blob: f6ffc84f62c09b5fd44bead209e69e2bae0e356b [file] [log] [blame]
#ifdef TORCH_ENABLE_LLVM
#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <c10/util/irange.h>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <test/cpp/tensorexpr/test_utils.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <cmath>
#include <numeric>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
using LLVMExprEval = ExprEval<LLVMCodeGen>;
// Typed tests, can't use gtest params here due to the way we instantiate tests.
#define TEST_LLVM_SCALAR_TYPES(_) \
_(uint8_t, Byte, 24) \
_(int8_t, Char, -20) \
_(int16_t, Short, 3332) \
_(int, Int, 123456) \
_(int64_t, Long, 2631563121321) \
_(float, Float, 0.122) \
_(double, Double, 0.21312) \
_(at::Half, Half, 0.128f)
#define IMM_TEST(Type, Name, Val) \
TEST(LLVM, Name##ImmTest) { \
auto a = Name##Imm::make(Val); \
LLVMExprEval cg(a); \
if (std::is_floating_point<decltype(Val)>()) { \
ASSERT_NEAR(cg.value<Type>(), Val, 0.1); \
} else { \
ASSERT_EQ(cg.value<Type>(), Val); \
} \
}
TEST_LLVM_SCALAR_TYPES(IMM_TEST)
#undef IMM_TEST
#define ADD_TEST(Type, Name, Val) \
TEST(LLVM, Name##AddTest) { \
auto a = Name##Imm::make(Val); \
auto b = Name##Imm::make(Val * 2); \
auto c = Add::make(a, b); \
LLVMExprEval cg(c); \
if (std::is_floating_point<decltype(Val)>()) { \
ASSERT_NEAR(cg.value<Type>(), Val * 3, 0.1); \
} else { \
ASSERT_EQ(cg.value<Type>(), Val * 3); \
} \
}
TEST_LLVM_SCALAR_TYPES(ADD_TEST)
#undef ADD_TEST
#define SUB_TEST(Type, Name, Val) \
TEST(LLVM, Name##SubTest) { \
auto a = Name##Imm::make(Val * 2); \
auto b = Name##Imm::make(Val); \
auto c = Sub::make(a, b); \
LLVMExprEval cg(c); \
if (std::is_floating_point<decltype(Val)>()) { \
ASSERT_NEAR(cg.value<Type>(), Val, 0.1); \
} else { \
ASSERT_EQ(cg.value<Type>(), Val); \
} \
}
TEST_LLVM_SCALAR_TYPES(SUB_TEST)
#undef SUB_TEST
#define MUL_TEST(Type, Name, Val) \
TEST(LLVM, Name##MulTest) { \
auto a = Name##Imm::make(Val); \
auto b = Name##Imm::make((Type)4); \
auto c = Mul::make(a, b); \
LLVMExprEval cg(c); \
if (std::is_floating_point<decltype(Val)>()) { \
ASSERT_NEAR(cg.value<Type>(), Val * 4, 0.1); \
} else { \
ASSERT_EQ(cg.value<Type>(), Val * 4); \
} \
}
TEST_LLVM_SCALAR_TYPES(MUL_TEST)
#undef MUL_TEST
#define DIV_TEST(Type, Name, Val) \
TEST(LLVM, Name##DivTest) { \
auto a = Name##Imm::make((Type)6); \
auto b = Name##Imm::make((Type)3); \
auto c = Div::make(a, b); \
LLVMExprEval cg(c); \
if (std::is_floating_point<decltype(Val)>()) { \
ASSERT_NEAR(cg.value<Type>(), 2, 0.1); \
} else { \
ASSERT_EQ(cg.value<Type>(), 2); \
} \
}
TEST_LLVM_SCALAR_TYPES(DIV_TEST)
#undef DIV_TEST
TEST(LLVM, IntToFloatCastTest) {
auto a = IntImm::make(2);
auto b = Cast::make(kFloat, a);
LLVMExprEval cg(b, {});
ASSERT_EQ(cg.value<float>(), 2.0);
}
TEST(LLVM, FloatToIntCastTest) {
auto a = FloatImm::make(2.0);
auto b = Cast::make(kInt, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int>(), 2);
}
TEST(LLVM, IntToLongCastTest) {
auto a = IntImm::make(12345);
auto b = Cast::make(kLong, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int64_t>(), 12345);
}
TEST(LLVM, ByteToCharCastTest) {
auto a = ByteImm::make(250);
auto b = Cast::make(kChar, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int8_t>(), (int8_t)250);
}
TEST(LLVM, HalfToLongCastTest) {
auto a = HalfImm::make(2.0);
auto b = Cast::make(kLong, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int64_t>(), 2);
}
TEST(LLVM, ByteToDoubleCastTest) {
auto a = ByteImm::make(2);
auto b = Cast::make(kDouble, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<double>(), 2);
}
TEST(LLVM, FloatToByteCastTest) {
auto a = FloatImm::make(254.0);
auto b = Cast::make(kByte, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<uint8_t>(), 254);
}
TEST(LLVM, FloatToCharCastTest) {
auto a = FloatImm::make(-2.0);
auto b = Cast::make(kChar, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int8_t>(), -2);
}
TEST(LLVM, ByteToFloatCastTest) {
auto a = ByteImm::make(254);
auto b = Cast::make(kFloat, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<float>(), 254.0);
}
TEST(LLVM, CharToFloatCastTest) {
auto a = CharImm::make(-2);
auto b = Cast::make(kFloat, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<float>(), -2.0);
}
TEST(LLVM, BitCast) {
/* constexpr int16_t ref16 = 1337; */
constexpr int32_t ref32 = 1337;
constexpr int64_t ref64 = 1337;
constexpr float reff32 = 1337.0f;
constexpr double reff64 = 1337.0f;
// this is broken
/*{
at::Half k_;
at::Half* k = &k_;
*reinterpret_cast<int16_t*>(k) = ref16;
auto a = HalfImm::make(k);
auto b = BitCast::make(kShort, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int16_t>(), ref16);
}*/
{
float k = raw_bitcast<float>(ref32);
auto a = FloatImm::make(k);
auto b = BitCast::make(kInt, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int32_t>(), ref32);
}
{
double k = raw_bitcast<double>(ref64);
auto a = DoubleImm::make(k);
