| import base64 |
| import dataclasses |
| import functools |
| import getpass |
| import hashlib |
| import json |
| import logging |
| import multiprocessing |
| import os |
| import re |
| import shutil |
| import signal |
| import subprocess |
| import sys |
| import sysconfig |
| import tempfile |
| import types |
| from concurrent.futures import Future, ProcessPoolExecutor, ThreadPoolExecutor |
| from ctypes import cdll |
| from threading import Thread |
| from time import sleep, time |
| from typing import Any, Callable, Dict, List |
| |
| import torch |
| |
| from torch.hub import _Faketqdm, tqdm |
| from torch.utils import cpp_extension |
| from . import config, cuda_properties, exc |
| from .utils import developer_warning |
| |
| LOCK_TIMEOUT = 600 |
| |
| # timing metrics for time spent in the compilation |
| _cumulative_compile_time = 0 |
| _t0 = None |
| |
| |
| def _compile_start(): |
| global _t0 |
| if _t0 is None: |
| _t0 = time() |
| |
| |
| def _compile_end(): |
| global _cumulative_compile_time, _t0 |
| if _t0 is not None: |
| t1 = time() |
| _cumulative_compile_time += t1 - _t0 |
| _t0 = None |
| # print("CUMULATIVE COMPILE TIME", _cumulative_compile_time) |
| |
| |
| log = logging.getLogger(__name__) |
| logging.getLogger("filelock").setLevel(logging.DEBUG if config.debug else logging.INFO) |
| |
| |
| @functools.lru_cache(None) |
| def cache_dir(): |
| return os.environ.get( |
| "TORCHINDUCTOR_CACHE_DIR", |
| f"{tempfile.gettempdir()}/torchinductor_{getpass.getuser()}", |
| ) |
| |
| |
| class DiskCache: |
| @staticmethod |
| @functools.lru_cache(None) |
| def _subdir(): |
| subdir = os.path.join(cache_dir(), "cached_tunings") |
| os.makedirs(subdir, exist_ok=True) |
| return subdir |
| |
| @staticmethod |
| @functools.lru_cache(4096) |
| def _read_file(path): |
| with open(path, "r") as fd: |
| return json.loads(fd.read()) |
| |
| def __init__(self, unique_name): |
| super().__init__() |
| self.unique_name = unique_name |
| |
| def lookup(self, key: Any, generate: Callable[[], Any]): |
| """ |
| Check if we have already generated key, if not call generate() |
| to populate the cache. |
| """ |
| path = os.path.join(self._subdir(), code_hash(self.unique_name + repr(key))) |
| if not os.path.exists(path): |
| value = generate() |
| write_atomic(path, json.dumps(value)) |
| return self._read_file(path) |
| |
| |
| def get_lock_dir(): |
| lock_dir = os.path.join(cache_dir(), "locks") |
| if not os.path.exists(lock_dir): |
| os.makedirs(lock_dir, exist_ok=True) |
| return lock_dir |
| |
| |
| def code_hash(code): |
| return ( |
| "c" |
| + base64.b32encode(hashlib.sha256(code.encode("utf-8")).digest())[:51] |
| .decode("utf-8") |
| .lower() |
| ) |
| |
| |
| def get_code_path(source_code, ext, extra): |
| basename = code_hash(source_code + extra) |
| subdir = os.path.join(cache_dir(), basename[1:3]) |
| path = os.path.join(subdir, f"{basename}.{ext}") |
| return basename, subdir, path |
| |
| |
| def write(source_code, ext, extra=""): |
| basename, subdir, path = get_code_path(source_code, ext, extra) |
| if not os.path.exists(subdir): |
| os.makedirs(subdir, exist_ok=True) |
| if not os.path.exists(path): |
| write_atomic(path, source_code) |
| return basename, path |
| |
| |
| def write_atomic(path: str, source_code: str): |
| # use a temp file for thread safety |
| fd, tmp_path = tempfile.mkstemp(dir=os.path.dirname(path)) |
| with os.fdopen(fd, "w") as f: |
| f.write(source_code) |
| os.rename(tmp_path, path) |
| |
| |
| def cpp_compiler(): |
| if isinstance(config.cpp.cxx, (list, tuple)): |
