blob: 452df067b21711b78e5a788993a0effcee25fdb0 [file] [log] [blame]
import collections
import dataclasses
import functools
import itertools
import logging
import os
import pprint
import textwrap
from typing import Dict, List, Optional, Set
import sympy
import torch
from torch._dynamo.utils import dynamo_timed
from . import config, dependencies, ir, metrics
from .dependencies import StarDep, WeakDep
from .sizevars import SimplifyIndexing
from .utils import cache_on_self, cmp, has_triton
from .virtualized import V
log = logging.getLogger(__name__)
def pformat(obj):
if isinstance(obj, set):
# pformat has trouble with sets of sympy exprs
obj = sorted(obj, key=str)
result = pprint.pformat(obj, indent=4)
if "\n" in result:
return f"\n{textwrap.indent(result, ' '*4)}"
return result
class OutputNode:
def __init__(self, dep):
self.unmet_dependencies = {dep}
self.inverse_users = []
def is_reduction(self):
return False
def get_alias_names(self):
return ()
def get_name(self):
return "OUTPUT"
__repr__ = get_name
class BaseSchedulerNode:
def __init__(self, scheduler: "Scheduler", node: ir.Buffer):
self.scheduler: "Scheduler" = scheduler
self.node: ir.Buffer = node
self.users: Optional[List[NodeUser]] = None
self.inverse_users: List[BaseSchedulerNode] = []
self.set_read_writes(node.get_read_writes())
self.recursive_predecessors: Optional[Set[str]] = None
self.min_order: Optional[int] = None
self.max_order: Optional[int] = None
self.last_usage: Set[str] = None # buffers that won't be used after this kernel
self.written = False
def __repr__(self):
return f"{type(self).__name__}(name={self.get_name()!r})"
def debug_str(self):
"""Longer form printout for trace logs"""
name = self.get_name()
lines = [
f"{name}: {type(self).__name__}({type(self.node).__name__})",
f"{name}.writes = {pformat(self.read_writes.writes)}",
f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
]
try:
lines += [
self.debug_str_extra(),
]
except Exception:
log.warning("Ignoring error in debug_str()", exc_info=True)
return "\n".join(lines).rstrip()
def debug_str_extra(self):
return ""
def log_details(self):
log.info(
"%s: unmet_dependencies = %s, writes = %s",
self,
self.unmet_dependencies,
self.read_writes.writes,
)
def update_mutated_names(self, renames: Dict[str, str]):
self.set_read_writes(self.read_writes.rename(renames))
def add_mutation_dep(self, dep):
self.set_read_writes(self.read_writes.with_read(dep))
def set_users(self, users: List["NodeUser"]):
# deduplicate
result: Dict[int, NodeUser] = {}
for use in users:
if id(use.node) in result:
result[id(use.node)] = NodeUser(
use.node, result[id(use.node)].can_inplace and use.can_inplace
)
else:
result[id(use.node)] = use
self.users = list(result.values())
def get_aliases(self):
return self.node.get_alias_names()
def get_mutations(self):
return self.node.get_mutation_names()
def has_aliasing_or_mutation(self):
return bool(self.get_aliases() or self.get_mutations())
def set_read_writes(self, rw: dependencies.ReadWrites):
self.read_writes: dependencies.ReadWrites = rw
self.unmet_dependencies = self.read_writes.reads
self.prune_deps()
def used_buffer_names(self) -> Set[str]:
return {
dep.name
for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes)
}
def prune_deps(self):
self.unmet_dependencies = {
dep
for dep in self.unmet_dependencies
if dep.name not in self.scheduler.available_buffer_names
}
def prune_redundant_deps(self, name_to_fused_node):
"""
Prunes stardeps intended for mutation ordering
on an upstream fused node if after fusion there is another dependency
on the fused upstream node, making the stardep redundant
In essence this enforces an ordering on fusions. As fusions occur, prunable stardeps will
be incrementally removed, enabling other fusions, ensuring they are fused in order.
