased=False)
zero_dim_var_cpu = torch.var(cpu_x, dim=[0], unbiased=False)
self.assertEqual(zero_dim_var, zero_dim_var_cpu)
zero_dim_var_keepdim = torch.var(x, dim=[0], keepdim=True, unbiased=False)
zero_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0], keepdim=True, unbiased=False)
self.assertEqual(zero_dim_var_keepdim, zero_dim_var_cpu_keepdim)
zero_one_dim_var = torch.var(x, dim=[0, 1], unbiased=False)
zero_one_dim_var_cpu = torch.var(cpu_x, dim=[0, 1], unbiased=False)
self.assertEqual(zero_one_dim_var, zero_one_dim_var_cpu)
zero_one_dim_var_keepdim = torch.var(x, dim=[0, 1], keepdim=True, unbiased=False)
zero_one_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0, 1], keepdim=True, unbiased=False)
self.assertEqual(zero_one_dim_var_keepdim, zero_one_dim_var_cpu_keepdim)
two_three_dim_var = torch.var(x, dim=[2, 3], unbiased=False)
two_three_dim_var_cpu = torch.var(cpu_x, dim=[2, 3], unbiased=False)
self.assertEqual(two_three_dim_var, two_three_dim_var_cpu)
two_three_keepdim_var = torch.var(x, dim=[2, 3], keepdim=True, unbiased=False)
two_three_dim_keepvar_cpu = torch.var(cpu_x, dim=[2, 3], keepdim=True, unbiased=False)
self.assertEqual(two_three_keepdim_var, two_three_dim_keepvar_cpu)
all_var = torch.var(x, unbiased=True)
all_var_cpu = torch.var(cpu_x, unbiased=True)
self.assertEqual(all_var, all_var_cpu)
nil_dim_var = torch.var(x, dim=[], unbiased=True)
nil_dim_var_cpu = torch.var(cpu_x, dim=[], unbiased=True)
self.assertEqual(nil_dim_var, nil_dim_var_cpu)
nil_dim_var_keepdim = torch.var(x, dim=[], keepdim=True, unbiased=True)
nil_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[], keepdim=True, unbiased=True)
self.assertEqual(nil_dim_var_keepdim, nil_dim_var_cpu_keepdim)
zero_dim_var = torch.var(x, dim=[0], unbiased=True)
zero_dim_var_cpu = torch.var(cpu_x, dim=[0], unbiased=True)
self.assertEqual(zero_dim_var, zero_dim_var_cpu)
zero_dim_var_keepdim = torch.var(x, dim=[0], keepdim=True, unbiased=True)
zero_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0], keepdim=True, unbiased=True)
self.assertEqual(zero_dim_var_keepdim, zero_dim_var_cpu_keepdim)
zero_one_dim_var = torch.var(x, dim=[0, 1], unbiased=True)
zero_one_dim_var_cpu = torch.var(cpu_x, dim=[0, 1], unbiased=True)
self.assertEqual(zero_one_dim_var, zero_one_dim_var_cpu)
zero_one_dim_var_keepdim = torch.var(x, dim=[0, 1], keepdim=True, unbiased=True)
zero_one_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0, 1], keepdim=True, unbiased=True)
self.assertEqual(zero_one_dim_var_keepdim, zero_one_dim_var_cpu_keepdim)
two_three_dim_var = torch.var(x, dim=[2, 3], unbiased=True)
two_three_dim_var_cpu = torch.var(cpu_x, dim=[2, 3], unbiased=True)
self.assertEqual(two_three_dim_var, two_three_dim_var_cpu)
two_three_keepdim_var = torch.var(x, dim=[2, 3], keepdim=True, unbiased=True)
two_three_dim_keepvar_cpu = torch.var(cpu_x, dim=[2, 3], keepdim=True, unbiased=True)
self.assertEqual(two_three_keepdim_var, two_three_dim_keepvar_cpu)
helper((4, 5, 6, 7))
# test norm_out
# CRASH in Fallback for svd_linalg op.
# def test_norm(self):
# def helper(shape):
# cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
# x = cpu_x.detach().clone().to('mps')
# p_vals = [ ]
# for i in range(-5, 6):
# p_vals.append(i)
# p_vals.append(random.uniform(5.1, 10.1))
# p_vals.append(float('inf'))
# p_vals.append(float('-inf'))
# p_vals.append('fro')
# p_vals.append('nuc')
# # ints
# for p_val in p_vals:
# if (p_val != 'nuc'):
# all_norm = torch.norm(x, p=p_val)
# all_norm_cpu = torch.norm(cpu_x, p=p_val)
# self.assertEqual(all_norm, all_norm_cpu)
# nil_dim_norm = torch.norm(x, dim=[], p=p_val)
# nil_dim_norm_cpu = torch.norm(cpu_x, dim=[], p=p_val)
# self.assertEqual(nil_dim_norm, nil_dim_norm_cpu)
# nil_dim_norm_keepdim = torch.norm(x, dim=[], keepdim=True, p=p_val)
# nil_dim_norm_cpu_keepdim = torch.norm(cpu_x, dim=[], keepdim=True, p=p_val)
# self.assertEqual(nil_dim_norm_keepdim, nil_dim_norm_cpu_keepdim)
# zero_dim_norm = torch.norm(x, dim=[0], p=p_val)
# zero_dim_norm_cpu = torch.norm(cpu_x, dim=[0], p=p_val)
# self.assertEqual(zero_dim_norm, zero_dim_norm_cpu)
# zero_dim_norm_keepdim = torch.norm(x, dim=[0], keepdim=True, p=p_val)
# zero_dim_norm_cpu_keepdim = torch.norm(cpu_x, dim=[0], keepdim=True, p=p_val)
# self.assertEqual(zero_dim_norm_keepdim, zero_dim_norm_cpu_keepdim)
# if (len(shape) > 1):
# zero_one_dim_norm = torch.norm(x, dim=[0, 1],p=p_val)
# zero_one_dim_norm_cpu = torch.norm(cpu_x, dim=[0, 1],p=p_val)
# self.assertEqual(zero_one_dim_norm, zero_one_dim_norm_cpu)
# zero_one_dim_norm_keepdim = torch.norm(x, dim=[0, 1], keepdim=True, p=p_val)
# zero_one_dim_norm_cpu_keepdim = torch.norm(cpu_x, dim=[0, 1], keepdim=True, p=p_val)
# self.assertEqual(zero_one_dim_norm_keepdim, zero_one_dim_norm_cpu_keepdim)
# zero_one_dim_norm = torch.norm(x, dim=[0, 1],p='fro')
# if (len(shape) > 3):
# two_three_dim_norm = torch.norm(x, dim=[2,3], p=p_val)
# two_three_dim_norm_cpu = torch.norm(cpu_x, dim=[2,3], p=p_val)
# self.assertEqual(two_three_dim_norm, two_three_dim_norm_cpu)
# two_three_keepdim_norm = torch.norm(x, dim=[2,3], keepdim=True, p=p_val)
# two_three_dim_keepnorm_cpu = torch.norm(cpu_x, dim=[2, 3], keepdim=True,p=p_val)
# self.assertEqual(two_three_keepdim_norm, two_three_dim_keepnorm_cpu)
# helper((5, 1))
# helper((5, 7))
# helper((4, 5, 6, 7))
# Test minimum and maximum
def test_minimum_maximum(self):
def helper(n, c, h, w):
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
cpu_y = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
mps_x = cpu_x.detach().clone().to('mps')
mps_y = cpu_y.detach().clone().to('mps')
minimum_result_cpu = torch.minimum(cpu_x, cpu_y)
minimum_result_mps = torch.minimum(mps_x, mps_y)
self.assertEqual(minimum_result_cpu, minimum_result_mps)
maximum_result_cpu = torch.maximum(cpu_x, cpu_y)
maximum_result_mps = torch.maximum(mps_x, mps_y)
self.assertEqual(maximum_result_cpu, maximum_result_mps)
helper(1, 1, 4, 5)
# Test clamp_min
def test_clamp_min(self):
def helper(n, c, h, w):
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_min_t = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
min_t = cpu_min_t.detach().clone().to('mps')
clamp_min_result = torch.clamp_min(x, min=5.0)
clamp_min_result_cpu = torch.clamp_min(cpu_x, min=5.0)
self.assertEqual(clamp_min_result, clamp_min_result_cpu)
clamp_min_t_result = torch.clamp_min(x, min=min_t)