| search = tuple(config.cpp.cxx) |
| else: |
| search = (config.cpp.cxx,) |
| return cpp_compiler_search(search) |
| |
| |
| @functools.lru_cache(1) |
| def cpp_compiler_search(search): |
| for cxx in search: |
| try: |
| if cxx is None: |
| # gxx package is only available for Linux |
| # according to https://anaconda.org/conda-forge/gxx/ |
| if sys.platform != "linux": |
| continue |
| # Do not install GXX by default |
| if not os.getenv("TORCH_INDUCTOR_INSTALL_GXX"): |
| continue |
| from filelock import FileLock |
| |
| lock_dir = get_lock_dir() |
| lock = FileLock( |
| os.path.join(lock_dir, "g++.lock"), timeout=LOCK_TIMEOUT |
| ) |
| with lock: |
| cxx = install_gcc_via_conda() |
| subprocess.check_output([cxx, "--version"]) |
| return cxx |
| except (subprocess.SubprocessError, FileNotFoundError, ImportError): |
| continue |
| raise exc.InvalidCxxCompiler() |
| |
| |
| def install_gcc_via_conda(): |
| """On older systems, this is a quick way to get a modern compiler""" |
| prefix = os.path.join(cache_dir(), "gcc") |
| cxx_path = os.path.join(prefix, "bin", "g++") |
| if not os.path.exists(cxx_path): |
| log.info("Downloading GCC via conda") |
| conda = os.environ.get("CONDA_EXE", "conda") |
| if conda is None: |
| conda = shutil.which("conda") |
| if conda is not None: |
| subprocess.check_call( |
| [ |
| conda, |
| "create", |
| f"--prefix={prefix}", |
| "--channel=conda-forge", |
| "--quiet", |
| "-y", |
| "python=3.8", |
| "gxx", |
| ], |
| stdout=subprocess.PIPE, |
| ) |
| return cxx_path |
| |
| |
| def is_gcc(): |
| return re.search(r"(gcc|g\+\+)", cpp_compiler()) |
| |
| |
| class VecISA: |
| _bit_width: int |
| _macro: str |
| _arch_flags: str |
| _dtype_nelements: Dict[torch.dtype, int] |
| |
| # TorchInductor CPU vectorization reuses PyTorch vectorization utility functions |
| # Hence, TorchInductor would depend on Sleef* to accelerate mathematical functions |
| # like exp, pow, sin, cos and etc. |
| # But PyTorch and TorchInductor might use different compilers to build code. If |
| # PyTorch uses gcc-7/g++-7 to build the release package, the libtorch_cpu.so |
| # will not expose the Sleef* AVX512 symbols since gcc-7/g++-7 cannot pass |
| # avx512 check in CMake - FindAVX.cmake. But TorchInductor install the latest |
| # gcc/g++ compiler by default while it could support the AVX512 compilation. |
| # Therefore, there would be a conflict sleef version between PyTorch and |
| # TorchInductor. Hence, we dry-compile the following code to check whether current |
| # HW platform and PyTorch both could support AVX512 or AVX2. And suppose ARM |
| # also needs the logic |
| _avx_code = """ |
| #if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) |
| #include <ATen/cpu/vec/functional.h> |
| #include <ATen/cpu/vec/vec.h> |
| #endif |
| |
| __attribute__((aligned(64))) float in_out_ptr0[16] = {0.0}; |
| |
| extern "C" void __avx_chk_kernel() { |
| auto tmp0 = at::vec::Vectorized<float>(1); |
| auto tmp1 = tmp0.exp(); |
| tmp1.store(in_out_ptr0); |
| } |
| """ |
| |
| _avx_py_load = """ |
| import torch |
| from ctypes import cdll |
| cdll.LoadLibrary("__lib_path__") |
| """ |
| |
| def bit_width(self): |
| return self._bit_width |
| |
| def nelements(self, dtype: torch.dtype = torch.float): |
| return self._dtype_nelements[dtype] |
| |
| def build_macro(self): |
| return self._macro |
| |
| def build_arch_flags(self): |
| return self._arch_flags |
| |
| def __hash__(self) -> int: |
| return hash(str(self)) |
| |
| @functools.lru_cache(None) |
| def __bool__(self): |
| key, input_path = write(VecISA._avx_code, "cpp", extra="") |