"""
name_to_dep_count = collections.Counter()
for dep in self.unmet_dependencies:
if not isinstance(dep, WeakDep):
name_to_dep_count[name_to_fused_node[dep.name].get_name()] += 1
def should_prune(dep):
if isinstance(dep, WeakDep):
is_redundant = (
name_to_dep_count[name_to_fused_node[dep.name].get_name()] > 0
)
# These can occur because fused nodes always gather deps from their snodes
# If B has a weakdep on A
# B gets fused with C, then any time BC is fused, the weakdep will reappear
is_self_dep = name_to_fused_node[dep.name] == self
return is_redundant or is_self_dep
else:
return False
deps_to_prune = {dep for dep in self.unmet_dependencies if should_prune(dep)}
self.unmet_dependencies = self.unmet_dependencies - deps_to_prune
self.set_read_writes(self.read_writes.remove_reads(deps_to_prune))
def get_name(self) -> str:
return self.node.get_name()
def get_first_name(self) -> str:
return self.get_name()
def get_names(self) -> Set[str]:
return {self.get_name()}
def get_nodes(self) -> List["BaseSchedulerNode"]:
return [self]
def get_device(self):
return self.node.get_device()
def is_reduction(self):
return False
def is_template(self):
return False
def is_extern(self):
return False
def can_inplace(self, read_dep: dependencies.MemoryDep):
return False
def allocate(self):
if not self.node.should_allocate():
return
if isinstance(self, (SchedulerNode,)) and (
self.node.get_alias_names() or self.node.get_mutation_names()
):
V.graph.wrapper_code.codegen_allocation(self.node)
return
if (
isinstance(self, (SchedulerNode,))
and config.inplace_buffers
and (
not isinstance(V.kernel, torch._inductor.codegen.triton.TritonKernel)
or getattr(V.kernel, "mutations", None) is not None
)
):
from .codegen.wrapper import buffer_reuse_key
ordered_reads = sorted(self.read_writes.reads, key=lambda x: x.name)
for read in ordered_reads:
input_node: BaseSchedulerNode = self.scheduler.name_to_node.get(
read.name
)
if input_node and V.graph.wrapper_code.can_reuse(input_node):
remaining_uses = [
x
for x in input_node.users
if x.node.get_name()
not in self.scheduler.available_buffer_names
]
if (
len(remaining_uses) == 1
and remaining_uses[0].can_inplace
and remaining_uses[0].node is self
and not isinstance(
input_node.node.get_layout(),
(
ir.MultiOutputLayout,
ir.MutationLayout,
ir.AliasedLayout,
),
)
and buffer_reuse_key(input_node.node)
== buffer_reuse_key(self.node)
):
V.graph.wrapper_code.codegen_inplace_reuse(
input_node.node, self.node
)
V.kernel.args.make_inplace(
input_node.get_name(), self.get_name()
)
# mutations not tracked in cpp kernels
if isinstance(
V.kernel, torch._inductor.codegen.triton.TritonKernel
):
V.kernel.mutations.add(input_node.get_name())
V.kernel.mutations.add(self.get_name())
return
V.graph.wrapper_code.codegen_allocation(self.node)
def can_free(self):
for use in self.users:
if isinstance(use.node, OutputNode):
return False
return True
def codegen_originating_info(self, buffer, only_once=True):
if not config.comment_origin:
return
if only_once and self.written:
return
origins = self.node.origins
out_lines = []
for o in origins:
if o.op == "output":
# These are boring and samey
continue
out_lines.append("")