clamp_min_t_result_cpu = torch.clamp_min(cpu_x, min=cpu_min_t)
self.assertEqual(clamp_min_t_result, clamp_min_t_result_cpu)
helper(2, 8, 4, 5)
# Test clamp_max
def test_clamp_max(self):
def helper(n, c, h, w):
cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_max_t = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False)
max_t = cpu_max_t.detach().clone().to('mps')
clamp_max_result = torch.clamp_max(x, max=100.0)
clamp_max_result_cpu = torch.clamp_max(cpu_x, max=100.0)
self.assertEqual(clamp_max_result, clamp_max_result_cpu)
clamp_max_t_result = torch.clamp_max(x, max=max_t)
clamp_max_t_result_cpu = torch.clamp_max(cpu_x, max=cpu_max_t)
self.assertEqual(clamp_max_t_result, clamp_max_t_result_cpu)
helper(2, 8, 4, 5)
# Test clamp
def test_clamp(self):
def helper(n, c, h, w):
import numpy as np
upper_bound = 1000
half_upper_bound = upper_bound / 2
# x=[0..1000)
x_arr = upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32)
cpu_x = torch.tensor(x_arr, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
# x=[0..500)
min_arr = half_upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32)
cpu_min_t = torch.tensor(min_arr, device='cpu', dtype=torch.float, requires_grad=False)
min_t = cpu_min_t.detach().clone().to('mps')
# x=[500..1000), to ensure max's are greater than mins
max_arr = (half_upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32)) + half_upper_bound
cpu_max_t = torch.tensor(max_arr, device='cpu', dtype=torch.float, requires_grad=False)
max_t = cpu_max_t.detach().clone().to('mps')
# [200..600]: just an arbitrary range between [0..1000]
clamp_result = torch.clamp(x, min=200.0, max=600.0)
clamp_result_cpu = torch.clamp(cpu_x, min=200.0, max=600.0)
self.assertEqual(clamp_result, clamp_result_cpu)
# test optional scalar refs and cached graph keys by passing only max
clamp_opt_result = torch.clamp(x, max=600.0)
clamp_opt_result_cpu = torch.clamp(cpu_x, max=600.0)
self.assertEqual(clamp_opt_result, clamp_opt_result_cpu)
clamp_t_result = torch.clamp(x, min=min_t, max=max_t)
clamp_t_result_cpu = torch.clamp(cpu_x, min=cpu_min_t, max=cpu_max_t)
self.assertEqual(clamp_t_result, clamp_t_result_cpu)
# test optional tensor refs and cached graph keys by passing only max
clamp_topt_result = torch.clamp(x, max=max_t)
clamp_topt_result_cpu = torch.clamp(cpu_x, max=cpu_max_t)
self.assertEqual(clamp_topt_result, clamp_topt_result_cpu)
# test inplace clamping
x.clamp_(min=200.0, max=600.0)
cpu_x.clamp_(min=200.0, max=600.0)
self.assertEqual(cpu_x, x)
helper(2, 8, 4, 5)
def test_divmode(self):
def helper(shape, rounding_mode):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
mps_x = cpu_x.detach().clone().to('mps')
# clamp to avoid division by 0
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False).clamp_min_(0.1)
mps_y = cpu_y.detach().clone().to('mps')
result_div_cpu = torch.div(cpu_x, cpu_y, rounding_mode=rounding_mode)
result_div_mps = torch.div(mps_x, mps_y, rounding_mode=rounding_mode)
self.assertEqual(result_div_mps, result_div_cpu)
helper((2, 8, 4, 5), "floor")
helper((2, 8, 4, 5), "trunc")
def test_rounding(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
mps_x = cpu_x.detach().clone().to('mps')
result_floor_cpu = torch.floor(cpu_x)
result_floor_mps = torch.floor(mps_x)
self.assertEqual(result_floor_mps, result_floor_cpu)
result_ceil_cpu = torch.ceil(cpu_x)
result_ceil_mps = torch.ceil(mps_x)
self.assertEqual(result_ceil_mps, result_ceil_cpu)
result_trunc_cpu = torch.trunc(cpu_x)
result_trunc_mps = torch.trunc(mps_x)
self.assertEqual(result_trunc_mps, result_trunc_cpu)
result_round_cpu = torch.round(cpu_x)
result_round_mps = torch.round(mps_x)
self.assertEqual(result_round_mps, result_round_cpu)
helper((2, 6, 3, 5))
helper((2, 8, 4, 5))
def test_expand(self):
def helper(n, c):
values = [[1.0], [4.0], [7.0]]
cpu_x = torch.tensor(values, device='cpu')
x = cpu_x.detach().clone().to('mps')
strided_cpu = torch.as_strided(cpu_x, (3, 4), (1, 0))
strided_mps = torch.as_strided(x, (3, 4), (1, 0))
print(cpu_x)
print(strided_cpu)
print(x.to('cpu'))
print(strided_mps.to('cpu'))
print(strided_mps.size())
print(strided_mps.stride())
self.assertEqual(strided_mps, strided_cpu)
helper(3, 1)
def test_select(self):
def helper(n, c):
cpu_x = torch.randn(n, c, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
strided_cpu = torch.as_strided(cpu_x, (3, 1), (3, 1))
strided_mps = torch.as_strided(x, (3, 1), (3, 1))
self.assertEqual(strided_mps, strided_cpu)
strided_cpu = torch.as_strided(cpu_x, (1, 3), (3, 1))
strided_mps = torch.as_strided(x, (1, 3), (3, 1))
self.assertEqual(strided_mps, strided_cpu)
strided_cpu = torch.as_strided(cpu_x, (3, 1), (3, 1), storage_offset=1)
strided_mps = torch.as_strided(x, (3, 1), (3, 1), storage_offset=1)
print(cpu_x)
print(strided_cpu)
print(x.to('cpu'))
print(strided_mps.to('cpu'))
self.assertEqual(strided_mps, strided_cpu)
helper(3, 3)
def test_topk(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
for largest_val in [True, False]:
if (type(shape) == tuple):
for curr_dim in range(0, len(shape)):
dim_size = shape[curr_dim]
for k in range(1, dim_size + 1):
topk_values, topk_indices = torch.topk(x, k, dim=curr_dim, largest=largest_val)
topk_values_cpu, topk_indices_cpu = torch.topk(cpu_x, k, dim=curr_dim, largest=largest_val)
self.assertEqual(topk_values, topk_values_cpu)
self.assertEqual(topk_indices, topk_indices_cpu)
else:
for k in range(1, shape):
topk_values, topk_indices = torch.topk(x, k, dim=0, largest=largest_val)
topk_values_cpu, topk_indices_cpu = torch.topk(cpu_x, k, dim=0, largest=largest_val)
self.assertEqual(topk_values, topk_values_cpu)
self.assertEqual(topk_indices, topk_indices_cpu)
helper(2)
helper((5, 1))
helper((1, 5))
helper((5, 9, 7, 4))
def test_upsample_nearest_exact2d(self):
def helper(N, C, H, W):
inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float,
requires_grad=True).reshape(N, C, H, W)
inputCPU.retain_grad()
inputMPS = inputCPU.detach().clone().to('mps').requires_grad_()
outputCPU = torch.nn.functional.interpolate(inputCPU, size=(5, 5), mode='nearest-exact')
outputMPS = torch.nn.functional.interpolate(inputMPS, size=(5, 5), mode='nearest-exact')
self.assertEqual(outputCPU, outputMPS)
outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3))
outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3))
self.assertEqual(inputCPU.grad, inputMPS.grad)
helper(1, 1, 4, 4)
helper(7, 5, 3, 2)
def test_upsample_nearest2d(self):