auto b = BitCast::make(kLong, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<int64_t>(), ref64);
}
{
int64_t k = raw_bitcast<int64_t>(reff64);
auto a = LongImm::make(k);
auto b = BitCast::make(kDouble, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<double>(), reff64);
}
{
int32_t k = raw_bitcast<int32_t>(reff32);
auto a = IntImm::make(k);
auto b = BitCast::make(kFloat, a);
LLVMExprEval cg(b);
ASSERT_EQ(cg.value<float>(), reff32);
}
}
TEST(LLVM, fastLogFloat) {
const int kTotalSize = 128 * 128;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kFloat);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kFloat);
VarHandle index = VarHandle("index", kInt);
ExprHandle load_a = a_buf.load(index);
StmtPtr store_b = b_buf.store({index}, fast_log(load_a));
StmtPtr stmt = For::make(index, 0, kTotalSize, store_b);
PaddedBuffer<float> a_v(kTotalSize);
PaddedBuffer<float> b_v(kTotalSize);
for (const auto i : c10::irange(kTotalSize)) {
a_v(i) = at::randn({1}).item().to<float>();
}
LLVMCodeGen ir_eval(stmt, {a_buf, b_buf});
ir_eval.call({a_v, b_v});
for (const auto i : c10::irange(kTotalSize)) {
auto test = b_v(i);
auto ref = std::log(a_v(i));
if (std::isnan(ref)) {
ASSERT_EQ(std::isnan(test), true);
} else {
ASSERT_FLOAT_EQ(test, ref);
}
}
}
TEST(LLVM, LetTest01) {
BufHandle a("A", {1}, kFloat);
std::vector<float> v = {1, 0};
std::vector<void*> args({v.data()});
VarHandle x("x", kFloat);
auto block = Block::make({
Let::make(x, 3.f),
a.store({0}, ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f))),
});
LLVMCodeGen cg(block, {a});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(v[0], 2.f + 3.f * 3.f + 4.f);
}
TEST(LLVM, LetTest02) {
BufHandle a("A", {1}, kFloat);
std::vector<float> v = {1, 0};
std::vector<void*> args({v.data()});
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
auto block = Block::make(
{Let::make(x, 3.f),
Let::make(y, 6.f),
a.store(
{IntImm::make(0)},
ExprHandle(2.f) + (x * ExprHandle(3.f) + y * ExprHandle(4.f)))});
LLVMCodeGen cg(block, {a});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(v[0], 2.f + 3.f * 3.f + 6.f * 4.f);
}
TEST(LLVM, LetTestMultitype) {
BufHandle a("A", {1}, kDouble);
std::vector<double> v = {1, 0};
std::vector<void*> args({v.data()});
VarHandle x("x", kByte);
VarHandle y("y", kHalf);
auto block = Block::make(
{Let::make(x, 3),
Let::make(y, 6.f),
a.store(
{0},
Cast::make(
kDouble,
ExprHandle(2.f) +
(x * ExprHandle(3.f) + y * ExprHandle(4.f))))});
LLVMCodeGen cg(block, {a});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(v[0], 2.f + 3 * 3.f + 6.f * 4.f);
}
TEST(LLVM, BufferTest) {
BufHandle a("A", {32}, kFloat);
std::vector<int32_t> v(5);
std::vector<void*> args({v.data()});
auto rv = IntImm::make(0);
LLVMExprEval cg(rv, {a});
ASSERT_EQ(cg.value<int>(args), 0);
}
TEST(LLVM, BlockTest) {
BufHandle a("A", {32}, kInt);
std::vector<int32_t> v = {1, 2};
std::vector<void*> args({v.data()});
auto block = Block::make({
a.store({0}, 3),
a.store({1}, 4),
a.store({0}, 4),
});
LLVMCodeGen cg(block, {a});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(v[0], 4);
ASSERT_EQ(v[1], 4);
}
TEST(LLVM, LoadStoreTest) {
BufHandle a("A", {1}, kInt);
BufHandle b("B", {1}, kInt);
std::vector<int32_t> a_buffer = {42};
std::vector<int32_t> b_buffer = {-11};
auto store = b.store({0}, a.load(0));
LLVMCodeGen cg(store, {a, b});
std::vector<void*> args({a_buffer.data(), b_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer[0], 42);
ASSERT_EQ(b_buffer[0], 42);
}
TEST(LLVM, IfThenElseTest) {
BufHandle a("A", {1}, kInt);
BufHandle b("B", {1}, kInt);
BufHandle c("C", {1}, kInt);
std::vector<int32_t> a_buffer = {42};
std::vector<int32_t> b_buffer = {-11};
std::vector<int32_t> c_buffer = {1};
auto store = b.store({0}, IfThenElse::make(c.load(0), a.load(0), 0));
LLVMCodeGen cg(store, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer[0], 42);
ASSERT_EQ(b_buffer[0], 42);
}
// if (x < 10) x = x + 1
TEST(LLVM, CondNoFalseBlockTest) {
BufHandle x("X", {1}, kInt);
auto cmp = CompareSelect::make(x.load(0), 10, CompareSelectOperation::kLT);
auto cond = Cond::make(cmp, x.store({0}, x.load(0) + 1), nullptr);
for (int32_t x_value : {0, 10, 20}) {
std::vector<int32_t> x_buffer = {x_value};
std::vector<void*> args({x_buffer.data()});
LLVMCodeGen cg(cond, {x});
ASSERT_EQ(cg.value<int>(args), 0);
if (x_value < 10) {
ASSERT_EQ(x_buffer[0], x_value + 1);
} else {
ASSERT_EQ(x_buffer[0], x_value);
}
}
}
// if (x < 10) {
// x = x + 1;
// } else {
// x = x - 1;
// }
TEST(LLVM, CondTest) {
BufHandle x("X", {1}, kInt);
auto cmp = CompareSelect::make(x.load(0), 10, CompareSelectOperation::kLT);
auto cond =
Cond::make(cmp, x.store({0}, x.load(0) + 1), x.store({0}, x.load(0) - 1));
auto block = Block::make({
cond,
x.store({0}, x.load(0) * 2),
});
for (int32_t x_value : {0, 10, 20}) {
std::vector<int32_t> x_buffer = {x_value};
std::vector<void*> args({x_buffer.data()});