# TODO(voz): Should the pragma be constant somewhere?
out_lines.append("#pragma CMT ORIGIN:")
out_lines.append(f"#pragma CMT {o.op} {o.target}")
if "stack_trace" in o.meta:
stack_trace = f"{o.meta['stack_trace']}"
stack_trace_last_line = stack_trace.split("|")[-1]
out_lines.append(
"#pragma CMT "
+ stack_trace_last_line.replace("{", "{{")
.replace("}", "}}")
.replace("\n", "\\")
)
out_lines.append("#pragma CMT END ORIGIN")
out_lines.append("")
if len(out_lines) == 0:
return
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
buffer.writelines(out_lines)
self.written = True
class ExternKernelSchedulerNode(BaseSchedulerNode):
def debug_str_extra(self):
return f"{self.get_name()}.node.kernel = {getattr(self.node, 'kernel', None)}"
def is_extern(self):
return True
class NopKernelSchedulerNode(BaseSchedulerNode):
pass
class SchedulerNode(BaseSchedulerNode):
def __init__(self, scheduler: "Scheduler", node: ir.ComputedBuffer, group_fn):
super().__init__(scheduler, node)
(
self._sizes,
self._body,
) = node.simplify_and_reorder()
self.group = (node.get_device(), group_fn(self._sizes))
if self.is_template():
self.set_read_writes(node.normalized_read_writes())
else:
self.set_read_writes(
dependencies.extract_read_writes(
self._body, *self._sizes, normalize=True
)
)
if self.is_reduction():
# reduction has last (reduced) dim in its sizes, and some
# downstream dependencies get confused by it
self.read_writes.writes = self.read_writes.writes | {
w.strip_last_size() for w in self.read_writes.writes
}
# reduction not on the last dim swaps the sizes, and downstream
# dependencies expect unswapped
# TODO swapping sizes doesn't work, leads to
# File "/scratch/ngimel/work/repos/torchdynamo/torchinductor/sizevars.py", line 130, in guard_equals
# if len(right.free_symbols) < len(left.free_symbols):
# AttributeError: 'int' object has no attribute 'free_symbols'
# even though memory dep looks correct
# self.read_writes.writes = self.read_writes.writes | {
# w.maybe_swap_sizes() for w in self.read_writes.writes
# }
def debug_str_extra(self):
name = self.get_name()
lines = [
f"{name}.group.device = {self.group[0]}",
f"{name}.group.iteration = {self.group[1]}",
f"{name}.sizes = {self._sizes}",
]
if self.get_aliases():
lines.append(f"{name}.aliases = {pformat(self.get_aliases())}")
if self.get_mutations():
lines.append(f"{name}.mutations = {pformat(self.get_mutations())}")
if isinstance(self._body, ir.LoopBody):
lines.append(f"class {name}_loop_body:")
lines.append(textwrap.indent(self._body.debug_str(), " "))
return "\n".join(lines)
def get_ranges(self):
return self._sizes
def is_reduction(self):
return bool(self.node.get_reduction_type())
def is_template(self):
return isinstance(self.node, ir.TemplateBuffer)
def run(self, *index_vars):
self.mark_run()
self.codegen(index_vars)
def mark_run(self):
self.allocate()
def ranges_from_index_vars(self, index_vars):
sizes = self._sizes
assert sum(map(len, sizes)) == sum(map(len, index_vars))
var_ranges = dict(
zip(
itertools.chain.from_iterable(index_vars),
itertools.chain.from_iterable(sizes),
)
)
return var_ranges
def codegen(self, index_vars):
var_ranges = self.ranges_from_index_vars(index_vars)
try:
with V.set_ops_handler(
SimplifyIndexing(V.get_ops_handler(), var_ranges)
), V.kernel.set_current_node(self):
self._body(*index_vars)
except Exception:
log.fatal("Error in codegen for %s", self.node)
raise
def pointwise_read_writes(self):
"""
Get the memory dependencies in the non-reduction axis.
"""
sizes, reduction_sizes = self._sizes
def fn(index):
return self._body(index, [sympy.Integer(0) for _ in reduction_sizes])
return dependencies.extract_read_writes(fn, sizes)
def can_inplace(self, read_dep: dependencies.MemoryDep):
if self.get_aliases() or self.is_template():
return False
if len(self.read_writes.writes) == 1 and hasattr(read_dep, "index"):
write_dep = next(iter(self.read_writes.writes))
return read_dep.index == write_dep.index and read_dep.size == write_dep.size
return False
class FusedSchedulerNode(BaseSchedulerNode):
"""
This is a "fake" scheduler node that represents a group of scheduler nodes
that are meant to be fused together. The way it does this is by maintaining
its unmet dependencies as the union of its constituent nodes.
"""
@classmethod
def fuse(cls, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
assert node1.scheduler is node2.scheduler
return cls(node1.scheduler, node1.get_nodes() + node2.get_nodes())
def __init__(self, scheduler: "Scheduler", snodes: List[SchedulerNode]):