def helper(N, C, H, W):
inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float,
requires_grad=True).reshape(N, C, H, W)
inputCPU.retain_grad()
inputMPS = inputCPU.detach().clone().to('mps').requires_grad_()
x_max = 40
y_max = 40
for i in range(1, x_max):
for j in range(1, y_max):
upsample_nearest2d = nn.UpsamplingNearest2d(scale_factor=(i, j))
outputCPU = upsample_nearest2d(inputCPU)
outputMPS = upsample_nearest2d(inputMPS)
self.assertEqual(outputCPU, outputMPS)
upsample_nearest2d = nn.UpsamplingNearest2d((i * H, j * W))
outputCPU = upsample_nearest2d(inputCPU)
outputMPS = upsample_nearest2d(inputMPS)
self.assertEqual(outputCPU, outputMPS)
outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3))
outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3))
self.assertEqual(inputCPU.grad, inputMPS.grad)
helper(1, 1, 4, 4)
helper(7, 5, 3, 2)
def test_upsample_bilinear2d(self):
def helper(N, C, H, W):
inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float,
requires_grad=True).reshape(N, C, H, W)
inputCPU.retain_grad()
inputMPS = inputCPU.detach().clone().to('mps').requires_grad_()
x_max = 40
y_max = 40
for i in range(1, x_max):
for j in range(1, y_max):
upsample_bilinear2d = nn.UpsamplingBilinear2d(scale_factor=(i, j))
outputCPU = upsample_bilinear2d(inputCPU)
outputMPS = upsample_bilinear2d(inputMPS)
self.assertEqual(outputCPU, outputMPS)
upsample_bilinear2d = nn.UpsamplingBilinear2d((i * H, j * W))
outputCPU = upsample_bilinear2d(inputCPU)
outputMPS = upsample_bilinear2d(inputMPS)
self.assertEqual(outputCPU, outputMPS)
outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3))
outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3))
self.assertEqual(inputCPU.grad, inputMPS.grad)
helper(1, 1, 4, 4)
helper(7, 5, 3, 2)
# Test concat forward
def test_cat1(self):
def helper(shape_x, shape_y, shape_z):
cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False)
z = cpu_z.detach().clone().to('mps')
cat = torch.cat([x, y, z], dim=1)
cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z], dim=1)
self.assertEqual(cat, cat_cpu)
helper([2, 2, 4, 5], [2, 3, 4, 5], [2, 5, 4, 5])
# Empty test - Currently failing! Empty tensor not handled!
# helper([0, 2, 4, 5], [2, 0, 4, 5], [2, 5, 0, 5])
def test_pad(self):
def helper(shape, padding, op):
inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
inputCPU.retain_grad()
inputMPS = inputCPU.detach().clone().to('mps').requires_grad_()
padCriteria = op(padding)
outputCPU = padCriteria(inputCPU)
outputMPS = padCriteria(inputMPS)
self.assertEqual(outputCPU, outputMPS)
# backward pass (chose 0.6 just to have the grad_output != 1)
outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6))
outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6))
self.assertEqual(inputCPU.grad, inputMPS.grad)
# 1D Padding
helper((2, 4, 3), 2, nn.ReflectionPad1d)
# verify if a change in shape of input would cause problems with graph caching
helper((2, 4, 4), (1, 3), nn.ReflectionPad1d)
# Replication 1D
helper((2, 1, 6), 3, nn.ReplicationPad1d)
# 2D Padding
helper((1, 2, 3, 4), (1, 1, 2, 0), nn.ReflectionPad2d)
# verify if a change in shape of input would cause problems with graph caching
helper((2, 4, 3, 4), (1, 1, 2, 0), nn.ReflectionPad2d)
# this should make the padding (2, 2, 2, 2)
helper((2, 1, 6, 8), 2, nn.ReplicationPad2d)
# verify if a change in shape of padding would cause problems with graph caching
helper((2, 1, 6, 8), (2, 4, 3, 5), nn.ReplicationPad2d)
# 3D Padding
helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ReflectionPad3d)
# verify if a change in shape of padding would cause problems with graph caching
helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ReplicationPad3d)
# Test stack forward
def test_stack(self):
# All shapes must be same
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
z = cpu_z.detach().clone().to('mps')
stack = torch.stack([x, y, z], dim=1)
stack_cpu = torch.stack([cpu_x, cpu_y, cpu_z], dim=1)
self.assertEqual(stack, stack_cpu)
helper([2, 8, 4, 5])
# Empty test - Currently failing! Empty tensor not handled!
# helper([0, 2, 4, 5])
# Test abs
def test_abs(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
abs_result = torch.abs(x)
abs_result_cpu = torch.abs(cpu_x)
self.assertEqual(abs_result, abs_result_cpu)
helper((2, 8, 4, 5))
def test_log(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
log_result = torch.log(x)
log_result_cpu = torch.log(cpu_x)
self.assertEqual(log_result, log_result_cpu)
helper((2, 8, 4, 5))
def test_log_ten(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
log_ten_result = torch.log10(x)
log_ten_result_cpu = torch.log10(cpu_x)
self.assertEqual(log_ten_result, log_ten_result_cpu)
helper((2, 8, 4, 5))
def test_log_two(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
log_two_result = torch.log2(x)
log_two_result_cpu = torch.log2(cpu_x)
self.assertEqual(log_two_result, log_two_result_cpu)
helper((2, 8, 4, 5))
def test_log1p(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
log_result = torch.log1p(x)
log_result_cpu = torch.log1p(cpu_x)
self.assertEqual(log_result, log_result_cpu)
helper((2, 8, 4, 5))
def test_logaddexp(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
log_result = torch.logaddexp(x, y)
log_result_cpu = torch.logaddexp(cpu_x, cpu_y)
self.assertEqual(log_result, log_result_cpu)
helper((2, 8, 4, 5))
def test_logaddexp2(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
log_result = torch.logaddexp2(x, y)
log_result_cpu = torch.logaddexp2(cpu_x, cpu_y)
self.assertEqual(log_result, log_result_cpu)
helper((2, 8, 4, 5))
# Test concat forward
def test_cat2(self):
def helper1(shape_x, shape_y, shape_z, shape_w):
cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False)
z = cpu_z.detach().clone().to('mps')
cpu_w = torch.randn(shape_w, device='cpu', dtype=torch.float, requires_grad=False)
w = cpu_w.detach().clone().to('mps')
cat = torch.cat([x, y, z, w], dim=1)
cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z, cpu_w], dim=1)
self.assertEqual(cat, cat_cpu)
def helper(shape_x, shape_y, shape_z):
cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False)
z = cpu_z.detach().clone().to('mps')
cat = torch.cat([x, y, z], dim=1)
cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z], dim=1)
self.assertEqual(cat, cat_cpu)
helper([2, 8, 4, 5], [2, 10, 4, 5], [2, 6, 4, 5])
helper([2, 2, 4, 5], [2, 3, 4, 5], [2, 5, 4, 5])