| from filelock import FileLock |
| |
| lock_dir = get_lock_dir() |
| lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT) |
| with lock: |
| output_path = input_path[:-3] + "so" |
| build_cmd = cpp_compile_command( |
| input_path, output_path, warning_all=False, vec_isa=self |
| ).split(" ") |
| try: |
| # Check build result |
| subprocess.check_output(build_cmd, stderr=subprocess.STDOUT) |
| subprocess.check_call( |
| [ |
| "python", |
| "-c", |
| VecISA._avx_py_load.replace("__lib_path__", output_path), |
| ], |
| stderr=subprocess.DEVNULL, |
| ) |
| except Exception as e: |
| return False |
| |
| return True |
| |
| |
| @dataclasses.dataclass |
| class VecAVX512(VecISA): |
| _bit_width = 512 |
| _macro = "CPU_CAPABILITY_AVX512" |
| _arch_flags = "-mavx512f -mavx512dq -mavx512vl -mavx512bw -mfma" |
| _dtype_nelements = {torch.float: 16, torch.bfloat16: 32} |
| |
| def __str__(self) -> str: |
| return "avx512" |
| |
| __hash__: Callable[[VecISA], Any] = VecISA.__hash__ |
| |
| |
| @dataclasses.dataclass |
| class VecAVX2(VecISA): |
| _bit_width = 256 |
| _macro = "CPU_CAPABILITY_AVX2" |
| _arch_flags = "-mavx2 -mfma" |
| _dtype_nelements = {torch.float: 8, torch.bfloat16: 16} |
| |
| def __str__(self) -> str: |
| return "avx2" |
| |
| __hash__: Callable[[VecISA], Any] = VecISA.__hash__ |
| |
| |
| class InvalidVecISA(VecISA): |
| _bit_width = 0 |
| _macro = "" |
| _arch_flags = "" |
| _dtype_nelements = {} |
| |
| def __str__(self) -> str: |
| return "INVALID_VEC_ISA" |
| |
| def __bool__(self): |
| return False |
| |
| __hash__: Callable[[VecISA], Any] = VecISA.__hash__ |
| |
| |
| invalid_vec_isa = InvalidVecISA() |
| supported_vec_isa_list = [VecAVX512(), VecAVX2()] |
| |
| |
| # Cache the cpuinfo to avoid I/O overhead. Meanwhile, the cpuinfo content |
| # might have too much redundant content that is useless for ISA check. Hence, |
| # we only cache some key isa information. |
| @functools.lru_cache(None) |
| def valid_vec_isa_list(): |
| if sys.platform != "linux": |
| return [] |
| |
| isa_list = [] |
| with open("/proc/cpuinfo") as _cpu_info: |
| _cpu_info_content = _cpu_info.read() |
| for isa in supported_vec_isa_list: |
| if str(isa) in _cpu_info_content and isa: |
| isa_list.append(isa) |
| return isa_list |
| |
| |
| def pick_vec_isa(): |
| _valid_vec_isa_list: List[VecISA] = valid_vec_isa_list() |
| if not _valid_vec_isa_list: |
| return invalid_vec_isa |
| |
| # If the simdlen is None, it indicates determin the vectroization length automatically |
| if config.cpp.simdlen is None: |
| assert _valid_vec_isa_list |
| return _valid_vec_isa_list[0] |
| |
| for isa in _valid_vec_isa_list: |
| if config.cpp.simdlen == isa.bit_width(): |
| return isa |
| |
| return invalid_vec_isa |
| |
| |
| def get_shared(shared=True): |
| return "-shared -fPIC" if shared else "" |
| |
| |
| def get_warning_all_flag(warning_all=True): |
| return "-Wall" if warning_all else "" |
| |
| |
| def cpp_flags(): |
| return "-std=c++17 -Wno-unused-variable" |
| |
| |
| def optimization_flags(): |
| base_flags = "-O3 -ffast-math -fno-finite-math-only" |
| if sys.platform == "darwin": |
| # Per https://mac.r-project.org/openmp/ right way to pass `openmp` flags to MacOS is via `-Xclang` |
| # Also, `-march=native` is unrecognized option on M1 |
| base_flags += " -Xclang -fopenmp" |
| else: |
| base_flags += " -march=native -fopenmp" |
| return base_flags |
| |
| |
| def use_custom_generated_macros(): |
| return "-D C10_USING_CUSTOM_GENERATED_MACROS" |
| |
| |
| def get_include_and_linking_paths( |
| include_pytorch=False, vec_isa: VecISA = invalid_vec_isa |