# NB: No need to call super().__init__() because we don't need to re-use any of its logic.
self.snodes = snodes
self.scheduler = scheduler
self.node = None # type: ignore[assignment]
self.users = None
self.inverse_users = []
self.group = max(snodes, key=lambda x: int(x.is_reduction())).group
self.recursive_predecessors = functools.reduce(
set.union, [x.recursive_predecessors for x in snodes]
)
self.set_read_writes(
functools.reduce(
dependencies.ReadWrites.merge, [x.read_writes for x in snodes]
)
)
names = set(self.get_names())
self.unmet_dependencies = {
dep
for dep in functools.reduce(
set.union, [x.unmet_dependencies for x in snodes]
)
if dep.name not in names
} - self.read_writes.writes
self.min_order = min([x.min_order for x in self.snodes])
self.max_order = max([x.max_order for x in self.snodes])
@cache_on_self
def get_name(self) -> str:
return "_".join([x.get_name() for x in self.snodes])
def get_first_name(self) -> str:
return self.snodes[0].get_name()
@cache_on_self
def get_names(self) -> Set[str]:
return functools.reduce(set.union, [x.get_names() for x in self.snodes])
def debug_str_extra(self):
return (
f"{self.get_name()}.snodes = {pformat([x.get_name() for x in self.snodes])}"
)
@cache_on_self
def used_buffer_names(self) -> Set[str]:
return functools.reduce(set.union, [x.used_buffer_names() for x in self.snodes])
def get_nodes(self) -> List[BaseSchedulerNode]:
return self.snodes
def __repr__(self):
return f"{type(self).__name__}(nodes={self.get_name()})"
@cache_on_self
def is_reduction(self):
return any(x.is_reduction() for x in self.snodes)
@cache_on_self
def is_template(self):
return any(x.is_template() for x in self.snodes)
def get_device(self):
return self.group[0]
@cache_on_self
def has_aliasing_or_mutation(self):
return any(x.has_aliasing_or_mutation() for x in self.snodes)
# None of these need to be implemented, as a FusedSchedulerNode is just an
# abstraction for scheduling purposes
def update_mutated_names(self, renames: Dict[str, str]):
raise NotImplementedError
def add_mutation_dep(self, name):
raise NotImplementedError
def set_users(self, users: List["NodeUser"]):
raise NotImplementedError
def get_aliases(self):
raise NotImplementedError
def get_mutations(self):
raise NotImplementedError
def can_inplace(self, read_dep: dependencies.MemoryDep):
raise NotImplementedError
def allocate(self):
raise NotImplementedError
def can_free(self):
raise NotImplementedError
def pick_loop_order(stride_lengths, sizes, priority_idx=()):
"""
A heuristic to decide loop iteration orders. This has not been well
tuned and may be something we should autotune.
"""
@functools.cmp_to_key
def index_cmp(a, b):
if sizes[a] == 1 or sizes[b] == 1:
# 1-sizes don't matter, just move them to the end
return cmp(sizes[a] == 1, sizes[b] == 1)
stride_len_a = [sl[a] for sl in stride_lengths]
stride_len_b = [sl[b] for sl in stride_lengths]
# equivalent to
# np.logical_or(stride_lengths[:, b] == 0, stride_lengths[:, a] < stride_lengths[:, b]).all()
a_first = all(
sl_b == 0 or sl_a < sl_b for sl_a, sl_b in zip(stride_len_a, stride_len_b)
)
b_first = all(
sl_a == 0 or sl_b < sl_a for sl_a, sl_b in zip(stride_len_a, stride_len_b)
)
if a_first and not b_first:
return -1
if b_first and not a_first:
return 1
# otherwise contiguous
return cmp(b, a)
order = list(reversed(range(len(stride_lengths[0]))))
if len(priority_idx) > 0:
# if we have priority node, only use that node's order
stride_lengths = [stride_lengths[pi] for pi in priority_idx]
if config.pick_loop_orders:
order.sort(key=index_cmp)
return order
@dataclasses.dataclass
class NodeUser:
node: BaseSchedulerNode
can_inplace: bool = False
def get_name(self):
return self.node.get_name()
class Scheduler:
@dynamo_timed
def __init__(self, nodes):
super().__init__()
self.backends = {}
self.nodes = []
self.available_buffer_names = {
*V.graph.graph_inputs.keys(),
*V.graph.constants.keys(),
}
for node in nodes:
assert (
node.origins is not None
), "All nodes passed to scheduling must have an origin"
if node.is_no_op():
self.nodes.append(NopKernelSchedulerNode(self, node))
elif isinstance(node, (ir.ComputedBuffer, ir.TemplateBuffer)):
group_fn = self.get_backend(node.get_device()).group_fn
self.nodes.append(SchedulerNode(self, node, group_fn))
elif isinstance(node, ir.ExternKernel):
self.nodes.append(ExternKernelSchedulerNode(self, node))
else:
raise NotImplementedError(node)
# some new constants could have been created above
self.available_buffer_names.update(V.graph.constants.keys())
for node in self.nodes:
node.prune_deps()
self.name_to_node = {node.get_name(): node for node in self.nodes}
self.name_to_fused_node = None # set in fuse_nods()