# Empty test - Currently failing! Empty tensor not handled!
# helper([0, 2, 4, 5], [2, 0, 4, 5], [2, 5, 0, 5])
# Test isnan
def test_isnan(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
nan_index = [random.randrange(0, shape[0])]
# make a selected row inf
cpu_x.index_put_(indices=[torch.tensor(nan_index)], values=torch.tensor(float('nan')))
x = cpu_x.detach().clone().to('mps')
isnan_result = torch.isnan(x)
isnan_result_cpu = torch.isnan(cpu_x)
self.assertEqual(isnan_result, isnan_result_cpu)
helper((8, 2, 4, 5))
# Test reciprocal
def test_reciprocal(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
reciprocal_result = torch.reciprocal(x)
reciprocal_result_cpu = torch.reciprocal(cpu_x)
cpu_grad = torch.ones_like(reciprocal_result_cpu)
grad = cpu_grad.to('mps')
reciprocal_result.backward(gradient=grad)
reciprocal_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(reciprocal_result, reciprocal_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 8, 4, 5))
# Test sqrt
def test_sqrt(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
sqrt_result = torch.sqrt(x)
sqrt_result_cpu = torch.sqrt(cpu_x)
cpu_grad = torch.ones_like(sqrt_result_cpu)
grad = cpu_grad.to('mps')
sqrt_result.backward(gradient=grad)
sqrt_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(sqrt_result, sqrt_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 8, 4, 5))
# Test selu, elu, celu
def test_elu(self):
def helper(shape, alpha=1.0):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
for activation_func in [torch.nn.ELU(alpha=alpha), torch.nn.CELU(alpha=alpha), torch.nn.SELU()]:
elu_result = activation_func(x)
elu_result_cpu = activation_func(cpu_x)
cpu_grad = torch.randn(elu_result_cpu.shape)
grad = cpu_grad.to('mps')
elu_result.backward(gradient=grad)
elu_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(elu_result, elu_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
# Test empty shape too
for shape in [[], (2, 3), (2, 8, 4, 5)]:
for alpha in [0.000001, 1.0, 2.3, 0.34, 23]:
helper(shape, alpha)
# Test silu
def test_silu(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
silu_result = torch.nn.SiLU()(x)
silu_result_cpu = torch.nn.SiLU()(cpu_x)
cpu_grad = torch.randn(silu_result_cpu.shape)
grad = cpu_grad.to('mps')
silu_result.backward(gradient=grad)
silu_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(silu_result, silu_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
# Test empty shape too
for shape in [[], (2, 3), (2, 8, 4, 5)]:
helper(shape)
# Test adaptive avg pool2d - when the input size is a multiple of output size
# Not testing for channels last right now
def test_adaptive_avg_pool2d_simple(self):
def helper(input_shape, out_shape, channels_last):
cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True)
if(channels_last):
cpu_x = cpu_x.to(memory_format=torch.channels_last)
cpu_x.retain_grad()
x = cpu_x.detach().clone().to('mps').requires_grad_()
avg_result = torch.nn.AdaptiveAvgPool2d(out_shape)(x)
avg_result_cpu = torch.nn.AdaptiveAvgPool2d(out_shape)(cpu_x)
cpu_grad = torch.randn(avg_result_cpu.shape)
grad = cpu_grad.to('mps')
avg_result.backward(gradient=grad)
avg_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(avg_result, avg_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 2, 4, 4), (2, 2), False)
helper((2, 2, 9, 9), (3, 3), False)
helper((2, 2, 9, 9), (9, 9), False)
helper((2, 2, 16, 16), (2, 2), False)
helper((2, 2, 16, 16), (2, 16), False)
helper((2, 16, 16), (4, 4), False)
def test_gelu_simple(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
gelu_result = torch.nn.GELU()(x)
gelu_result_cpu = torch.nn.GELU()(cpu_x)
cpu_grad = torch.ones_like(gelu_result_cpu)
grad = cpu_grad.to('mps')
gelu_result.backward(gradient=grad)
gelu_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(gelu_result, gelu_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
# Test empty shape too
for shape in [(0, 3), [], (2, 3), (2, 8, 4, 5)]:
helper(shape)
# Test hardtanh
def test_hardtanh(self):
def helper(shape, min_val, max_val, inplace=False):
cpu_x = None
x = None
if(not inplace):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
else:
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
hardtanh_result = torch.nn.Hardtanh(min_val=min_val, max_val=max_val, inplace=inplace)(x)
hardtanh_result_cpu = torch.nn.Hardtanh(min_val=min_val, max_val=max_val, inplace=inplace)(cpu_x)
self.assertEqual(hardtanh_result, hardtanh_result_cpu)
if(not inplace):
cpu_grad = torch.randn(hardtanh_result_cpu.shape)
grad = cpu_grad.to('mps')
hardtanh_result.backward(gradient=grad)
hardtanh_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(x.grad, cpu_x.grad)
# Test empty shape too
for shape in [(0, 3), [], (2, 3), (2, 8, 4, 5)]:
for min_val, max_val in zip([-1, -2, 3], [1, -1, 4]):
helper(shape, min_val, max_val)
helper(shape, min_val, max_val, inplace=True)
# Test sign
def test_sign(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
sign_result = torch.sign(x)
sign_result_cpu = torch.sign(cpu_x)
cpu_grad = torch.ones_like(sign_result_cpu)
grad = cpu_grad.to('mps')
sign_result.backward(gradient=grad)
sign_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(sign_result, sign_result_cpu)
helper((2, 8, 4, 5))
# Test neg
def test_neg(self):
def helper(shape):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
neg_result = torch.neg(x)
neg_result_cpu = torch.neg(cpu_x)
cpu_grad = torch.ones_like(neg_result_cpu)
grad = cpu_grad.to('mps')
neg_result.backward(gradient=grad)
neg_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(neg_result, neg_result_cpu)
helper((2, 8, 4, 5))
# Test index select
def test_index_select(self):
def helper(shape, dim, index, idx_dtype=torch.int32):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_idx = torch.tensor(index, device='cpu', dtype=idx_dtype)
idx = cpu_idx.detach().clone().to('mps')
print(cpu_idx.shape)
idx_result = torch.index_select(x, dim=dim, index=idx)
idx_result_cpu = torch.index_select(cpu_x, dim=dim, index=cpu_idx)
self.assertEqual(idx_result, idx_result_cpu)