LLVMCodeGen cg(block, {x});
ASSERT_EQ(cg.value<int>(args), 0);
if (x_value < 10) {
ASSERT_EQ(x_buffer[0], (x_value + 1) * 2);
} else {
ASSERT_EQ(x_buffer[0], (x_value - 1) * 2);
}
}
}
// if (x < 10) {
// if (x > 5) {
// x = x + 1;
// } else {
// x = x - 1;
// }
// } else {
// if (x <= 15) {
// x = x + 2;
// } else {
// x = x - 2;
// }
// }
TEST(LLVM, CondNestedTest) {
BufHandle x("X", {1}, kInt);
auto true_cmp =
CompareSelect::make(x.load(0), 5, CompareSelectOperation::kGT);
auto true_cond = Cond::make(
true_cmp, x.store({0}, x.load(0) + 1), x.store({0}, x.load(0) - 1));
auto false_cmp =
CompareSelect::make(x.load(0), 15, CompareSelectOperation::kLE);
auto false_cond = Cond::make(
false_cmp, x.store({0}, x.load(0) + 2), x.store({0}, x.load(0) - 2));
auto cmp = CompareSelect::make(x.load(0), 10, CompareSelectOperation::kLT);
auto cond = Cond::make(cmp, true_cond, false_cond);
for (int32_t x_value : {0, 8, 15, 20}) {
std::vector<int32_t> x_buffer = {x_value};
std::vector<void*> args({x_buffer.data()});
LLVMCodeGen cg(cond, {x});
ASSERT_EQ(cg.value<int>(args), 0);
if (x_value < 10) {
if (x_value > 5) {
ASSERT_EQ(x_buffer[0], x_value + 1);
} else {
ASSERT_EQ(x_buffer[0], x_value - 1);
}
} else {
if (x_value <= 15) {
ASSERT_EQ(x_buffer[0], x_value + 2);
} else {
ASSERT_EQ(x_buffer[0], x_value - 2);
}
}
}
}
TEST(LLVM, DirectVectorization) {
constexpr int M = 3;
constexpr int N = 64;
BufHandle a("a", {M, N}, kFloat);
BufHandle b("b", {M, N}, kFloat);
BufHandle c("c", {M, N}, kFloat);
VarHandle m("m", kInt);
VarHandle n("n", kInt);
StmtPtr s = For::make(
m,
0,
M,
Store::make(
c,
{Ramp::make(m * 64, 1, 64)},
Load::make({kFloat, 64}, a, {Ramp::make(m * 64, 1, 64)}) *
Load::make({kFloat, 64}, b, {Ramp::make(m * 64, 1, 64)})));
LLVMCodeGen cg(s, {a, b, c});
}
TEST(LLVM, VecLoadStoreTest) {
BufHandle a("A", {1}, kInt);
BufHandle b("B", {1}, kInt);
std::vector<int32_t> a_buffer = {1, 1, 1, 1};
std::vector<int32_t> b_buffer = {2, 2, 2, 2};
auto store = b.store({Ramp::make(0, 1, 4)}, a.load({Ramp::make(0, 1, 4)}));
LLVMCodeGen cg(store, {a, b});
std::vector<void*> args({a_buffer.data(), b_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer[0], 1);
ASSERT_EQ(a_buffer[1], 1);
ASSERT_EQ(a_buffer[2], 1);
ASSERT_EQ(a_buffer[3], 1);
ASSERT_EQ(b_buffer[0], 1);
ASSERT_EQ(b_buffer[1], 1);
ASSERT_EQ(b_buffer[2], 1);
ASSERT_EQ(b_buffer[3], 1);
}
#define FLOAT_INTRINSICS_TEST(Name, Lanes) \
TEST(LLVM, VecFloat_##Name##Lane##Lanes##Test) { \
BufHandle a("A", {1}, kFloat); \
BufHandle b("B", {1}, kFloat); \
float val = 0.5f; \
std::vector<float> a_buffer(Lanes, val); \
std::vector<float> b_buffer(Lanes, val); \
auto store = b.store( \
{Ramp::make(0, 1, Lanes)}, Name(a.load({Ramp::make(0, 1, Lanes)}))); \
LLVMCodeGen cg(store, {a, b}); \
std::vector<void*> args({a_buffer.data(), b_buffer.data()}); \
ASSERT_EQ(cg.value<int>(args), 0); \
for (const auto i : c10::irange(Lanes)) { \
ASSERT_FLOAT_EQ(a_buffer[i], val); \
} \
} // namespace jit
FLOAT_INTRINSICS_TEST(erf, 4)
FLOAT_INTRINSICS_TEST(erfc, 4)
FLOAT_INTRINSICS_TEST(acos, 4)
FLOAT_INTRINSICS_TEST(asin, 4)
FLOAT_INTRINSICS_TEST(atan, 4)
FLOAT_INTRINSICS_TEST(cosh, 4)
FLOAT_INTRINSICS_TEST(sinh, 4)
FLOAT_INTRINSICS_TEST(tanh, 4)
FLOAT_INTRINSICS_TEST(expm1, 4)
FLOAT_INTRINSICS_TEST(lgamma, 4)
FLOAT_INTRINSICS_TEST(erf, 8)
FLOAT_INTRINSICS_TEST(erfc, 8)
FLOAT_INTRINSICS_TEST(acos, 8)
FLOAT_INTRINSICS_TEST(asin, 8)
FLOAT_INTRINSICS_TEST(atan, 8)
FLOAT_INTRINSICS_TEST(cosh, 8)
FLOAT_INTRINSICS_TEST(sinh, 8)
FLOAT_INTRINSICS_TEST(tanh, 8)
FLOAT_INTRINSICS_TEST(expm1, 8)
FLOAT_INTRINSICS_TEST(lgamma, 8)
#undef FLOAT_INTRINSICS_TEST
#define DOUBLE_INTRINSICS_TEST(Name, Lanes) \
TEST(LLVM, VecDouble_##Name##Lane##Lanes##Test) { \
BufHandle a("A", {1}, kDouble); \
BufHandle b("B", {1}, kDouble); \
float val = 0.5f; \
std::vector<double> a_buffer(Lanes, val); \
std::vector<double> b_buffer(Lanes, val); \
auto store = b.store( \
{Ramp::make(0, 1, Lanes)}, Name(a.load({Ramp::make(0, 1, Lanes)}))); \
LLVMCodeGen cg(store, {a, b}); \
std::vector<void*> args({a_buffer.data(), b_buffer.data()}); \
ASSERT_EQ(cg.value<int>(args), 0); \
for (const auto i : c10::irange(Lanes)) { \
ASSERT_FLOAT_EQ(a_buffer[i], val); \
} \
} // namespace jit
DOUBLE_INTRINSICS_TEST(erf, 2)
DOUBLE_INTRINSICS_TEST(erfc, 2)
DOUBLE_INTRINSICS_TEST(acos, 2)
DOUBLE_INTRINSICS_TEST(asin, 2)
DOUBLE_INTRINSICS_TEST(atan, 2)
DOUBLE_INTRINSICS_TEST(cosh, 2)
DOUBLE_INTRINSICS_TEST(sinh, 2)
DOUBLE_INTRINSICS_TEST(tanh, 2)
DOUBLE_INTRINSICS_TEST(expm1, 2)
DOUBLE_INTRINSICS_TEST(lgamma, 2)
DOUBLE_INTRINSICS_TEST(erf, 4)
DOUBLE_INTRINSICS_TEST(erfc, 4)
DOUBLE_INTRINSICS_TEST(acos, 4)
DOUBLE_INTRINSICS_TEST(asin, 4)
DOUBLE_INTRINSICS_TEST(atan, 4)
DOUBLE_INTRINSICS_TEST(cosh, 4)
DOUBLE_INTRINSICS_TEST(sinh, 4)
DOUBLE_INTRINSICS_TEST(tanh, 4)
DOUBLE_INTRINSICS_TEST(expm1, 4)
DOUBLE_INTRINSICS_TEST(lgamma, 4)
#undef DOUBLE_INTRINSICS_TEST