# we handle mutation by renaming modified versions of the same
# buffer in the dependency graph to prevent cycles.
# mutation_renames: tracks the current name for a given buffer
# (changed once per mutation)
self.mutation_real_name = {}
# mutation_real_name: maps back to the original name for codegen
self.mutation_renames = {}
self.compute_dependencies()
self.topological_sort_schedule()
self.compute_predecessors()
self.dead_node_elimination()
metrics.ir_nodes_pre_fusion += len(self.nodes)
V.debug.ir_pre_fusion(self.nodes)
self.num_orig_nodes = len(self.nodes)
self.name_to_fused_node = {n.get_name(): n for n in self.nodes}
self.fuse_nodes()
self.compute_last_usage()
V.debug.ir_post_fusion(self.nodes)
V.debug.graph_diagram(self.nodes)
self.debug_draw_graph()
# used during codegen:
self.current_device = None
self.buffer_names_to_free = set()
self.buffer_names_no_longer_needed = set()
def debug_draw_graph(self):
"""Generate an image of the graph for debugging"""
if os.environ.get("INDUCTOR_WRITE_SCHEDULER_GRAPH", None) == "1":
from .debug import draw_buffers
draw_buffers(self.nodes, print_graph=True)
def debug_print_nodes(self, label):
if log.isEnabledFor(logging.INFO):
log.info("%s:", label)
for node in self.nodes:
node.log_details()
def compute_dependencies(self):
"""
Create dependency edges between nodes, handling aliasing and
mutation properly.
"""
name_to_users = collections.defaultdict(list)
# handle aliasing by using python aliasing in name_to_users
# if foo aliases bar then we will make name_to_users["foo"] point
# to the same python list as name_to_users["bar"]
for node1 in self.nodes:
node1_name = node1.get_name()
for node2_name in node1.get_aliases():
if node1_name in name_to_users and node2_name in name_to_users:
# merge the two
list1 = name_to_users[node1_name]
list2 = name_to_users[node2_name]
combined = list1 + list2
for key in name_to_users.keys():
if name_to_users[key] is list1 or name_to_users[key] is list2:
name_to_users[key] = combined
elif node1_name in name_to_users:
name_to_users[node2_name] = name_to_users[node1_name]
else:
name_to_users[node1_name] = name_to_users[node2_name]
def rename(n):
if n in self.mutation_renames:
return rename(self.mutation_renames[n])
return n
def dep_closure(node_name):
reachable_names = {node_name}
node = self.name_to_node[node_name]
write_dep = list(node.read_writes.writes)[0]
for read_dep in node.read_writes.reads:
if (
read_dep.name in self.name_to_node
and read_dep.index == write_dep.index
and read_dep.size == write_dep.size
):
reachable_names.update(dep_closure(read_dep.name))
return reachable_names
def add_user(used_by_name, user_node, can_inplace=False):
name_to_users[rename(used_by_name)].append(NodeUser(user_node, can_inplace))
for node in self.nodes:
# a node will mutate either 0 or 1 buffers
for alt_name in node.get_mutations():
alt_name = rename(alt_name)
# this node must run after the prior writer
add_user(alt_name, node)
node.add_mutation_dep(StarDep(alt_name))
for other_node in name_to_users[alt_name]:
# this node must run after all prior readers
other_name = rename(other_node.get_name())
known_dep_node_names = dep_closure(node.get_name())
if other_name not in known_dep_node_names:
# If this node already directly or indirectly depends on other_node,
# we don't need to insert an extra dep.
node.add_mutation_dep(WeakDep(other_name))
add_user(other_name, node)
# add normal non-mutation dependencies
for read in node.read_writes.reads:
add_user(read.name, node, node.can_inplace(read))
node.update_mutated_names(self.mutation_renames)
# update our renaming scheme for the next iteration
for alt_name in node.get_mutations():
self.mutation_renames[rename(alt_name)] = node.get_name()
self.mutation_renames[alt_name] = node.get_name()
self.mutation_real_name[node.get_name()] = self.mutation_real_name.get(
alt_name, alt_name
)
# make sure outputs aren't dead-code-eliminated
for node_name in V.graph.get_output_names():
add_user(node_name, OutputNode(StarDep(node_name)))
# make sure input mutation isn't dead-code-eliminated
for name in self.mutation_renames:
if name in V.graph.graph_inputs:
add_user(name, OutputNode(StarDep(name)))
V.graph.mutated_inputs.add(name)
# copy users information onto the nodes
for node in self.nodes:
node.set_users(name_to_users[node.get_name()])
# populate inverse_users
for node in self.nodes:
for user in node.users:
user.node.inverse_users.append(node)
def dead_node_elimination(self):
"""
Remove any nodes without users
"""
updated_nodes = []
for node in self.nodes:
if node.users:
updated_nodes.append(node)
else:
# dead code
log.debug("removed dead node: %s", node.get_name())
V.graph.removed_buffers.add(node.get_name())
self.nodes = updated_nodes
def topological_sort_schedule(self):
"""
Ensure self.nodes is in topologically sorted order
"""
seen = set()
name_to_node = dict()
result = []
def visit(n):
if n not in seen:
seen.add(n)
for dep in sorted(n.unmet_dependencies, key=lambda d: d.name):
visit(name_to_node[dep.name])
result.append(n)
for node in self.nodes:
for name in node.get_names():
name_to_node[name] = node
for node in self.nodes:
visit(node)
self.nodes = result
def compute_predecessors(self):
"""
Populate each node.recursive_predecessors
"""
# note self.nodes is topologically sorted
name_to_predecessors = {}
for node in self.nodes:
recursive_predecessors = set()
for dep in node.unmet_dependencies:
recursive_predecessors.add(dep.name)
recursive_predecessors |= name_to_predecessors[dep.name]
name_to_predecessors[node.get_name()] = recursive_predecessors
node.recursive_predecessors = recursive_predecessors
for order, node in enumerate(self.nodes):
node.min_order = order
node.max_order = order
def fuse_nodes(self):
"""
Mutates self.nodes to combine nodes into FusedSchedulerNodes.
"""
for _ in range(10):
old_len = len(self.nodes)
self.fuse_nodes_once()
if len(self.nodes) == old_len:
break
def fuse_nodes_once(self):
"""
Mutates self.nodes to combine nodes into FusedSchedulerNodes.
This relies on two key functions to control the logic:
- self.can_fuses(): checks if a fusion is legal
- self.score_fusion(): assigns priority to a given fusion
"""
fused_nodes = set(self.nodes)
for node1, node2 in self.get_possible_fusions():
node1 = self.name_to_fused_node[node1.get_first_name()]
node2 = self.name_to_fused_node[node2.get_first_name()]
if self.can_fuse(node1, node2) and not self.will_fusion_create_cycle(
node1, node2
):
node3 = FusedSchedulerNode.fuse(node1, node2)
fused_nodes.remove(node1)
fused_nodes.remove(node2)
fused_nodes.add(node3)
self.name_to_fused_node.update(
{n.get_name(): node3 for n in node3.get_nodes()}
)
self.nodes = sorted(fused_nodes, key=lambda x: x.min_order)
self.topological_sort_schedule()
self.prune_redundant_deps()
def prune_redundant_deps(self):
for node in self.nodes:
node.prune_redundant_deps(self.name_to_fused_node)
def get_possible_fusions(self):
"""
Helper to find all legal fusion opportunities, sorted by self.score_fusion()
"""
possible_fusions = []
seen = set()
def check_all_pairs(nodes):
for node1_index, node1 in enumerate(nodes):
for node2 in nodes[node1_index + 1 :]:
key = (node1, node2)
if key in seen:
continue
seen.add(key)
if self.can_fuse(node1, node2):
possible_fusions.append(key)
elif node2.is_template() and self.can_fuse(node2, node1):
# epilogue fusions are order dependent
possible_fusions.append((node2, node1))
buffer_names_grouping = collections.defaultdict(list)
for node in self.nodes:
for buf in node.used_buffer_names():
buffer_names_grouping[buf].append(node)
for node_grouping in buffer_names_grouping.values():
check_all_pairs(node_grouping)
if config.aggressive_fusion:
group_grouping = collections.defaultdict(list)
for node in self.nodes:
group = getattr(node, "group", None)
if group:
group_grouping[group].append(node)
for node_grouping in group_grouping.values():
check_all_pairs(node_grouping)
return sorted(possible_fusions, key=self.score_fusion_key, reverse=True)
def will_fusion_create_cycle(self, node1, node2):
"""Finds whether there's a path from src to dst caused indirectly by fusion"""
def check(node):
if isinstance(node, FusedSchedulerNode) and node not in visited:
visited.add(node)
return bool(combined_names & node.recursive_predecessors) or any(
check(self.name_to_fused_node[n])
for n in node.recursive_predecessors - combined_predecessors
)
return False
visited = set()
combined_names = node1.get_names() | node2.get_names()
combined_predecessors = (
node1.recursive_predecessors | node2.recursive_predecessors
) - combined_names
return any(check(self.name_to_fused_node[n]) for n in combined_predecessors)
def can_fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Determine if it is possible to combine node1 and node2 into a
single fused node.