helper((2, 8, 4, 5), 0, [1])
helper((8, 8, 4, 5), 0, [0, 3, 2, 7, 6])
helper((2, 8, 4, 5), 1, [0, 3, 2, 7, 6])
helper((2, 8, 4, 5), 2, [3, 0, 1])
helper((2, 8, 4, 5), 3, [2, 3, 0])
helper((2, 3, 3), -1, [1, 2])
def test_embedding_dense_backward(self):
def helper(n, d, m):
embeddingMPS = nn.Embedding(n, d, max_norm=True, device='mps')
W_MPS = torch.randn((m, d), requires_grad=True, device='mps')
idx_MPS = torch.tensor([0, 1, 2]).to('mps')
a_MPS = embeddingMPS.weight.clone() @ W_MPS.t() # weight must be cloned for this to be differentiable
a_MPS.retain_grad()
b_MPS = embeddingMPS(idx_MPS) @ W_MPS.t() # modifies weight in-place
b_MPS.retain_grad()
out_MPS = (a_MPS.unsqueeze(0) + b_MPS.unsqueeze(1))
loss_MPS = out_MPS.sigmoid().prod()
loss_MPS.backward()
embeddingCPU = nn.Embedding(n, d, max_norm=True, scale_grad_by_freq=True)
W_CPU = W_MPS.to('cpu')
idx_CPU = torch.tensor([0, 1, 2])
a_CPU = embeddingCPU.weight.clone() @ W_CPU.t() # weight must be cloned for this to be differentiable
a_CPU.retain_grad()
b_CPU = embeddingCPU(idx_CPU) @ W_CPU.t() # modifies weight in-place
b_CPU.retain_grad()
out_CPU = (a_CPU.unsqueeze(0) + b_CPU.unsqueeze(1))
loss_CPU = out_CPU.sigmoid().prod()
loss_CPU.backward()
self.assertEqual(b_CPU.grad, b_MPS.grad)
self.assertEqual(a_CPU.grad, a_MPS.grad)
helper(3, 5, 7)
# Test pytorch gather
def test_gather(self):
def helper(shape, dim, idx_shape, idx_dtype=torch.int64):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
# Indices should be taken from range of axis along which gathering is done
idx_np = np.random.randint(0, shape[dim], idx_shape)
cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype)
idx = cpu_idx.detach().clone().to('mps')
gather_result = torch.gather(x, dim=dim, index=idx)
gather_result_cpu = torch.gather(cpu_x, dim=dim, index=cpu_idx)
cpu_grad = torch.randn(idx_shape, device='cpu', dtype=torch.float)
grad = cpu_grad.to('mps')
gather_result.backward(gradient=grad)
gather_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(gather_result, gather_result_cpu)
self.assertEqual(cpu_x.grad, x.grad)
helper((6, 3, 3), 0, (3, 3, 3))
helper((2, 3, 3, 3), 0, (10, 3, 3, 3))
helper((2, 8, 4, 5), 0, (10, 8, 4, 5))
helper((2, 8, 4, 5), 0, (10, 6, 3, 2))
helper((8, 8, 4, 5), 0, (6, 8, 4, 5))
helper((8, 8, 4, 5), 0, (6, 7, 2, 3))
helper((2, 8, 4, 5), 1, (2, 5, 3, 4))
helper((2, 8, 4, 5), 2, (1, 8, 10, 3))
helper((2, 8, 4, 5), 3, (2, 5, 3, 12))
# Test pytorch scatter_add and scatter
def test_scatter_add(self):
def helper(shape, dim, idx_shape, src_shape, idx_dtype=torch.int64, do_add=True):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
cpu_src = torch.randn(src_shape, device='cpu', dtype=torch.float, requires_grad=True)
src = cpu_src.detach().clone().to('mps').requires_grad_()
# Indices should be taken from range of axis along which gathering is done
idx_np = None
if(do_add):
idx_np = np.random.randint(0, shape[dim], idx_shape)
else:
idx_np = np.array([[0, 1, 2],
[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6]])
cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype)
idx = cpu_idx.detach().clone().to('mps')
scatter_result = None
scatter_result_cpu = None
if(do_add):
scatter_result = torch.scatter_add(x, dim=dim, index=idx, src=src)
scatter_result_cpu = torch.scatter_add(cpu_x, dim=dim, index=cpu_idx, src=cpu_src)
else:
scatter_result = torch.scatter(x, dim=dim, index=idx, src=src)
scatter_result_cpu = torch.scatter(cpu_x, dim=dim, index=cpu_idx, src=cpu_src)
cpu_grad = None
grad = None
if(idx_shape == src_shape):
cpu_grad = torch.randn(shape, device='cpu', dtype=torch.float)
grad = cpu_grad.to('mps')
scatter_result.backward(gradient=grad)
scatter_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(scatter_result, scatter_result_cpu)
if(idx_shape == src_shape):
self.assertEqual(cpu_x.grad, x.grad)
self.assertEqual(cpu_src.grad, src.grad)
helper((2, 3), 0, (5, 3), (5, 3))
helper((2, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5))
helper((8, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5))
helper((8, 8, 4, 5), 0, (4, 7, 3, 2), (4, 7, 3, 2))
helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (4, 7, 3, 2))
helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (8, 8, 4, 5))
helper((2, 8, 4, 5), 1, (2, 20, 4, 5), (2, 20, 4, 5))
helper((2, 8, 4, 5), 1, (2, 13, 3, 2), (2, 13, 3, 2))
helper((8, 8, 4, 5), 1, (6, 5, 2, 3), (6, 5, 2, 3))
helper((8, 8, 4, 5), 1, (3, 4, 2, 2), (6, 5, 2, 3))
helper((4, 5, 9, 8), 2, (4, 5, 13, 8), (4, 5, 13, 8))
helper((4, 5, 9, 8), 2, (3, 4, 10, 6), (3, 4, 10, 6))
helper((4, 5, 9, 8), 2, (3, 3, 7, 5), (3, 4, 10, 6))
# Test scatter src
helper((8, 3), 0, (5, 3), (5, 3), do_add=False)
helper((10, 3), 0, (5, 3), (5, 8), do_add=False)
# Test pytorch scatter_reduce
def test_scatter_reduce(self):
def helper(shape, dim, idx_shape, src_shape, idx_dtype=torch.int64, reduce_str="sum"):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
cpu_src = torch.randn(src_shape, device='cpu', dtype=torch.float, requires_grad=True)
src = cpu_src.detach().clone().to('mps').requires_grad_()
# Indices should be taken from range of axis along which gathering is done
idx_np = np.random.randint(0, shape[dim], idx_shape)
cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype)
idx = cpu_idx.detach().clone().to('mps')
scatter_result = torch.scatter(x, dim=dim, index=idx, src=src, reduce=reduce_str)
scatter_result_cpu = torch.scatter(cpu_x, dim=dim, index=cpu_idx, src=cpu_src, reduce=reduce_str)
self.assertEqual(scatter_result, scatter_result_cpu)
# for reduce in ["sum", "prod", "amax", "amin"]:
for reduce in ["add", "multiply"]:
helper((2, 3), 0, (5, 3), (5, 3), reduce_str=reduce)
helper((2, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5), reduce_str=reduce)
helper((8, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5), reduce_str=reduce)
helper((8, 8, 4, 5), 0, (4, 7, 3, 2), (4, 7, 3, 2), reduce_str=reduce)
helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (4, 7, 3, 2), reduce_str=reduce)
helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (8, 8, 4, 5), reduce_str=reduce)
