blob: 187afce3d286ce5fb3122d92ab2dee4e6658d66a [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <sstream>
#include <string>
namespace torch {
namespace jit {
/** \brief Parse IR from \p S, print the parsed graph and verify that the output
* string matches the original string.
*
* The function is sensitive to value naming and whitespace, so it should be
* used with care. Nevertheless, it helps to keep tests more compact.
*/
static void checkRoundtrip(const std::string& s) {
auto graph = std::make_shared<Graph>();
parseIR(s, &*graph);
std::ostringstream ss;
ss << *graph;
std::string parsed = ss.str();
// Skip whitespace in the beginning of the input string.
int i = 0;
for (char c : s) {
if (!isspace(c)) {
break;
}
i++;
}
std::string original = s.substr(i, s.size());
if (original != parsed) {
std::cerr << "Input:" << std::endl << original << std::endl;
std::cerr << "Parsed:" << std::endl << parsed << std::endl;
}
AT_ASSERT(original == parsed);
}
TEST(IRParserTest, Basic) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%0 : Tensor, %1 : Tensor):
%2 : Tensor = foo::add(%0, %1)
%res, %3 = foo::mul(%0, %2)
%x, %y = foo::combine(%res, %2, %3)
return (%x, %y, %res))IR",
&*graph,
vmap);
AT_ASSERT(graph->inputs().size() == 2);
AT_ASSERT(graph->outputs().size() == 3);
Value* x = graph->outputs()[0];
Value* y = graph->outputs()[1];
Value* res = graph->outputs()[2];
Value* t0 = graph->inputs()[0];
Value* t1 = graph->inputs()[1];
AT_ASSERT(vmap["x"] == x);
AT_ASSERT(vmap["y"] == y);
AT_ASSERT(vmap["res"] == res);
AT_ASSERT(vmap["0"] == t0);
AT_ASSERT(vmap["1"] == t1);
AT_ASSERT(x->node() == y->node());
Node* comb = x->node();
Value* t2 = comb->inputs()[1];
Value* t3 = comb->inputs()[2];
AT_ASSERT(vmap["2"] == t2);
AT_ASSERT(vmap["3"] == t3);
AT_ASSERT(comb->kind().toQualString() == std::string("foo::combine"));
AT_ASSERT(comb->outputs() == std::vector<Value*>({x, y}));
AT_ASSERT(comb->inputs() == std::vector<Value*>({res, t2, t3}));
Node* mul = res->node();
AT_ASSERT(mul->kind().toQualString() == std::string("foo::mul"));
AT_ASSERT(mul->inputs() == std::vector<Value*>({t0, t2}));
AT_ASSERT(mul->outputs() == std::vector<Value*>({res, t3}));
Node* add = t2->node();
AT_ASSERT(add->kind().toQualString() == std::string("foo::add"));
AT_ASSERT(add->inputs() == std::vector<Value*>({t0, t1}));
AT_ASSERT(add->outputs() == std::vector<Value*>({t2}));
}
TEST(IRParserTest, NestedBlock) {
checkRoundtrip(R"IR(
graph():
%0 : Tensor = a::a()
block0():
%1 : Tensor = b::b()
block0():
%2 : Tensor = c::c()
-> ()
-> ()
%3 : Tensor = d::d()
return (%3)
)IR");
}
TEST(IRParserTest, If) {
checkRoundtrip(R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : int = prim::Constant[value=1]()
%4 : Tensor = aten::add(%0, %1, %3)
%5 : Tensor = prim::If(%2)
block0():
%6 : int = prim::Constant[value=1]()
%7 : Tensor = aten::add(%1, %3, %6)
%8 : int = prim::Constant[value=1]()
%9 : Tensor = aten::add(%7, %3, %8)
-> (%9)
%10 : int = prim::Constant[value=1]()
%11 : Tensor = aten::add(%5, %3, %10)
return (%11)
)IR");
}
TEST(IRParserTest, If2) {
checkRoundtrip(R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : int = prim::Constant[value=-1]()
%4 : Tensor = aten::add(%0, %1, %3)
%5 : Tensor = prim::If(%2)
block0():
%6 : int = prim::Constant[value=1]()
%7 : Tensor = aten::add(%1, %3, %6)
%8 : int = prim::Constant[value=1]()
%9 : Tensor = aten::add(%7, %3, %8)
-> (%9)
%10 : int = prim::Constant[value=-987]()
%11 : Tensor = aten::add(%5, %3, %10)
return (%11)
)IR");
}
TEST(IRParserTest, InferredTypeIsTensor) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%a):
return (%a))IR",
&*graph);
AT_ASSERT(graph->inputs()[0]->type()->isSubtypeOf(*TensorType::get()));
}
TEST(IRParserTest, ValueReuse) {
// Check that parser correctly handles values reusing the same name.
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%x):
%x = a::a(%x)
%x = b::b(%x)
return (%x))IR",
&*graph);
Value* x0 = graph->inputs()[0];
Value* x2 = graph->outputs()[0];
Node* b = x2->node();
Value* x1 = b->inputs()[0];
Node* a = x1->node();
AT_ASSERT(a->inputs() == std::vector<Value*>({x0}));
AT_ASSERT(a->outputs() == std::vector<Value*>({x1}));
AT_ASSERT(b->inputs() == std::vector<Value*>({x1}));
AT_ASSERT(b->outputs() == std::vector<Value*>({x2}));
}
TEST(IRParserTest, Attributes) {
// Check that parser handles attributes and types.