"""
if node1 is node2:
return False
if (
isinstance(node1, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
and not node1.is_template()
):
return False
if (
isinstance(node2, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
and not node2.is_template()
):
return False
if node2.get_names() & node1.recursive_predecessors:
return False # node2 must go before node1
if node2.is_template():
return False # only epilogues
if node1.is_template() and (
node2.has_aliasing_or_mutation()
or node2.is_reduction()
or not config.epilogue_fusion
):
return False
device = node1.get_device()
if device != node2.get_device():
return False # wrong device
no_shared_data = self.score_fusion_memory(node1, node2) == 0
if no_shared_data and (
not config.aggressive_fusion or node1.is_reduction() or node2.is_reduction()
):
return False # heuristic not needed for correctness
if len(node1.get_nodes()) + len(node2.get_nodes()) > config.max_fusion_size:
return False # heuristic not needed for correctness
if node1.get_names() & node2.recursive_predecessors:
# node2 depends on node1 outputs
if not self.can_fuse_vertical(node1, node2):
return False
return self.get_backend(device).can_fuse_vertical(node1, node2)
else: # nodes don't depend on each other, but may have common reads
return self.get_backend(device).can_fuse_horizontal(node1, node2)
def can_fuse_vertical(self, node1, node2):
"""
Check if it is legal to fuse a consumer (node2) into a producer (node1).
We can fuse them if all the reads of node2 either match
corresponding writes in node1, or are written by nodes that can
be scheduled before the fusion of node1 and node2.
"""
node1_names = node1.get_names()
computed_deps = set()
for rd in node2.unmet_dependencies:
for cd in node1.read_writes.writes:
# StarDep doesn't match MemoryDep, different indices don't match
# However, broadcasting sometimes strips dimensions, and if that's the case
# we still can match unmet dep
if (
rd.name == cd.name
and type(rd) == type(cd)
and rd.index == cd.index
and len(rd.size) >= len(cd.size)
and rd.size[: len(cd.size)] == cd.size
):
computed_deps.add(rd)
remaining_deps = {dep.name for dep in node2.unmet_dependencies - computed_deps}
if remaining_deps & node1_names:
# MemoryDeps didn't match and read different locations of the same buffer.
# Examples here include:
# - MemoryDep("foo", x) != MemoryDep("foo", x + 1)
# - MemoryDep("foo", x) != StarDep("foo")
return False
for name in remaining_deps:
if node1_names & self.name_to_fused_node[name].recursive_predecessors:
return False
return True
def score_fusion(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
"""
Assign a score (higher comes first) to the fusion of node1
and node2. When different fusions conflict with each other,
this is the way we decide what order to run them in.
Our current score is based on:
- Estimate of the saved memory operations
- Fusions closer together in original order
"""
memory_score = self.score_fusion_memory(node1, node2)
proximity_score = -max(
abs(node1.min_order - node2.max_order),
abs(node2.min_order - node1.max_order),
)
return (
node1.is_template() == config.epilogue_fusion_first and memory_score > 0,
node1.is_reduction() == node2.is_reduction() and memory_score > 0,
memory_score,
proximity_score,
)
def score_fusion_memory(self, node1, node2):
"""
The first term in our fusion score that estimates number of saved memory operations.
"""
common_memory_deps = (node1.read_writes.reads | node1.read_writes.writes) & (
node2.read_writes.reads | node2.read_writes.writes
)
return sum(dep.numbytes_hint() for dep in common_memory_deps)
def score_fusion_key(self, nodes):
"""
Shim for list.sort(key=...)