| ): |
| if sys.platform == "linux" and ( |
| include_pytorch |
| or vec_isa != invalid_vec_isa |
| or config.cpp.enable_kernel_profile |
| ): |
| # Note - We include pytorch only on linux right now. There is more work |
| # to do to enable OMP build on darwin where PyTorch is built with IOMP |
| # and we need a way to link to what PyTorch links. |
| ipaths = cpp_extension.include_paths() + [sysconfig.get_path("include")] |
| lpaths = cpp_extension.library_paths() + [sysconfig.get_config_var("LIBDIR")] |
| libs = ["c10", "torch", "torch_cpu", "torch_python", "gomp"] |
| macros = vec_isa.build_macro() |
| if macros: |
| macros = f"-D{macros}" |
| else: |
| # Note - this is effectively a header only inclusion. Usage of some header files may result in |
| # symbol not found, if those header files require a library. |
| # For those cases, include the lpath and libs command as we do for pytorch above. |
| # This approach allows us to only pay for what we use. |
| ipaths = cpp_extension.include_paths() + [sysconfig.get_path("include")] |
| lpaths = [] |
| macros = "" |
| if sys.platform == "darwin": |
| # GNU OpenMP generally is not available on MacOS |
| # There is either Intel OpenMP(for x86) or LLVM OpenMP (for both x86 and arm64) |
| libs = ["omp"] |
| if os.getenv("CONDA_PREFIX") is not None: |
| # On MacOS OpenMP is not available via the system install |
| # But on conda can be provided using https://anaconda.org/anaconda/llvm-openmp |
| conda_lib_path = os.path.join(os.getenv("CONDA_PREFIX"), "lib") |
| ipaths.append(os.path.join(os.getenv("CONDA_PREFIX"), "include")) |
| lpaths.append(conda_lib_path) |
| # Prefer Intel OpenMP on x86 machine |
| if os.uname().machine == "x86_64" and os.path.exists( |
| os.path.join(conda_lib_path, "libiomp5.dylib") |
| ): |
| libs = ["iomp5"] |
| else: |
| libs = ["gomp"] |
| ipaths = " ".join(["-I" + p for p in ipaths]) |
| lpaths = " ".join(["-L" + p for p in lpaths]) |
| libs = " ".join(["-l" + p for p in libs]) |
| return ipaths, lpaths, libs, macros |
| |
| |
| def cpp_compile_command( |
| input, |
| output, |
| warning_all=True, |
| shared=True, |
| include_pytorch=False, |
| vec_isa: VecISA = invalid_vec_isa, |
| ): |
| ipaths, lpaths, libs, macros = get_include_and_linking_paths( |
| include_pytorch, vec_isa |
| ) |
| |
| return re.sub( |
| r"[ \n]+", |
| " ", |
| f""" |
| {cpp_compiler()} {input} {get_shared(shared)} {get_warning_all_flag(warning_all)} {cpp_flags()} |
| {ipaths} {lpaths} {libs} {macros} |
| {optimization_flags()} |
| {use_custom_generated_macros()} |
| -o{output} |
| """, |
| ).strip() |
| |
| |
| class CppCodeCache: |
| cache = dict() |
| clear = staticmethod(cache.clear) |
| |
| @staticmethod |
| def _load_library(path): |
| try: |
| return cdll.LoadLibrary(path) |
| except OSError as e: |
| if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"): |
| # hacky workaround for fbcode/buck |
| global _libgomp |
| _libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1") |
| return cdll.LoadLibrary(path) |
| if "failed to map segment from shared object" in str(e): |
| raise OSError( |
| f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder " |
| "is mounted with noexec (e.g., by default Docker mounts tmp file systems " |
| f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another " |
| "temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable." |
| ) from e |
| raise |
| |
| @classmethod |
| def load(cls, source_code): |
| picked_vec_isa = pick_vec_isa() |
| key, input_path = write( |
| source_code, |
| "cpp", |