helper((2, 8, 4, 5), 1, (2, 20, 4, 5), (2, 20, 4, 5), reduce_str=reduce)
helper((2, 8, 4, 5), 1, (2, 13, 3, 2), (2, 13, 3, 2), reduce_str=reduce)
helper((8, 8, 4, 5), 1, (6, 5, 2, 3), (6, 5, 2, 3), reduce_str=reduce)
helper((8, 8, 4, 5), 1, (3, 4, 2, 2), (6, 5, 2, 3), reduce_str=reduce)
helper((4, 5, 9, 8), 2, (4, 5, 13, 8), (4, 5, 13, 8), reduce_str=reduce)
helper((4, 5, 9, 8), 2, (3, 4, 10, 6), (3, 4, 10, 6), reduce_str=reduce)
helper((4, 5, 9, 8), 2, (3, 3, 7, 5), (3, 4, 10, 6), reduce_str=reduce)
def test_is_nonzero(self):
self.assertFalse(torch.is_nonzero(torch.tensor([0.]).to('mps')))
self.assertTrue(torch.is_nonzero(torch.tensor([1.5]).to('mps')))
self.assertFalse(torch.is_nonzero(torch.tensor([False]).to('mps')))
self.assertTrue(torch.is_nonzero(torch.tensor([3]).to('mps')))
# Test triu
def test_triu(self):
def helper(shape, diag=0):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
triu_result = torch.triu(x, diag)
triu_result_cpu = torch.triu(cpu_x, diag)
cpu_grad = torch.randn(triu_result_cpu.shape)
grad = cpu_grad.to('mps')
triu_result.backward(gradient=grad)
triu_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(triu_result, triu_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 8, 4, 5))
helper((2, 8, 4, 5), diag=1)
helper((2, 8, 4, 5), diag=2)
helper((2, 8, 4, 5), diag=3)
helper((2, 8, 4, 5), diag=-1)
helper((2, 8, 4, 5), diag=-2)
helper((2, 8, 4, 5), diag=-3)
# Test tril
def test_tril(self):
def helper(shape, diag=0):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
tril_result = torch.tril(x, diag)
tril_result_cpu = torch.tril(cpu_x, diag)
cpu_grad = torch.randn(tril_result_cpu.shape)
grad = cpu_grad.to('mps')
tril_result.backward(gradient=grad)
tril_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(tril_result, tril_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
helper((2, 8, 4, 5))
helper((2, 8, 4, 5), diag=1)
helper((2, 8, 4, 5), diag=2)
helper((2, 8, 4, 5), diag=3)
helper((2, 8, 4, 5), diag=-1)
helper((2, 8, 4, 5), diag=-2)
helper((2, 8, 4, 5), diag=-3)
# Test diag
def test_diag(self):
def helper(shape, diag=0):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
diag_result = torch.diag(x, diag)
diag_result_cpu = torch.diag(cpu_x, diag)
# cpu_grad = torch.randn(diag_result_cpu.shape)
# grad = cpu_grad.to('mps')
# diag_result.backward(gradient=grad)
# diag_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(diag_result, diag_result_cpu)
# self.assertEqual(x.grad, cpu_x.grad)
for shape in [(5, 5), (5, 6), (6, 5), (5,), (6,)]:
for diag in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
helper(shape, diag=diag)
# Test softmax
def test_softmax(self):
def helper(shape, dim, channels_last=False):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True)
if(channels_last):
cpu_x = cpu_x.to(memory_format=torch.channels_last)
cpu_x.retain_grad()
x = cpu_x.detach().clone().to('mps').requires_grad_()
softmax_result = torch.nn.functional.softmax(x, dim=dim)
softmax_result_cpu = torch.nn.functional.softmax(cpu_x, dim=dim)
# Currently NOT testing backward for channels last backward
cpu_grad = None
grad = None
if(not channels_last):
cpu_grad = torch.randn(shape, device='cpu', dtype=torch.float)
grad = cpu_grad.to('mps')
softmax_result.backward(gradient=grad)
softmax_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(softmax_result, softmax_result_cpu)
if(not channels_last):
self.assertEqual(x.grad, cpu_x.grad)
def helper2(dim):
cpu_x = torch.tensor(1.23, device='cpu', dtype=torch.float, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
softmax_result = torch.nn.functional.softmax(x, dim=dim)
softmax_result_cpu = torch.nn.functional.softmax(cpu_x, dim=dim)
cpu_grad = torch.tensor(2.34, device='cpu', dtype=torch.float)
grad = cpu_grad.to('mps')
softmax_result.backward(gradient=grad)
softmax_result_cpu.backward(gradient=cpu_grad)
self.assertEqual(softmax_result, softmax_result_cpu)
self.assertEqual(x.grad, cpu_x.grad)
helper2(0)
for channels_last in [False, True]:
for shape in [(2, 4, 8, 5), (3, 4, 6, 7, 2)]:
if(len(shape) != 4 and channels_last):
continue
for dim in [0, 1, 2, 3, -1, -2, -3]:
helper(shape, dim, channels_last)
# Test sub
def test_sub(self):
def helper(shape, alpha):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_out = torch.sub(cpu_x, cpu_y, alpha=alpha)
out = torch.sub(x, y, alpha=alpha)
self.assertEqual(out, cpu_out)
helper((2, 8, 4, 5), 0.1)
helper((2, 8, 3, 5), 0.1)
helper((2, 8, 3, 5), 0.2)
# Test where
def test_where(self):
def helper(shape, x_shape, y_shape, cond_dtype=torch.bool, x_dtype=torch.float):
cpu_cond = torch.randint(2, shape, device='cpu', dtype=cond_dtype, requires_grad=False)
cond = cpu_cond.detach().clone().to('mps')
cpu_x = torch.randn(x_shape, device='cpu', dtype=x_dtype, requires_grad=True)
x = cpu_x.detach().clone().to('mps').requires_grad_()
cpu_y = torch.randn(y_shape, device='cpu', dtype=x_dtype, requires_grad=True)
y = cpu_y.detach().clone().to('mps').requires_grad_()
cpu_out = torch.where(cpu_cond, cpu_x, cpu_y)
out = torch.where(cond, x, y)
cpu_grad = torch.randn(cpu_out.shape)
grad = cpu_grad.to('mps')
cpu_out.backward(gradient=cpu_grad)
out.backward(gradient=grad)
self.assertEqual(out, cpu_out)
self.assertEqual(x.grad, cpu_x.grad)
self.assertEqual(y.grad, cpu_y.grad)
for shape in ([(0, 3), [], (2, 3), (9,)]):
helper(shape, shape, shape)
helper((2, 3, 1), (2, 3, 4), (2, 1, 4))
helper((2, 1, 1), (2, 3, 4), (1, 3, 4))
helper((1, 1, 1), (1, 1, 4), (2, 3, 1))
helper([], (1, 1, 4), (2, 3, 1))
helper([], (2, 3, 4), [])
# Test normal
def test_normal(self):
def helper(shape, mean=0.0, std=1.0):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
mps_out = torch.normal(mean, std, shape, device='mps')
# print(mps_out.to('cpu'))
print(mps_out.to('cpu').mean())
print(mps_out.to('cpu').std())
mean_array = np.ones(shape)
mean_array *= mean
cpu_mean_tensor = torch.tensor(mean_array, device='cpu', dtype=torch.float, requires_grad=False)
mean_tensor = cpu_mean_tensor.detach().clone().to('mps')