checkRoundtrip(
R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : int, %4 : Tensor = qqq::qqq[i_asdf=2, f_asdf=3., s_asdf="hello", ss_asdf=["hello world", "bye bye"]](%0)
%5 : int, %6 : Tensor = ppp::ppp[i_asdf=2, f_asdf=3., s_asdf="\"\"\"\"\nhe\"llo", q=[3, 2, 4]](%0)
%7 : float = vvv::vvv[s_asdf="hello"](%0)
%8 : string = z::z()
return (%7)
)IR");
}
TEST(IRParserTest, OptionalTypes) {
checkRoundtrip(
R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : int? = prim::Constant()
return (%3)
)IR");
}
TEST(IRParserTest, StarTensor) {
checkRoundtrip(
R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : Float(*, *, *) = prim::Constant()
return (%3)
)IR");
}
TEST(IRParserTest, UnshapedTensor) {
checkRoundtrip(
R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : Long() = prim::Constant()
return (%3)
)IR");
}
TEST(IRParserTest, ShapedTensor) {
checkRoundtrip(
R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : Double(4, 4, 5) = prim::Constant()
return (%3)
)IR");
}
TEST(IRParserTest, NestedContrainer) {
checkRoundtrip(
R"IR(
graph():
%0 : float[] = prim::Constant[value=[1., 2., 3.]]()
%1 : str[] = prim::Constant[value=["ab", "cd", "ef"]]()
%2 : (float[], str[]) = prim::TupleConstruct(%0, %1)
return (%2)
)IR");
}
TEST(IRParserTest, MalformedShapeAnnotation) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_ANY_THROW(checkRoundtrip(
R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor):
%3 : Double(4!, 4, 5) = prim::Constant()
return (%3)
)IR"));
}
TEST(IRParserTest, FileCheck) {
auto graph = std::make_shared<Graph>();
const std::string& text =
R"IR(
graph(%a):
# CHECK: return
return (%a))IR";
parseIR(text, &*graph);
AT_ASSERT(graph->inputs()[0]->type()->isSubtypeOf(*TensorType::get()));
torch::jit::testing::FileCheck().run(text, *graph);
}
TEST(IRParserTest, Strides) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%a : Float(4, 5),
%b : Float(4, 5, strides=[5, 1]),
%c : Double(*, *)):
return (%a)
)IR",
&*graph,
vmap);
Value* a = graph->inputs()[0];
Value* b = graph->inputs()[1];
Value* c = graph->inputs()[2];
auto a_type = a->type()->cast<TensorType>();
auto a_sizes = *a_type->sizes().concrete_sizes();
auto a_strides = a_type->strides().concrete_sizes();
AT_ASSERT(a_sizes[0] == 4 && a_sizes[1] == 5);
AT_ASSERT(a_strides == std::nullopt);
auto b_type = b->type()->cast<TensorType>();
auto b_sizes = *b_type->sizes().concrete_sizes();
auto b_strides = *(b_type->strides().sizes());
AT_ASSERT(b_sizes[0] == 4 && b_sizes[1] == 5);
AT_ASSERT(*b_strides[0] == 5 && *b_strides[1] == 1);
auto c_type = c->type()->cast<TensorType>();
AT_ASSERT(*c_type->sizes().size() == 2);
AT_ASSERT(c_type->sizes().concrete_sizes() == std::nullopt);
AT_ASSERT(c_type->strides().concrete_sizes() == std::nullopt);
}
TEST(IRParserTest, MalformedStrides) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_ANY_THROW(parseIR(
R"IR(
graph(%a : Float(4, strides=[5], 5)):
return (%a)
)IR",
&*graph,
vmap));
}
TEST(IRParserTest, TensorShapes) {
checkRoundtrip(
R"IR(
graph(%a : Float(4, 5),
%b : Float(4, 5, strides=[5, 1]),
%c : Double(*, *)):
return (%a)
)IR");
}
TEST(IRParserTest, DeviceAndRequiresGradTensors) {
checkRoundtrip(
R"IR(
graph(%a : Float(*, *, device=cpu),
%b : Float(*, *, requires_grad=1),
%c : Long(5, 10, requires_grad=1, device=cpu),
%d : Float(5, requires_grad=0, device=cuda:2),
%e : Long(4, 3, 1, strides=[6, 2, 1], requires_grad=0, device=cuda:1),
%f : Float(),
%g : Float(device=cpu),
%h : Float(requires_grad=1),
%i : Float(requires_grad=0, device=cuda:1),
%j : Double(*, *, requires_grad=0)):
return (%a)
)IR");
}
TEST(IRParserTest, ListConstant) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%d : int[] = prim::Constant[value=[1,2,3]]()
return (%d)
)IR",
&*graph);
Node* n = graph->outputs()[0]->node();
AT_ASSERT(n->kind() == prim::Constant);
AT_ASSERT(n->kindOf(attr::value) == AttributeKind::ival);
const auto& genericList = n->ival(attr::value).toList();
std::vector<int> int_vals;
// NOLINTNEXTLINE(performance-implicit-conversion-in-loop)
for (const IValue& ival : genericList) {
int_vals.push_back(ival.toInt());
}
AT_ASSERT(int_vals.size() == 3);
AT_ASSERT(int_vals[0] == 1 && int_vals[1] == 2 && int_vals[2] == 3);
}
TEST(IRParserTest, PartialStarTensor) {
checkRoundtrip(
R"IR(
graph(%x : Float(10, *, 10)):
return (%x)
)IR");
}
TEST(IRParserTest, ComplexTensorAttributes) {
checkRoundtrip(
R"IR(
graph(%x : Double(*, 200, *, requires_grad=1, device=cuda:1),
%b : Float(5, *, requires_grad=1),
%c : Long(*, 10, device=cpu)):
return (%x)
)IR");
}
} // namespace jit
} // namespace torch