| extra=cpp_compile_command("i", "o", vec_isa=picked_vec_isa), |
| ) |
| if key not in cls.cache: |
| from filelock import FileLock |
| |
| lock_dir = get_lock_dir() |
| lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT) |
| with lock: |
| output_path = input_path[:-3] + "so" |
| if not os.path.exists(output_path): |
| cmd = cpp_compile_command( |
| input=input_path, output=output_path, vec_isa=picked_vec_isa |
| ).split(" ") |
| try: |
| subprocess.check_output(cmd, stderr=subprocess.STDOUT) |
| except subprocess.CalledProcessError as e: |
| raise exc.CppCompileError(cmd, e.output) from e |
| |
| cls.cache[key] = cls._load_library(output_path) |
| cls.cache[key].key = key |
| |
| return cls.cache[key] |
| |
| |
| class PyCodeCache: |
| cache = dict() |
| clear = staticmethod(cache.clear) |
| |
| @classmethod |
| def load(cls, source_code): |
| key, path = write(source_code, "py") |
| if key not in cls.cache: |
| with open(path) as f: |
| code = compile(f.read(), path, "exec") |
| mod = types.ModuleType(f"{__name__}.{key}") |
| mod.__file__ = path |
| mod.key = key |
| exec(code, mod.__dict__, mod.__dict__) |
| # another thread might set this first |
| cls.cache.setdefault(key, mod) |
| return cls.cache[key] |
| |
| |
| class TritonCodeCache: |
| @staticmethod |
| def get_name(mod): |
| (name,) = [n for n in dir(mod) if n.startswith("triton_")] |
| return name |
| |
| @classmethod |
| def load(cls, source_code): |
| mod = PyCodeCache.load(source_code) |
| return getattr(mod, cls.get_name(mod)) |
| |
| |
| def _worker_compile(source_code, cc, device): |
| cuda_properties.set_compiler_worker_current_device(device) |
| kernel = TritonCodeCache.load(source_code) |
| kernel.precompile(warm_cache_only_with_cc=cc) |
| |
| |
| def _load_kernel(source_code): |
| kernel = TritonCodeCache.load(source_code) |
| kernel.precompile() |
| return kernel |
| |
| |
| def _load_kernel_name(source_code): |
| return TritonCodeCache.get_name(PyCodeCache.load(source_code)) |
| |
| |
| class TritonFuture: |
| def __init__(self, source_code, future): |
| self.source_code = source_code |
| self.future = future |
| |
| # @dynamo_utils.dynamo_timed |
| def result(self): |
| t0 = time() |
| if hasattr(self, "kernel"): |
| return self.kernel |
| # If the worker failed this will throw an exception. |
| self.future.result() |
| kernel = self.kernel = _load_kernel(self.source_code) |
| latency = time() - t0 |
| if latency > 50: |
| name = _load_kernel_name(self.source_code) |
| developer_warning( |
| f"Detected long compilation time of {latency} seconds for kernel name {name}" |
| ) |
| developer_warning(self.source_code) |
| del self.source_code, self.future |
| return kernel |
| |
| |
| class AsyncCompile: |
| def __init__(self): |
| pass |
| |
| @staticmethod |
| @functools.lru_cache(1) |
| def pool(): |
| assert config.compile_threads > 1 |
| return ThreadPoolExecutor(config.compile_threads) |
| |
| @staticmethod |
| @functools.lru_cache(1) |
| def process_pool(): |
| # ensure properties have been calculated before processes |
| # are forked |
| cuda_properties._properties() |
| assert config.compile_threads > 1 |
| orig_ppid = os.getpid() |
| |
| # if this process dies abnormally (e.g. segfault) |
| # it will not shut down the workers. Instead |
| # the workers will have their parent reassigned to the |
| # init process. This launches a separate thread to |
| # watch for the worker getting reassigned, |
| # and cleans it up in this case. |
| def init(): |
| def run(): |
| while True: |
| sleep(1) |
| if orig_ppid != os.getppid(): |
| os.kill(os.getpid(), signal.SIGKILL) |
| |