std_array = np.ones(shape)
std_array *= std
cpu_std_tensor = torch.tensor(std_array, device='cpu', dtype=torch.float, requires_grad=False)
std_tensor = cpu_std_tensor.detach().clone().to('mps')
mps_out = torch.zeros(shape, device='mps')
torch.normal(mean_tensor, std, out=mps_out)
print(mps_out.to('cpu').mean())
print(mps_out.to('cpu').std())
mps_out = torch.zeros(shape, device='mps')
torch.normal(mean, std_tensor, out=mps_out)
print(mps_out.to('cpu').mean())
print(mps_out.to('cpu').std())
mps_out = torch.zeros(shape, device='mps')
torch.normal(mean_tensor, std_tensor, out=mps_out)
print(mps_out.to('cpu').mean())
print(mps_out.to('cpu').std())
helper((2, 3, 4, 5, 6))
helper((100, 100), 2.5, 1.2)
def test_bernoulli(self):
def helper(shape, prob=0.5):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
prob_array = np.ones(shape)
prob_array *= prob
cpu_prob_tensor = torch.tensor(prob_array, device='cpu', dtype=torch.float, requires_grad=False)
prob_tensor = cpu_prob_tensor.detach().clone().to('mps')
mps_out = torch.bernoulli(prob_tensor)
# Compare "real" with theoretical values
print(mps_out.to('cpu').mean(), prob)
print(mps_out.to('cpu').std() ** 2, prob * (1 - prob))
mps_out = torch.zeros(shape, device='mps')
mps_out = torch.bernoulli(mps_out, prob)
print(mps_out.to('cpu').mean(), prob)
print(mps_out.to('cpu').std() ** 2, prob * (1 - prob))
helper((100, 100), 0.50)
helper((100, 100), 0.76)
helper((100, 100), 0.23)
# Test random_.to and random_.from
def test_random(self):
def helper(shape, low, high, dtype=torch.int32):
print(low, high)
mps_out = torch.randint(low, high, shape, dtype=dtype, device='mps')
print(mps_out.to('cpu').float().mean(), (low + (high - 1)) / 2.)
print(mps_out.to('cpu').float().std() ** 2, ((high - low)**2 - 1) / 12.)
helper([100, 100], 0, 10)
helper([100, 100], 23, 89)
helper([100, 100], 23, 89, dtype=torch.float32)
helper([100, 100], 23, 89, dtype=torch.int64)
helper([100, 100], 0, 2, dtype=torch.bool)
# Test add
def test_add_binary_op(self):
def helper(shape, alpha):
cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_out = torch.add(cpu_x, cpu_y, alpha=alpha)
out = torch.add(x, y, alpha=alpha)
self.assertEqual(out, cpu_out)
helper((2, 8, 4, 5), 0.1)
helper((2, 8, 3, 5), 0.1)
helper((2, 8, 3, 5), 0.2)
# Test add
def test_add_scalars(self):
def helper(alpha=1.0):
cpu_x = torch.tensor(2.3, device='cpu', dtype=torch.float, requires_grad=False)
x = cpu_x.detach().clone().to('mps')
cpu_y = torch.tensor(3.4, device='cpu', dtype=torch.float, requires_grad=False)
y = cpu_y.detach().clone().to('mps')
cpu_out = torch.add(cpu_x, cpu_y, alpha=alpha)
out = torch.add(x, y, alpha=alpha)
print(out.to('cpu'))
self.assertEqual(out, cpu_out)
helper()
helper(0.1)
helper(0.2)
def test_atan2(self):
def helper(shape):
input_cpu = torch.randn(shape)
input_mps = input_cpu.detach().clone().to("mps")
other_cpu = torch.randn(shape)
other_mps = other_cpu.detach().clone().to("mps")
atan2_cpu = torch.atan2(input_cpu, other_cpu)
atan2_mps = torch.atan2(input_mps, other_mps)
self.assertEqual(atan2_cpu, atan2_mps.to("cpu"))
helper(4)
helper(10000)
helper((10000, 40))
class TestNNMPS(NNTestCase):
def _create_basic_net(self):
class Layer(nn.Module):
def __init__(self):
super(Layer, self).__init__()
self.layer_dummy_param = Parameter(torch.empty(3, 5))
self.register_buffer('layer_dummy_buf', torch.zeros(1, 3, 3, 7))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = Layer()
self.dummy_param = Parameter(torch.empty(3, 5))
self.register_buffer('dummy_buf', torch.zeros(7, 3, 3, 1))
l = Layer()
n = Net()
s = nn.Sequential(n, n)
return l, n, s
def test_requires_grad_(self):
m = self._create_basic_net()[-1]
assert len(list(m.buffers())) > 0, 'invalid test'
assert all(not b.requires_grad for b in m.buffers()) > 0, 'invalid test'
assert len(list(m.parameters())) > 0, 'invalid test'
assert all(p.requires_grad for p in m.parameters()) > 0, 'invalid test'
for requires_grad in (False, True):
self.assertIs(m.requires_grad_(requires_grad), m)
for p in m.parameters():
self.assertEqual(p.requires_grad, requires_grad)
for b in m.buffers():
self.assertFalse(b.requires_grad)
def test_module_backcompat(self):
from torch.serialization import SourceChangeWarning
path = download_file('https://download.pytorch.org/test_data/linear.pt')
with warnings.catch_warnings():
warnings.simplefilter('ignore', SourceChangeWarning)
m = torch.load(path)
input = torch.randn(2, 3, dtype=torch.float)
self.assertEqual(m(input).size(), (2, 5))
def test_conv_backcompat(self):
from torch.serialization import SourceChangeWarning
# This file was generated by running on PyTorch 1.0.1 on Python 2:
#
# import torch
# from torch import nn
# m = nn.Conv2d(1, 1, 1)
# torch.save(m, 'legacy_conv2d.pt')
#
# NB: This Pickle also contains some Unicode data!
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
with warnings.catch_warnings():
warnings.simplefilter('ignore', SourceChangeWarning)
m = torch.load(path, encoding='utf-8')
input = torch.randn((1, 1, 1, 1), dtype=torch.float)
self.assertEqual(m(input).size(), (1, 1, 1, 1))
def test_zero_grad(self):
i = torch.randn(2, 5, requires_grad=True)
module = nn.Linear(5, 5)
for p in module.parameters():
p.requires_grad = False
module.zero_grad()
module.weight.requires_grad = True
module.zero_grad()
self.assertIsNone(module.weight.grad) # uninitialized grad
module(i).sum().backward()
self.assertIsNotNone(module.weight.grad)
self.assertGreater(module.weight.grad.data.abs().sum(), 0)
module.zero_grad()
self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_())
module.bias.requires_grad = True
module.zero_grad()
self.assertIsNotNone(module.weight.grad)
self.assertIsNone(module.bias.grad)
module(i).sum().backward()
self.assertIsNotNone(module.weight.grad)
self.assertIsNotNone(module.bias.grad)
self.assertGreater(module.weight.grad.data.abs().sum(), 0)
self.assertGreater(module.bias.grad.data.abs().sum(), 0)
module.zero_grad()
self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_())
self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_())