TEST(LLVM, VectorizerLoadStoreTest) {
BufHandle a("A", {1}, kInt);
Tensor c = Compute("c", {4}, [&](const VarHandle& i) { return a.load(i); });
BufHandle c_buf(c.buf());
LoopNest l({c});
StmtPtr s = l.root_stmt();
ASSERT_TRUE(LoopNest::vectorize(to<For>(to<Block>(s)->front())));
ASSERT_TRUE(to<For>(to<Block>(s)->front()) == nullptr);
LLVMCodeGen cg(s, {a, c_buf});
std::vector<int> a_vec(4, 21);
std::vector<int> c_vec(4, 0);
std::vector<void*> args({a_vec.data(), c_vec.data()});
ASSERT_EQ(cg.value<int>(args), 0);
assertAllEqual(c_vec, 21);
}
TEST(LLVM, VectorizeBitCast) {
BufHandle a("A", {128}, kInt);
Tensor c = Compute("c", {128}, [&](const VarHandle& i) {
return bitcast<float>(a.load(i));
});
BufHandle c_buf(c.buf());
LoopNest l({c});
StmtPtr s = l.root_stmt();
ASSERT_TRUE(LoopNest::vectorize(to<For>(to<Block>(s)->front())));
ASSERT_TRUE(to<For>(to<Block>(s)->front()) == nullptr);
LLVMCodeGen cg(s, {a, c_buf});
std::vector<int> a_vec(128);
std::vector<float> c_vec(128);
for (const auto i : c10::irange(128)) {
a_vec[i] = raw_bitcast<int>(1337.f);
}
std::vector<void*> args({a_vec.data(), c_vec.data()});
ASSERT_EQ(cg.value<int>(args), 0);
assertAllEqual(c_vec, 1337.f);
}
TEST(LLVM, MemcpyTest) {
constexpr int N = 32;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
std::vector<int32_t> a_buffer(N, 42);
std::vector<int32_t> b_buffer(N, 0);
VarHandle i("i", kInt);
auto expr = For::make(i, 0, N, b.store({i}, a.load(i)));
LLVMCodeGen cg(expr, {a, b});
std::vector<void*> args({a_buffer.data(), b_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(a_buffer, 42);
assertAllEqual(b_buffer, 42);
}
TEST(LLVM, BzeroTest) {
constexpr int N = 32;
BufHandle b("B", {N}, kInt);
std::vector<int32_t> b_buffer(N, 11);
VarHandle i("i", kInt);
auto expr = For::make(i, 0, N, b.store({i}, 0));
LLVMCodeGen cg(expr, {b});
std::vector<void*> args({b_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(b_buffer, 0);
}
TEST(LLVM, ElemwiseAdd) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int32_t> a_buffer(N, 41);
std::vector<int32_t> b_buffer(N, 1);
std::vector<int32_t> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr = For::make(i, 0, N, c.store({i}, Add::make(a.load(i), b.load(i))));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 42);
}
TEST(LLVM, ElemwiseAddFloat) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
BufHandle c("C", {N}, kFloat);
std::vector<float> a_buffer(N, 41);
std::vector<float> b_buffer(N, 1);
std::vector<float> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr = For::make(i, 0, N, c.store({i}, a.load(i) + b.load(i)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41.0f);
assertAllEqual(b_buffer, 1.0f);
assertAllEqual(c_buffer, 42.0f);
}
TEST(LLVM, ElemwiseLog10Float) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
std::vector<float> a_buffer(N, 10.0f);
std::vector<float> b_buffer(N, 2.0f);
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N / 4,
b.store(
{Ramp::make(i * 4, 1, 4)}, log10(a.load({Ramp::make(i * 4, 1, 4)}))));
LLVMCodeGen cg(expr, {a, b});
std::vector<void*> args({a_buffer.data(), b_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(a_buffer, 10.0f);
assertAllEqual(b_buffer, 1.0f);
}
TEST(LLVM, ElemwiseLog1pFloat) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
std::vector<float> a_buffer(N, expf(3.0f) - 1);
std::vector<float> b_buffer(N, 42.0f);
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N / 4,
b.store(
{Ramp::make(i * 4, 1, 4)}, log1p(a.load({Ramp::make(i * 4, 1, 4)}))));
LLVMCodeGen cg(expr, {a, b});
std::vector<void*> args({a_buffer.data(), b_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(a_buffer, expf(3.0f) - 1);
ExpectAllNear(b_buffer, 3.0f, 1e-5f);
}
TEST(LLVM, ElemwiseMaxInt) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int> a_buffer(N, 41);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr =
For::make(i, 0, N, c.store({i}, Max::make(a.load(i), b.load(i), false)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 41);
}
TEST(LLVM, ElemwiseMinInt) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int> a_buffer(N, 41);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr =
For::make(i, 0, N, c.store({i}, Min::make(a.load(i), b.load(i), false)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 1);
}
TEST(LLVM, ElemwiseMaxFloat) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
BufHandle c("C", {N}, kFloat);
std::vector<float> a_buffer(N, 41);
std::vector<float> b_buffer(N, 1);
std::vector<float> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr =
For::make(i, 0, N, c.store({i}, Max::make(a.load(i), b.load(i), false)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41.0f);
assertAllEqual(b_buffer, 1.0f);
assertAllEqual(c_buffer, 41.0f);
}
TEST(LLVM, ElemwiseMaxNaNFloat) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
BufHandle c("C", {N}, kFloat);
std::vector<float> a_buffer(N, NAN);
