blob: 4e4842418b0bd7a1b52d4d21ca6a1db269de2799 [file] [log] [blame]
import dataclasses
import typing
import unittest
from tools.autograd import gen_autograd_functions
from tools.autograd import load_derivatives
import tools.codegen.model
class TestCreateDerivative(unittest.TestCase):
def test_named_grads(self) -> None:
schema = tools.codegen.model.FunctionSchema.parse(
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula="func_backward(grad_x, grad_y)",
var_names=(),
available_named_gradients=["grad_x", "grad_y"],
)
self.assertSetEqual(derivative.named_gradients, {"grad_x", "grad_y"})
def test_non_differentiable_output(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
differentiability_info = load_derivatives.create_differentiability_info(
defn={
"name": specification,
"a": "grads[0]",
"b": "grads[2]",
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
self.assertSequenceEqual(
differentiability_info.available_named_gradients,
# grad_y is not present because y is a
# bool and thus not differentiable.
["grad_x", "grad_z"],
)
def test_indexed_grads(self) -> None:
schema = tools.codegen.model.FunctionSchema.parse(
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula="func_backward(grads[0], grads[1])",
var_names=(),
available_named_gradients=["grad_x", "grad_y"],
)
self.assertSetEqual(derivative.named_gradients, set())
def test_named_grads_and_indexed_grads(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
with self.assertRaisesRegex(
RuntimeError, 'illegally mixes use of "grad_RETURN_NAME"'
):
load_derivatives.create_differentiability_info(
defn={
"name": specification,
# Uh-oh, the derivatives reference gradients by
# name and by index.
"a": "grad_x",
"b": "grads[1]",
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
class TestGenAutogradFunctions(unittest.TestCase):
def test_non_differentiable_output_invalid_type(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
differentiability_info = load_derivatives.create_differentiability_info(
defn={
"name": specification,
"a": "grad_x",
"b": "grad_z",
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
definition = gen_autograd_functions.process_function(
differentiability_info, gen_autograd_functions.FUNCTION_DEFINITION
)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert "grad_z = grads[2]" not in definition
assert "grad_z = grads[1]" in definition
def test_non_differentiable_output_output_differentiability(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y, Tensor z)"
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
differentiability_info = load_derivatives.create_differentiability_info(
defn={
"name": specification,
"a": "grad_x",
"b": "grad_z",
"output_differentiability": [True, False, True],
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
definition = gen_autograd_functions.process_function(
differentiability_info, gen_autograd_functions.FUNCTION_DEFINITION
)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert "grad_z = grads[2]" not in definition
assert "grad_z = grads[1]" in definition
# Represents the most basic NativeFunction. Use dataclasses.replace()
# to edit for use.
DEFAULT_NATIVE_FUNCTION, _ = tools.codegen.model.NativeFunction.from_yaml(
{"func": "func() -> bool"}, loc=tools.codegen.model.Location(__file__, 1)
)
if __name__ == "__main__":
unittest.main()