| global _watchdog_thread |
| _watchdog_thread = Thread(target=run, daemon=True) |
| _watchdog_thread.start() |
| |
| # we rely on 'fork' because we cannot control whether users |
| # have an `if __name__ == '__main__'` in their main process. |
| fork_context = multiprocessing.get_context("fork") |
| pool = ProcessPoolExecutor( |
| config.compile_threads, mp_context=fork_context, initializer=init |
| ) |
| # when this pool is created in a subprocess object, the normal exit handler |
| # doesn't run, and we need to register our own handler. |
| # exitpriority has to be high, because another one of the finalizers will |
| # kill the worker thread that sends the shutdown message to the workers... |
| multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize) |
| return pool |
| |
| @classmethod |
| def warm_pool(cls): |
| if config.compile_threads <= 1: |
| return |
| _compile_start() |
| pool = cls.process_pool() |
| |
| # We have to fork processes for compiler workers, but the more memory and other resources that are loaded, the |
| # slower the os.fork time is, quite drastically. It also holds the GIL so we can't put it on another thread. |
| |
| # Examples: |
| # A simple x + x + x script: 10ms seconds in the middle of the program, 2ms at startup |
| # tf_efficientnet_b0 benchmark: 50ms! in the middle of the program , 3ms at startup |
| |
| # So we want to start the workers early when it is still cheap, and also to allow the workers to get |
| # ready before we have work for them. |
| |
| # ProcessPoolExecutor also does not launch the workers until it finds a point when all the workers are idle. |
| # But if we waited until then fork time will be long and we will be waiting for the processes to initialize. |
| |
| # We force them to start here with some YOLOing of the internal methods. |
| if hasattr(pool, "_start_queue_management_thread"): |
| pool._start_queue_management_thread() |
| else: |
| for _ in range(config.compile_threads): |
| pool._adjust_process_count() |
| pool._start_executor_manager_thread() |
| _compile_end() |
| |
| @classmethod |
| def submit(cls, task): |
| if config.compile_threads <= 1: |
| return task() |
| return cls.pool().submit(task) |
| |
| @classmethod |
| def map(cls, fn, seq): |
| if config.compile_threads <= 1 or len(seq) <= 1: |
| return list(map(fn, seq)) |
| return [t.result() for t in [cls.pool().submit(fn, x) for x in seq]] |
| |
| def triton(self, source_code): |
| _compile_start() |
| |
| if config.compile_threads > 1: |
| major, minor = torch.cuda.get_device_capability() |
| device = torch.cuda.current_device() |
| cc = major * 10 + minor |
| future = self.process_pool().submit( |
| _worker_compile, source_code, cc, device |
| ) |
| return TritonFuture(source_code, future) |
| else: |
| return _load_kernel(source_code) |
| |
| def cpp(self, source_code): |
| def task(): |
| return CppCodeCache.load(source_code).kernel |
| |
| return self.submit(task) |
| |
| def wait(self, scope: Dict[str, Any]): |
| num_kernels = len( |
| [ |
| value |
| for key, value in scope.items() |
| if isinstance(value, (Future, TritonFuture)) |
| ] |
| ) |
| pbar = tqdm( |
| total=num_kernels, |
| desc="Inductor Compilation", |
| disable=config.disable_progress, |
| delay=0, |
| ) |
| if config.compile_threads > 1: |
| for key, result in scope.items(): |
| if config.verbose_progress and not isinstance(pbar, _Faketqdm): |
| pbar.set_postfix_str(key) |
| if isinstance(result, (Future, TritonFuture)): |
| scope[key] = result.result() |
| pbar.update(1) |
| |
| _compile_end() |
| |
| |
| AsyncCompile.warm_pool() |