std::vector<float> b_buffer(N, 1);
std::vector<float> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr =
For::make(i, 0, N, c.store({i}, Max::make(a.load(i), b.load(i), false)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(b_buffer, 1.0f);
for (auto const& elt : c_buffer) {
ASSERT_TRUE(std::isnan(elt));
}
}
TEST(LLVM, ElemwiseMinFloat) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
BufHandle c("C", {N}, kFloat);
std::vector<float> a_buffer(N, 41);
std::vector<float> b_buffer(N, 1);
std::vector<float> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr =
For::make(i, 0, N, c.store({i}, Min::make(a.load(i), b.load(i), false)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41.0f);
assertAllEqual(b_buffer, 1.0f);
assertAllEqual(c_buffer, 1.0f);
}
TEST(LLVM, ElemwiseMinNaNFloat) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
BufHandle c("C", {N}, kFloat);
std::vector<float> a_buffer(N, NAN);
std::vector<float> b_buffer(N, 1);
std::vector<float> c_buffer(N, 1);
VarHandle i("i", kInt);
auto expr =
For::make(i, 0, N, c.store({i}, Min::make(a.load(i), b.load(i), false)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(b_buffer, 1.0f);
for (auto const& elt : c_buffer) {
ASSERT_TRUE(std::isnan(elt));
}
}
TEST(LLVM, ElemwiseMod) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int32_t> a_buffer(N, 41);
std::vector<int32_t> b_buffer(N, 23);
std::vector<int32_t> c_buffer(N, 18);
VarHandle i("i", kInt);
auto expr = For::make(i, 0, N, c.store({i}, Mod::make(a.load(i), b.load(i))));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 41);
assertAllEqual(b_buffer, 23);
assertAllEqual(c_buffer, 18);
}
TEST(LLVM, CompareSelectIntEQ) {
constexpr int N = 1024;
BufHandle a("A", {N}, kInt);
BufHandle b("B", {N}, kInt);
BufHandle c("C", {N}, kInt);
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 1);
for (int i = 0; i < N / 2; i++) {
b_buffer[i] = 0;
c_ref[i] = 0;
}
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kEQ)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
for (const auto i : c10::irange(N)) {
ASSERT_EQ(c_ref[i], c_buffer[i]);
}
}
TEST(LLVM, CompareSelectFloatEQ) {
constexpr int N = 1024;
BufHandle a("A", {N}, kFloat);
BufHandle b("B", {N}, kFloat);
BufHandle c("C", {N}, kInt);
std::vector<float> a_buffer(N, 1.0f);
std::vector<float> b_buffer(N, 1.0f);
std::vector<int> c_buffer(N, 0);
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kEQ)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1.0f);
assertAllEqual(b_buffer, 1.0f);
assertAllEqual(c_buffer, 1);
}
TEST(LLVM, CompareSelectByteGT) {
constexpr int N = 1024;
BufHandle a("A", {N}, kByte);
BufHandle b("B", {N}, kByte);
BufHandle c("C", {N}, kInt);
std::vector<uint8_t> a_buffer(N, 0);
std::vector<uint8_t> b_buffer(N, 0);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 0);
for (int i = 0; i < N / 2; i++) {
a_buffer[i] = 128;
c_ref[i] = 1;
}
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kGT)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(b_buffer, uint8_t(0));
for (const auto i : c10::irange(N)) {
ASSERT_EQ(c_ref[i], c_buffer[i]);
}
}
TEST(LLVM, CompareSelectByteGE) {
constexpr int N = 1024;
BufHandle a("A", {N}, kByte);
BufHandle b("B", {N}, kByte);
BufHandle c("C", {N}, kInt);
std::vector<uint8_t> a_buffer(N, 0);
std::vector<uint8_t> b_buffer(N, 0);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 1);
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kGE)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(b_buffer, uint8_t(0));
for (const auto i : c10::irange(N)) {
ASSERT_EQ(c_ref[i], c_buffer[i]);
}
}
TEST(LLVM, CompareSelectByteLT) {
constexpr int N = 1024;
BufHandle a("A", {N}, kByte);
BufHandle b("B", {N}, kByte);
BufHandle c("C", {N}, kInt);
std::vector<uint8_t> a_buffer(N, 0);
std::vector<uint8_t> b_buffer(N, 128);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 1);
for (int i = 0; i < N / 2; i++) {
a_buffer[i] = 128;
c_ref[i] = 0;
}
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kLT)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(b_buffer, uint8_t(128));
for (const auto i : c10::irange(N)) {
ASSERT_EQ(c_ref[i], c_buffer[i]);
}
}
TEST(LLVM, CompareSelectByteLE) {
constexpr int N = 1024;
BufHandle a("A", {N}, kByte);
BufHandle b("B", {N}, kByte);
BufHandle c("C", {N}, kInt);
std::vector<uint8_t> a_buffer(N, 0);
std::vector<uint8_t> b_buffer(N, 128);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 1);
VarHandle i("i", kInt);
auto expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kLE)));
LLVMCodeGen cg(expr, {a, b, c});
std::vector<void*> args({a_buffer.data(), b_buffer.data(), c_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(b_buffer, uint8_t(128));
for (const auto i : c10::irange(N)) {
ASSERT_EQ(c_ref[i], c_buffer[i]);
}
}
TEST(LLVM, StoreFloat) {
BufHandle result("result", {1}, kFloat);
std::vector<float> result_buffer = {0.0f};
