blob: d65b5c544f6c287b8ffc25c75813469544da8e88 [file] [log] [blame]
#include <gtest/gtest.h>
#include <limits>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <unordered_map>
#include <test/cpp/tensorexpr/test_base.h>
#include <c10/util/irange.h>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
TEST(Reductions, ReduceSum0D_1) {
const int M = 10;
BufHandle b("b", {M}, kFloat);
std::vector<float> in(M);
for (const auto j : c10::irange(M)) {
in[j] = j;
}
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
for (const auto i : c10::irange(M)) {
ASSERT_EQ(out[i], in[i]);
}
}
TEST(Reductions, ReduceSum0D_2) {
BufHandle b("b", {}, kFloat);
std::vector<float> in(1);
in[0] = 77.7;
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], in[0]);
}
// Sum an array to a single value.
TEST(Reductions, ReduceSum1D) {
BufHandle b("b", {10}, kFloat);
std::vector<float> in(10);
for (const auto j : c10::irange(10)) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {10});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 45);
}
// Sum a 2D tensor to a 1D tensor with dynamic shapes.
TEST(Reductions, ReduceSum2D) {
const int M = 3;
const int N = 7;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
BufHandle b("b", {m, n}, kFloat);
std::vector<float> in(M * N);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
in[i * N + j] = j;
}
}
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c, n, m});
cg.call({in, out, 5, 7});
float expected = 0;
for (const auto i : c10::irange(N)) {
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
expected += i;
}
for (const auto i : c10::irange(M)) {
ASSERT_EQ(out[i], expected);
}
}
// Sum a 3D tensor to both a 2D and 1D tensor, then reduce the 2D tensor flat to
// check our work.
TEST(Reductions, ReduceSum3D) {
const int M = 10;
VarHandle m("m", kInt);
BufHandle b("b", {2, 3, m}, kFloat);
Tensor c = Reduce("sum", {2, 3}, Sum(), b, {m});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c, m});
std::vector<float> bData(2 * 3 * M, 0);
std::vector<float> cData(2 * 3, 6.0f);
std::vector<float> dData(2, 1.0f);
std::vector<float> eData(2, 1.0f);
for (int i = 0; i < 2 * 3; ++i) {
for (const auto j : c10::irange(M)) {
bData[i * M + j] = j;
}
}
cg.call({bData, cData, M});
float expected = 0;
for (const auto i : c10::irange(M)) {
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
expected += i;
}
for (int i = 0; i < 2 * 3; ++i) {
ASSERT_EQ(cData[i], expected);
}
Tensor d = Reduce("sum2", {2}, Sum(), b, {3, m});
LoopNest loop2({d});
loop2.prepareForCodegen();
StmtPtr s2 = loop2.root_stmt();
s2 = IRSimplifier::simplify(s2);
SimpleIREvaluator cg2(s2, {b, d, m});
cg2.call({bData, dData, M});
// We're combining an additional dimension of 3, so the sum is 3x.
expected = expected * 3;
for (const auto i : c10::irange(2)) {
ASSERT_EQ(dData[i], expected);
}
// This is the same as just reducing the original result across that axis.
BufHandle c_buf(c.buf());
Tensor e = Reduce("sum3", {2}, Sum(), c_buf, {3});
LoopNest loop3({e});
loop3.prepareForCodegen();
StmtPtr s3 = loop3.root_stmt();
s3 = IRSimplifier::simplify(s3);
SimpleIREvaluator cg3(s3, {c, e});
cg3.call({cData, eData});
for (const auto i : c10::irange(2)) {
ASSERT_EQ(eData[i], expected);
}
}
// Sum a large (10 D) Tensor 5 dimensions in.
TEST(Reductions, ReduceSum10D) {
BufHandle in_("in_", {2, 3, 2, 3, 2, 3, 2, 3, 2, 3}, kFloat);
const int InputSize = 2 * 3 * 2 * 3 * 2 * 3 * 2 * 3 * 2 * 3;
BufHandle out_("out_", {2, 3, 2, 3, 2}, kFloat);
const int OutputSize = 2 * 3 * 2 * 3 * 2;
std::vector<float> in(InputSize, 1.f);
std::vector<float> out(OutputSize, -1.f);
Tensor c = Reduce("sum", {2, 3, 2, 3, 2}, Sum(), in_, {3, 2, 3, 2, 3});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in_, c});
cg.call({in, out});
// NOLINTNEXTLINE(bugprone-integer-division)
float expected = InputSize / OutputSize;
for (const auto i : c10::irange(OutputSize)) {
ASSERT_EQ(out[i], expected);
}
}
// Reduce via Mul rather than Add using a custom Reducer.