# Force set to None.
module.zero_grad(set_to_none=True)
self.assertIsNone(module.weight.grad)
def test_no_grad(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = nn.Conv2d(2, 5, kernel_size=3, padding=1).to(dtype)
input = torch.randn(1, 2, 10, 10).to(dtype)
x = input
y = input.clone()
output = module(x)
self.assertTrue(output.requires_grad)
output.backward(torch.ones(1, 5, 10, 10))
with torch.no_grad():
output2 = module(y)
self.assertFalse(output2.requires_grad)
self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10)))
def test_invalid_conv1d(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True).to(dtype)
input = torch.randn(1, 3, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError,
r'Calculated padded input size per channel: \(4\). ' +
r'Kernel size: \(10\). Kernel size can\'t be greater than actual input size'):
module(input)
# Negative stride check
module = nn.Conv1d(in_channels=3, out_channels=6, kernel_size=3, stride=-1, bias=True).to(dtype)
input = torch.randn(1, 3, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
def test_conv2d_discontiguous_weight(self):
# Test for https://github.com/pytorch/pytorch/issues/55781
x = torch.ones(64, 16, 16, 16)
weight = torch.arange(0, 1.0, 1 / 2.0 ** 10).reshape(32, 16, 1, 2)[:, :, :, ::2]
self.assertFalse(weight.is_contiguous())
y = torch.nn.functional.conv2d(x, weight, None)
if torch.backends.mkldnn.is_available():
# Disable MKLDNN explicitly, so that either NNPACK or THCNN will be used
with torch.backends.mkldnn.flags(enabled=False):
y_ = torch.nn.functional.conv2d(x, weight, None)
self.assertEqual(y, y_)
self.assertEqual(y.sum(), 4186112.)
def test_invalid_conv2d(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype)
input = torch.empty(1, 1, 4, 4).to(dtype)
self.assertRaises(RuntimeError, lambda: module(input))
module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True)
input = torch.randn(1, 3, 1, 1)
with self.assertRaisesRegex(RuntimeError,
r'Calculated padded input size per channel: \(1 x 1\). ' +
r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'):
module(input)
# Negative stride check
module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=-1, bias=True).to(dtype)
input = torch.randn(1, 3, 4, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
# Zero stride check
module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=0, bias=True).to(dtype)
input = torch.randn(1, 3, 4, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
def test_conv2d_valid_padding(self, device='mps'):
# Test F.conv2d padding='valid' is the same as no padding
x = torch.rand(1, 1, 1, 10, device=device).to(torch.float)
y = torch.rand(1, 1, 1, 4, device=device).to(torch.float)
expect = F.conv2d(x, y)
actual = F.conv2d(x, y, padding='valid')
self.assertEqual(expect.to('cpu'), actual.to('cpu'))
# def test_conv2d_same_padding(self, device='mps'):
# x = torch.rand(1, 1, 10, 11, device=device)
# y = torch.rand(1, 1, 4, 5, device=device)
# expect = F.conv2d(x, y, padding=(2, 2))[..., 1:, :]
# actual = F.conv2d(x, y, padding='same')
# self.assertEqual(expect.to('cpu'), actual.to('cpu'))
# # With dilation
# y = torch.rand(1, 1, 3, 4, device=device)
# expect = F.conv2d(x, y, padding=(2, 3), dilation=2)
# actual = F.conv2d(x, y, padding='same', dilation=2)
# self.assertEqual(expect, actual)
# # Dilation with asymmetric padding
# y = torch.rand(1, 1, 4, 4, device=device)
# expect = F.conv2d(x, y, padding=5, dilation=3)[..., 1:, 1:]
# actual = F.conv2d(x, y, padding='same', dilation=3)
# self.assertEqual(expect, actual)
class TestConstantPadNd(TestCase):
def test_preserves_memory_format(self):
nchw_tensor = torch.rand((1, 2, 5, 3))
nchw_padded = torch.constant_pad_nd(nchw_tensor, [1, 2], 0.5)
self.assertTrue(nchw_padded.is_contiguous(memory_format=torch.contiguous_format))
nhwc_tensor = nchw_tensor.contiguous(memory_format=torch.channels_last)
nhwc_padded = torch.constant_pad_nd(nhwc_tensor, [1, 2], 0.5)
self.assertTrue(nhwc_padded.is_contiguous(memory_format=torch.channels_last))
class TestLinalgMPS(TestCase):
def _test_addmm_addmv(self, f, t, m, v, *, alpha=None, beta=None, transpose_out=False):
dtype = t.dtype
numpy_dtype = dtype
alpha = 1.2 if alpha is None else alpha
beta = 0.8 if beta is None else beta
res1 = f(t, m, v, alpha=alpha, beta=beta)
res2 = torch.full_like(res1, math.nan)
if transpose_out:
res2 = res2.t().clone(memory_format=torch.contiguous_format).t()
f(t, m, v, alpha=alpha, beta=beta, out=res2)
res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy())
if beta != 0:
res3 += (torch.mul(t, beta)).to(numpy_dtype).cpu().numpy()
res3 = torch.from_numpy(res3).to(dtype)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
def test_addmm(self, device="mps", dtype=torch.float32):
M = torch.randn(10, 25, device=device).to(dtype)
m1 = torch.randn(10, 50, device=device).to(dtype)
m2 = torch.randn(50, 25, device=device).to(dtype)
self._test_addmm_addmv(torch.addmm, M, m1, m2)
# Test beta=0, M=nan
M = torch.full((10, 25), math.nan, device=device).to(dtype)
m1 = torch.randn(10, 50, device=device).to(dtype)
m2 = torch.randn(50, 25, device=device).to(dtype)
self._test_addmm_addmv(torch.addmm, M, m1, m2, beta=0)
# Test transpose
for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
def maybe_transpose(cond, m):
if not cond:
return m
return m.t().clone(memory_format=torch.contiguous_format).t()
M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
self._test_addmm_addmv(torch.addmm, M, m1, m2, transpose_out=t4)
class TestRNNMPS(TestCase):
def test_lstm_1(self, device="mps", dtype=torch.float32):
rnn = nn.LSTM(1, 4, 2, device="cpu")
input = torch.randn(2, 3, 1, device="cpu")
hx = torch.zeros(2, 3, 4, device="cpu")
cx = torch.zeros(2, 3, 4, device="cpu")
outputs = []
for device in [torch.device("cpu"), torch.device("mps")]:
rnn = rnn.to(device)
input = input.to(device)
hx = hx.to(device)
cx = cx.to(device)
weight_list = []
output, _ = rnn(input, (hx, cx))
print(output.to('cpu'))
def test_lstm_2(self, device="mps", dtype=torch.float32):
rnn = nn.LSTM(1, 4, 1, device="cpu")
input = torch.randn(2, 3, 1, device="cpu", requires_grad=True)
hx = torch.zeros(1, 3, 4, device="cpu")
cx = torch.zeros(1, 3, 4, device="cpu")
outputs = []
for device in [torch.device("cpu"), torch.device("mps")]:
rnn = rnn.to(device)
input = input.to(device)
input.retain_grad()
hx = hx.to(device)
cx = cx.to(device)
output, _ = rnn(input, (hx, cx))
# Test by passing ones as the gradient from the loss.
output.backward(torch.ones_like(output))
print(rnn.weight_ih_l0.grad)
# Gradient on GPU is 2x the CPU gradient???
if __name__ == "__main__":
run_tests()