auto expr = result.store({0}, FloatImm::make(3.14f));
LLVMCodeGen cg(expr, {result});
std::vector<void*> args({result_buffer.data()});
ASSERT_EQ(cg.value<int>(args), 0);
ASSERT_EQ(result_buffer[0], 3.14f);
}
TEST(LLVM, SimpleMath01) {
const int N = 1024;
Tensor tensor = Compute(
"f", {N}, [](const VarHandle& i) { return cast<float>(i * i + 1); });
LoopNest l({tensor});
StmtPtr stmt = l.root_stmt();
BufHandle f_buf(tensor.buf());
LLVMCodeGen cg(stmt, {f_buf});
PaddedBuffer<float> f_v(N, "f_v");
std::vector<void*> args({f_v.data()});
int value = cg.value<int>(args);
ASSERT_EQ(value, 0);
PaddedBuffer<float> f_ref(N, "f_ref");
for (const auto i : c10::irange(N)) {
f_ref(i) = i * i + 1;
}
ExpectAllNear(f_v, f_ref, 1e-5);
}
TEST(LLVM, ComputeMul) {
const int N = 1024;
BufHandle a("a", {N}, kFloat);
BufHandle b("b", {N}, kFloat);
Tensor c = Compute(
"c", {N}, [&](const VarHandle& i) { return a.load(i) * b.load(i); });
BufHandle c_buf(c.buf());
LoopNest l({c});
StmtPtr s = l.root_stmt();
LLVMCodeGen cg(s, {a, b, c_buf});
std::vector<float> a_vec(N, 21.0f);
std::vector<float> b_vec(N, 2.0f);
std::vector<float> c_vec(N, 0.0f);
std::vector<void*> args({a_vec.data(), b_vec.data(), c_vec.data()});
ASSERT_EQ(cg.value<int>(args), 0);
assertAllEqual(c_vec, 42.0f);
}
TEST(LLVM, BroadcastAdd) {
const int M = 32;
const int N = 1024;
BufHandle a("a", {M, N}, kFloat);
BufHandle b("b", {N}, kFloat);
Tensor c = Compute("c", {M, N}, [&](const VarHandle& i, const VarHandle& j) {
return a.load(i, j) + b.load(j);
});
BufHandle c_buf(c.buf());
LoopNest l({c});
l.prepareForCodegen();
StmtPtr s = l.root_stmt();
LLVMCodeGen cg(s, {a, b, c_buf});
std::vector<float> av(M * N);
std::iota(av.begin(), av.end(), 0);
std::vector<float> bv(N);
std::iota(bv.begin(), bv.end(), 0);
std::vector<float> cv(M * N, 0);
std::vector<void*> args({av.data(), bv.data(), cv.data()});
ASSERT_EQ(cg.value<int>(args), 0);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
ASSERT_EQ(cv[i * N + j], av[i * N + j] + bv[j]);
}
}
}
TEST(LLVM, BitwiseOps) {
auto a = IntImm::make(59);
auto b = IntImm::make(11);
auto c = IntImm::make(101);
auto d = IntImm::make(2);
ExprHandle f = (((a ^ (b << 1)) & c) >> 2) | d;
LLVMExprEval cg(f);
ASSERT_EQ(cg.value<int>(), 11);
}
TEST(LLVM, ArithmeticRightShift) {
auto a = CharImm::make(-4);
auto b = CharImm::make(1);
ExprHandle f = a >> b;
LLVMExprEval cg(f);
ASSERT_EQ(cg.value<int8_t>(), -2);
}
TEST(LLVM, LogicalRightShift) {
auto a = ByteImm::make(0xfc);
auto b = ByteImm::make(1);
ExprHandle f = a >> b;
LLVMExprEval cg(f);
ASSERT_EQ(cg.value<uint8_t>(), 0x7e);
}
TEST(LLVM, DynamicShapeAdd) {
auto testWithSize = [](int32_t size) {
VarHandle n("n", kInt);
BufHandle a("a", {n}, kFloat);
BufHandle b("b", {n}, kFloat);
BufHandle c("c", {n}, kFloat);
VarHandle i("i", kInt);
StmtPtr s = For::make(i, 0, n, c.store({i}, a.load(i) + b.load(i)));
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
LLVMCodeGen cg(s, {a, b, c, n});
std::vector<void*> args({aData.data(), bData.data(), cData.data(), &size});
cg.value<float>(args);
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
TEST(LLVM, BindDynamicShapeAdd) {
auto testWithSize = [](int32_t size) {
VarHandle n("n", kInt);
BufHandle a("a", {n}, kFloat);
BufHandle b("b", {n}, kFloat);
BufHandle c("c", {n}, kFloat);
VarHandle i("i", kInt);
StmtPtr s = For::make(i, 0, n, c.store({i}, a.load(i) + b.load(i)));
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
LLVMCodeGen cg(s, {a, b, c, n});
cg.call({aData, bData, cData, size});
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
TEST(LLVM, TensorDynamicShapeAdd) {
auto testWithSize = [](int32_t size) {
VarHandle n("n", kInt);
BufHandle a("a", {n}, kFloat);
BufHandle b("b", {n}, kFloat);
Tensor c = Compute(
"c", {n}, [&](const VarHandle& i) { return a.load(i) + b.load(i); });
LoopNest l({c});
StmtPtr s = l.root_stmt();
LLVMCodeGen cg(s, {a, b, c, n});
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
cg.call({aData, bData, cData, size});
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
TEST(LLVM, DynamicShape2D) {
auto testWithSize = [](int32_t M, int32_t N) {
VarHandle m("m", kInt);
VarHandle n("n", kInt);
BufHandle a("a", {m, n}, kFloat);
BufHandle b("b", {m, n}, kFloat);
Tensor c =
Compute("c", {m, n}, [&](const VarHandle& i, const VarHandle& j) {
return a.load(i, j) + b.load(i, j);
});
LoopNest l({c});
l.prepareForCodegen();
StmtPtr s = l.root_stmt();
LLVMCodeGen cg(s, {a, b, c, m, n});
std::vector<float> aData(M * N, 1.0f);
std::vector<float> bData(M * N, 2.0f);
std::vector<float> cData(M * N, 0.0f);
cg.call({aData, bData, cData, M, N});
ExpectAllNear(cData, std::vector<float>(M * N, 3.0f), 1e-7);
};
testWithSize(1, 8);
testWithSize(16, 32);
testWithSize(37, 11);
}
TEST(LLVM, EmptyStmt) {
StmtPtr s = alloc<Block>(std::vector<StmtPtr>({}));
LLVMCodeGen cg(s, {});
cg.call({});
// Just don't crash.