"""
node1, node2 = nodes
return self.score_fusion(node1, node2)
def compute_last_usage(self):
"""
Populate node.last_usage
"""
future_used_buffers = set()
for node_name in V.graph.get_output_names():
future_used_buffers.add(node_name)
for node in reversed(self.nodes):
used_buffers = node.used_buffer_names()
used_buffers = {self.mutation_real_name.get(k, k) for k in used_buffers}
node.last_usage = used_buffers - future_used_buffers
future_used_buffers.update(used_buffers)
def free_buffers(self):
"""Free any buffers that are no longer needed"""
for name in sorted(self.buffer_names_to_free - V.graph.removed_buffers):
if name in self.name_to_node:
node = self.name_to_node[name]
if node.can_free():
V.graph.wrapper_code.codegen_free(node.node)
elif name in V.graph.graph_inputs:
storage = V.graph.graph_inputs[name].data
assert storage.is_input_buffer()
V.graph.wrapper_code.codegen_free(storage.data)
self.buffer_names_to_free.clear()
def remove_kernel_local_buffers(self):
"""
Any buffers that are both created and have a last use in the
same kernel can be removed.
"""
for name in V.kernel.store_buffer_names & self.buffer_names_no_longer_needed:
if (
name not in V.kernel.must_keep_buffers
and name not in V.kernel.args.input_buffers
and name not in self.mutation_renames
and name not in self.mutation_real_name
):
# For inplace buffers subject to remove, we don't actually
# remove them but put them in a dedicated set. This simplifies
# the life cycle management of inplace buffers.
# This set is used to
# 1) avoid unnecessary store in DeferredLine.
# 2) avoid alias var definitions in kernel.
if name in V.kernel.args.inplace_buffers:
V.graph.inplaced_to_remove.add(name)
else:
self.remove_buffer(name)
def remove_buffer(self, name):
# Assign a special value instead of deleting the entry
# because we still rely on output_buffers's length to
# generate unique arg name.
log.debug("remove_buffer(%r)", name)
V.kernel.args.output_buffers[name] = "REMOVED"
V.graph.removed_buffers.add(name)
def flush(self):
for backend in self.backends.values():
backend.flush()
self.free_buffers()
def codegen_extern_call(self, scheduler_node: ExternKernelSchedulerNode):
assert isinstance(scheduler_node, ExternKernelSchedulerNode)
scheduler_node.allocate()
node = scheduler_node.node
node.codegen(V.graph.wrapper_code)
self.free_buffers()
def create_backend(self, device: torch.device):
assert (
device.type != "cuda" or device.index is not None
), f"{device} should have been normalized in lowering"
V.graph.device_types.add(device.type)
if device.type == "cpu":
from .codegen.cpp import CppScheduling
return CppScheduling(self)
else:
if not has_triton():
device_props = torch.cuda.get_device_properties(device)
if device_props.major < 7:
raise RuntimeError(
f"Found {device_props.name} which is too old to be supported by the triton GPU compiler, which is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability {device_props.major}.{device_props.minor}" # noqa: B950
)
else:
raise RuntimeError(
"Cannot find a working triton installation. More information on installing Triton can be found at https://github.com/openai/triton" # noqa: B950
)
from .codegen.triton import TritonScheduling
return TritonScheduling(self)
def get_backend(self, device: torch.device):
if device not in self.backends:
self.backends[device] = self.create_backend(device)
return self.backends[device]
@dynamo_timed
def codegen(self):
for node in self.nodes:
self.buffer_names_no_longer_needed.update(node.last_usage)
if not isinstance(node, NopKernelSchedulerNode):
device = node.get_device()
if (
device != self.current_device
or node.is_extern()
or node.is_template()
):
self.flush()
if device != self.current_device:
if device.type == "cuda":
if self.current_device and self.current_device.type == "cuda":
V.graph.wrapper_code.codegen_cuda_device_guard_exit()
assert device.index is not None, "device should have an index"
V.graph.wrapper_code.codegen_cuda_device_guard_enter(
device.index
)
elif self.current_device and self.current_device.type == "cuda":
V.graph.wrapper_code.codegen_cuda_device_guard_exit()
self.current_device = device
self.buffer_names_to_free.update(node.last_usage)
if node.is_template():
node, *epilogue = node.get_nodes()
self.get_backend(device).codegen_template(node, epilogue)
elif node.is_extern():
self.codegen_extern_call(node)
elif isinstance(node, (FusedSchedulerNode, SchedulerNode)):
self.get_backend(device).codegen_nodes(node.get_nodes())
else:
assert isinstance(node, NopKernelSchedulerNode)
node.allocate()
if config.triton.debug_sync_kernel:
self.get_backend(device).codegen_sync()
self.available_buffer_names.update(node.get_names())
self.flush()