TEST(Reductions, ReduceProduct) {
const int M = 4;
const int N = 4;
BufHandle b("b", {M, N}, kFloat);
std::vector<float> in(M * N);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
in[i * N + j] = 2 + j;
}
}
std::vector<float> out(M, -1.f);
Reducer product(
ExprHandle(1.f), [](ExprHandle a, ExprHandle b) { return a * b; });
Tensor c = Reduce("product", {M}, product, b, {N});
LoopNest loop({c});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
float expected = 1;
for (const auto i : c10::irange(N)) {
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
expected *= 2 + i;
}
for (const auto i : c10::irange(M)) {
ASSERT_EQ(out[i], expected);
}
}
// Maximum reductions.
TEST(Reductions, ReduceMax) {
BufHandle in_("b", {10}, kFloat);
std::vector<float> in(10);
std::vector<float> out(1, -1.f);
for (const auto j : c10::irange(10)) {
in[j] = j;
}
Tensor dm1 = Reduce("max", {}, Maximum(kFloat), in_, {10});
LoopNest loop({dm1});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in_, dm1});
cg.call({in, out});
ASSERT_EQ(out[0], 9);
BufHandle in2_("b", {2, 5}, kFloat);
std::vector<float> out2(2, -1.f);
Tensor m2d = Reduce("max", {2}, Maximum(kFloat), in2_, {5});
LoopNest loop2({m2d});
loop2.prepareForCodegen();
s = loop2.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg2(s, {in2_, m2d});
cg2.call({in, out2});
ASSERT_EQ(out2[0], 4);
ASSERT_EQ(out2[1], 9);
}
// Minimum reduction, with custom initialization.
TEST(Reductions, ReduceMinCustomInitializer) {
VarHandle minInit("minInit", kFloat);
BufHandle in_("b", {10}, kFloat);
std::vector<float> in(10);
std::vector<float> out(1, -1.f);
for (const auto j : c10::irange(10)) {
in[j] = 10 + j;
}
Tensor min = Reduce(
"min",
{},
Minimum(ExprHandle(minInit)),
[&](ParameterList& v) { return in_.load(v); },
{10});
LoopNest loop({min});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in_, min, minInit});
// Works normally (note that out data starts lower than the correct
// minimum).
cg.call({in, out, std::numeric_limits<float>::max()});
ASSERT_EQ(out[0], 10);
// With an initalizer lower than the min, that's the min.
cg.call({in, out, 5.f});
ASSERT_EQ(out[0], 5);
}
// Example implementation of Any/All.
// TODO: this is very awkward without logical And/Or operators.
TEST(Reductions, ReduceAnyAll) {
VarHandle searchValue("searchValue", kInt);
BufHandle b("b", {4, 10}, kInt);
Reducer anyEqSV(ExprHandle(0), [](ExprHandle a, ExprHandle b) {
return CompareSelect::make(a, 1, 1, b, kEQ);
});
Tensor any = Reduce(
"anyEqual",
{4},
anyEqSV,
[&](const auto& i, const auto& j) {
return CompareSelect::make(b.load(i, j), searchValue, kEQ);
},
{10});
LoopNest loop({any});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, any, searchValue});
std::vector<int> in(40, 0);
std::vector<int> out(4, 0);
// input has 0-39 in 4 rows.
for (const auto i : c10::irange(40)) {
in[i] = i;
}
cg.call({in, out, 1});
// only the first row has 1
ASSERT_EQ(out[0], 1);
ASSERT_EQ(out[1], 0);
ASSERT_EQ(out[2], 0);
ASSERT_EQ(out[3], 0);
cg.call({in, out, 15});
// 15 in the 3rd row
ASSERT_EQ(out[0], 0);
ASSERT_EQ(out[1], 1);
ASSERT_EQ(out[2], 0);
ASSERT_EQ(out[3], 0);
Reducer allGTSV(ExprHandle(1), [](ExprHandle a, ExprHandle b) {
return CompareSelect::make(a, 0, 0, b, kEQ);
});
Tensor allGreaterThan = Reduce(
"allGreaterThan",
{4},
allGTSV,
[&](const auto& i, const auto& j) {
return CompareSelect::make(b.load(i, j), searchValue, kGT);
},
{10});
LoopNest loop2({allGreaterThan});
loop2.prepareForCodegen();
s = loop2.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg2(s, {b, allGreaterThan, searchValue});
cg2.call({in, out, 11});
// 11 is in row 2.
ASSERT_EQ(out[0], 0);
ASSERT_EQ(out[1], 0);
ASSERT_EQ(out[2], 1);
ASSERT_EQ(out[3], 1);
cg2.call({in, out, -3});
// All are positive.