}
TEST(LLVM, EliminatedStmt) {
BufHandle a("a", {1}, kFloat);
Tensor c = Compute("c", {0}, [&](const VarHandle& m) { return m; });
LoopNest l({c});
l.prepareForCodegen();
StmtPtr s = l.root_stmt();
s = IRSimplifier::simplify(s);
LLVMCodeGen cg(s, {a, c});
std::vector<float> aData(1, 1.0f);
std::vector<float> cData(0, 0.0f);
cg.call({aData, cData});
}
TEST(LLVM, SimpleReduction) {
int M = 128;
int N = 64;
BufHandle a("a", {1, M, N}, kFloat);
Tensor b = Reduce("sum", {1}, Sum(), a, {M, N});
LoopNest loop({b});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
LLVMCodeGen cg(s, {a, b});
PaddedBuffer<float> a_v(1, M, N, "a_v");
PaddedBuffer<float> b_v(1, "b_v");
PaddedBuffer<float> b_ref(1, "b_ref");
b_ref(0) = 0;
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
int v = i + j;
a_v(0, i, j) = v;
b_ref(0) += v;
}
}
cg.call({a_v, b_v});
ExpectAllNear(b_v, b_ref, 1e-5);
}
TEST(LLVM, RFactorReduction) {
int M = 128;
int N = 64;
BufHandle a("a", {1, M, N}, kFloat);
Tensor b = Reduce("sum", {1}, Sum(), a, {M, N});
LoopNest loop({b});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(b);
ForPtr loop_m = loops.at(1);
ForPtr loop_n = loops.at(2);
loop.reorderAxis(loop_m, loop_n);
loops = loop.getLoopStmtsFor(b);
loop_m = loops.at(2);
loop_n = loops.at(1);
auto b_body = loop.getAllWritesToBuf(b.buf())[1];
ASSERT_TRUE(loop.rfactor(b_body, loop_n));
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
LLVMCodeGen cg(s, {a, b});
PaddedBuffer<float> a_v(1, M, N, "a_v");
PaddedBuffer<float> b_v(1, "b_v");
PaddedBuffer<float> b_ref(1, "b_ref");
b_ref(0) = 0;
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
int v = i + j;
a_v(0, i, j) = v;
b_ref(0) += v;
}
}
cg.call({a_v, b_v});
ExpectAllNear(b_v, b_ref, 1e-5);
}
TEST(LLVM, RFactorVectorizedReduction) {
int M = 128;
int N = 64;
BufHandle a("a", {1, M, N}, kFloat);
Tensor b = Reduce("sum", {1}, Sum(), a, {M, N});
LoopNest loopnest({b});
std::vector<ForPtr> loops = loopnest.getLoopStmtsFor(b);
// Reorder n and m loops
loopnest.reorderAxis(loops.at(1), loops.at(2));
auto b_body = loopnest.getAllWritesToBuf(b.buf()).at(1);
auto all_loops = loopnest.getAllLoopNestsWritingToBuf(b.buf());
ASSERT_TRUE(all_loops.size() == 2 && all_loops[1].size() == 3);
ASSERT_TRUE(loopnest.rfactor(b_body, all_loops[1][1]));
auto distributed_loops = loopnest.distributeLoop(all_loops[1][1]);
// Vectorize initializer of rfac_buf
ASSERT_TRUE(LoopNest::vectorize(distributed_loops[0]));
// Vectorize producer of rfac_buf
ASSERT_TRUE(LoopNest::vectorize(distributed_loops[1]));
loopnest.simplify();
loopnest.prepareForCodegen();
StmtPtr s = IRSimplifier::simplify(loopnest.root_stmt());
LLVMCodeGen cg(s, {a, b});
PaddedBuffer<float> a_v(1, M, N, "a_v");
PaddedBuffer<float> b_v(1, "b_v");
PaddedBuffer<float> b_ref(1, "b_ref");
b_ref(0) = 0;
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
int v = i + j;
a_v(0, i, j) = v;
b_ref(0) += v;
}
}
cg.call({a_v, b_v});
ExpectAllNear(b_v, b_ref, 1e-5);
}
template <bool outer, bool inner>
static void testSimpleParallel() {
// Compute a simple operation, and try all loop-axis combination to be
// parallel or sequential.
const int M = 4;
const int N = 6;
Tensor f = Compute("f", {M, N}, [](const VarHandle& m, const VarHandle& n) {
return cast<float>(m + n);
});
LoopNest loop_nest({f});
auto const& loops = loop_nest.getLoopStmtsFor(f);
ForPtr m = loops[0];
ForPtr n = loops[1];
if (outer) {
m->set_parallel();
}
if (inner) {
n->set_parallel();
}
loop_nest.prepareForCodegen();
StmtPtr stmt = loop_nest.root_stmt();
LLVMCodeGen cg(stmt, {f});
PaddedBuffer<float> f_v(M, N, "f_v");
std::vector<void*> args({f_v.data()});
int value = cg.value<int>(args);
ASSERT_EQ(value, 0);
PaddedBuffer<float> f_ref(M, N, "f_ref");
for (const auto m : c10::irange(M)) {
for (const auto n : c10::irange(N)) {
f_ref(m, n) = m + n;
}
}
ExpectAllNear(f_v, f_ref, 1e-5);
}
TEST(LLVM, SimpleParallelSS) {
testSimpleParallel<false, false>();
}
TEST(LLVM, SimpleParallelSP) {
testSimpleParallel<false, true>();
}
TEST(LLVM, SimpleParallelPS) {
testSimpleParallel<true, false>();
}
TEST(LLVM, SimpleParallelPP) {
testSimpleParallel<true, true>();
}
TEST(LLVM, CompositeParallel) {
int loop_count = 6;
int test_count = 1 << loop_count;
// Compute a composite operation, and try all loop-axis combination to be
// parallel or sequential.
for (const auto test_cfg : c10::irange(test_count)) {
int M = 5;
int N = 7;
Tensor t1 = Compute("t1", {M}, [](const VarHandle& m) { return m + 1.f; });
Tensor t2 = Compute("t2", {N}, [](const VarHandle& n) { return n + 2.f; });
Tensor t3 =
Compute("t3", {M, N}, [=](const VarHandle& m, const VarHandle& n) {
return t1.load(m) * t2.load(n);
});
Tensor t4 =
Compute("t4", {M, N}, [=](const VarHandle& m, const VarHandle& n) {
return t3.load(m, n) + m + n;
});
LoopNest loop_nest({t4}, {t1, t2, t3, t4});
std::vector<ForPtr> loop_list;
{
auto const& loops = loop_nest.getLoopStmtsFor(t1);
loop_list.push_back(loops[0]);
}
{
auto const& loops = loop_nest.getLoopStmtsFor(t2);
loop_list.push_back(loops[0]);
}
{
auto const& loops = loop_nest.getLoopStmtsFor(t3);
loop_list.push_back(loops[0]);
loop_list.push_back(loops[1]);
}
{
auto const& loops = loop_nest.getLoopStmtsFor(t4);
loop_list.push_back(loops[0]);
loop_list.push_back(loops[1]);
}
ASSERT_EQ(loop_list.size(), loop_count);
for (const auto i : c10::irange(loop_count)) {
if (test_cfg & (1 << i)) {
loop_list[i]->set_parallel();
}
}
loop_nest.prepareForCodegen();
StmtPtr stmt = loop_nest.root_stmt();
LLVMCodeGen cg(stmt, {t4});
PaddedBuffer<float> t4_v(M, N, "t4_v");
std::vector<void*> args({t4_v.data()});
int value = cg.value<int>(args);
ASSERT_EQ(value, 0);
PaddedBuffer<float> t4_ref(M, N, "t4_ref");
for (const auto m : c10::irange(M)) {
for (const auto n : c10::irange(N)) {
t4_ref(m, n) = (m + 1) * (n + 2) + m + n;
}
}
ExpectAllNear(t4_v, t4_ref, 1e-5);
}
}
TEST(LLVM, VectorizedGEMM) {
int M = 32;
int N = 32;
int K = 48;
BufHandle AP("A", {M, K}, kFloat);
BufHandle BP("B", {K, N}, kFloat);
Tensor CT = Reduce(
"gemm",
{M, N},
Sum(),
[&](const ExprHandle& m, const ExprHandle& n, const ExprHandle& k) {
return AP.load(m, k) * BP.load(k, n);
},
{K});
LoopNest loop({CT});
{
auto const& loops = loop.getLoopStmtsFor(CT);
ForPtr m = loops[0];
loop.splitWithMask(m, 16);
}
{
auto const& loops = loop.getLoopStmtsFor(CT);
ForPtr n = loops[2];
loop.splitWithMask(n, 16);
}
// mo, mi, no, ni, k ->
// mo, no, mi, ni, k
{
auto const& loops = loop.getLoopStmtsFor(CT);
ForPtr mi = loops[1];
ForPtr no = loops[2];
loop.reorderAxis(mi, no);
}
// mo, no, mi, ni, k ->
// mo, no, mi, k, ni
{
auto const& loops = loop.getLoopStmtsFor(CT);
ForPtr ni = loops[3];
ForPtr k = loops[4];
loop.reorderAxis(ni, k);
}
// mo, no, mi, k, ni ->
// mo, no, k, mi, ni
{
auto const& loops = loop.getLoopStmtsFor(CT);
ForPtr mi = loops[2];
ForPtr k = loops[3];
loop.reorderAxis(mi, k);
}
{
auto loops = NodeFinder<For>::find(loop.root_stmt());
ASSERT_TRUE(LoopNest::vectorize(loops[3]));
ASSERT_TRUE(LoopNest::vectorize(loops.back()));
}
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
LLVMCodeGen cg(s, {AP, BP, CT});
PaddedBuffer<float> a_v(M, K, "a_v");
PaddedBuffer<float> b_v(K, N, "b_v");
PaddedBuffer<float> c_v(M, N, "c_v");
PaddedBuffer<float> c_ref(M, N, "c_ref");
for (const auto m : c10::irange(M)) {
for (const auto n : c10::irange(N)) {
c_ref(m, n) = 0.f;
for (const auto k : c10::irange(K)) {
c_ref(m, n) += a_v(m, k) * b_v(k, n);
}
}
}
cg.call({a_v, b_v, c_v});
ExpectAllNear(c_v, c_ref, 1e-5);
}
TEST(LLVM, CallRaw) {
const int M = 32;
VarHandle N("N", kInt);
BufHandle a("a", {M, N}, kFloat);
BufHandle b("b", {N}, kFloat);
Tensor c = Compute("c", {M, N}, [&](const VarHandle& i, const VarHandle& j) {
return a.load(i, j) + b.load(j);
});
LoopNest l({c});
l.prepareForCodegen();
StmtPtr s = l.root_stmt();
int32_t N_value = 1024;
std::vector<float> av(M * N_value);
std::iota(av.begin(), av.end(), 0);
std::vector<float> bv(N_value);
std::iota(bv.begin(), bv.end(), 0);
std::vector<float> cv(M * N_value, 0);
std::vector<void*> args({av.data(), bv.data(), cv.data(), &N_value});
LLVMCodeGen cg(s, {a, b, BufHandle(c.buf()), N});
cg.call_raw(args);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N_value)) {
ASSERT_EQ(cv[i * N_value + j], av[i * N_value + j] + bv[j]);
}
}
SimpleIREvaluator eval(s, {a, b, BufHandle(c.buf()), N});
eval.call_raw(args);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N_value)) {
ASSERT_EQ(cv[i * N_value + j], av[i * N_value + j] + bv[j]);
}
}
}
TEST(LLVM, CustomTarget) {
constexpr int M = 16;
BufHandle a("a", {M}, kFloat);
BufHandle b("b", {M}, kFloat);
BufHandle c("c", {M}, kFloat);
Tensor d = Compute("d", {M}, [&](const VarHandle& m) {
return a.load(m) * b.load(m) + c.load(m);
});
LoopNest nest({d});
nest.prepareForCodegen();
auto cg = LLVMCodeGenBuilder(nest.root_stmt(), {a, b, c, d})
.triple("i686-elf")
.cpu("i386")
.build();
std::ostringstream ss;
ss << cg->getCodeText("asm");
torch::jit::testing::FileCheck()
.check("fadds")
->check("fmuls")
->check_not("vfmadd")
->run(ss.str());
}
TEST(LLVM, CodeGenKernelFuncName) {
BufHandle a("A", {1}, kInt);
BufHandle b("B", {1}, kInt);
std::vector<int32_t> a_buffer = {42};
std::vector<int32_t> b_buffer = {-11};
auto store = b.store({0}, a.load(0));
{
LLVMCodeGen cg(store, {a, b});
// Check that the kernel function name used by LLVMCodeGen
// is not empty.
ASSERT_NE(cg.kernel_func_name(), "");
}
{
LLVMCodeGen cg(store, {a, b}, at::kCPU, "new_func");
// Check that the kernel function name used by LLVMCodeGen
// is the one that was given above.
ASSERT_EQ(cg.kernel_func_name(), "new_func");
}
}
} // namespace jit
} // namespace torch
#endif // TORCH_ENABLE_LLVM