ASSERT_EQ(out[0], 1);
ASSERT_EQ(out[1], 1);
ASSERT_EQ(out[2], 1);
ASSERT_EQ(out[3], 1);
}
TEST(Reductions, ReduceMatmul2D) {
BufHandle tA("tA", {3, 2}, kFloat);
BufHandle tB("tB", {2, 3}, kFloat);
std::vector<float> tA_(6);
std::vector<float> tB_(6);
std::vector<float> out(9, -1.f);
for (const auto i : c10::irange(3)) {
for (const auto j : c10::irange(2)) {
tA_[i * 2 + j] = i * 2 + j;
tB_[j * 3 + i] = i * 2 + j;
}
}
Tensor mm = Reduce(
"mm",
{3, 3},
Sum(),
[&](const ExprHandle& m, const ExprHandle& n, const ExprHandle& k) {
return tA.load(m, k) * tB.load(k, n);
},
{2});
LoopNest loop({mm});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {tA, tB, mm});
cg.call({tA_, tB_, out});
std::vector<float> expected(
{1.f, 3.f, 5.f, 3.f, 13.f, 23.f, 5.f, 23.f, 41.f});
for (const auto i : c10::irange(9)) {
ASSERT_EQ(out[i], expected[i]);
}
}
TEST(Reductions, ReduceRfactorLike) {
BufHandle in("in", {10, 10}, kFloat);
std::vector<float> in_(100);
for (const auto i : c10::irange(100)) {
in_[i] = i;
}
std::vector<float> in_rf_(10, -2.f);
std::vector<float> out(1, -1.f);
Tensor l1 = Reduce("l1", {10}, Sum(), in, {10});
BufHandle in_rf(l1.buf());
Tensor l2 = Reduce("l2", {}, Sum(), in_rf, {10});
LoopNest loop({l1, l2});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in, l1, l2});
cg.call({in_, in_rf_, out});
ASSERT_EQ(out[0], 99 * 50);
}
TEST(Reductions, ReduceAsProducer) {
const int M = 10;
VarHandle m("m", kInt);
BufHandle a("a", {2, 3}, kFloat);
BufHandle b("b", {2, 3, m}, kFloat);
Tensor c = Reduce("sum", {2, 3}, Sum(), b, {m});
Tensor d =
Compute("scale", {2, 3}, [&](const VarHandle& l, const VarHandle& n) {
return c.load(l, n) * a.load(l, n);
});
LoopNest loop({d}, {c, d});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {a, b, d, m});
std::vector<float> aData(2 * 3, 0);
std::vector<float> bData(2 * 3 * M, 0);
std::vector<float> dData(2 * 3, 6.0f);
for (int i = 0; i < 2 * 3; ++i) {
aData[i] = 6 - i;
for (const auto j : c10::irange(M)) {
bData[i * M + j] = j;
}
}
cg.call({aData, bData, dData, M});
float expected = 0;
for (const auto i : c10::irange(M)) {
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
expected += i;
}
for (int i = 0; i < 2 * 3; ++i) {
ASSERT_EQ(dData[i], expected * (6 - i));
}
}
TEST(Reductions, ReduceAsConsumer) {
const int M = 10;
VarHandle m("m", kInt);
BufHandle a("a", {2, 3, m}, kFloat);
BufHandle b("b", {2, 3, m}, kFloat);
Tensor c = Compute(
"scale",
{2, 3, m},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {2}, Sum(), c, {3, m});
LoopNest loop({d}, {c, d});
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {a, b, d, m});
std::vector<float> aData(2 * 3 * M, 0);
std::vector<float> bData(2 * 3 * M, 0);
std::vector<float> dData(2, 6.0f);
for (int i = 0; i < 2 * 3; ++i) {
for (const auto j : c10::irange(M)) {
bData[i * M + j] = j + 1;
aData[i * M + j] = 6 - i;
}
}
cg.call({aData, bData, dData, M});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
float expected[2] = {0, 0};
for (const auto i : c10::irange(2)) {
for (const auto j : c10::irange(3)) {
for (const auto k : c10::irange(M)) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
expected[i] += (k + 1) * (6 - (i * 3 + j));
}
}
}
for (const auto i : c10::irange(2)) {
ASSERT_EQ(dData[i], expected[i]);
}
}
TEST(Reductions, SplitReduceAxis) {
BufHandle in("in", {16, 8}, kFloat);
std::vector<float> in_(16 * 8);
for (const auto i : c10::irange(16)) {
for (const auto j : c10::irange(8)) {
in_[i * 8 + j] = i;
}
}
std::vector<float> out(16, -1.f);
Tensor tensor = Reduce("sum", {16}, Sum(), in, {8});
LoopNest l({tensor});
std::vector<ForPtr> loops = l.getLoopStmtsFor(tensor);
LoopNest::splitWithTail(loops[1], 2);
l.prepareForCodegen();
StmtPtr s = l.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in, tensor});
cg.call({in_, out});
for (const auto i : c10::irange(16)) {
ASSERT_EQ(out[i], i * 8);
}
}
TEST(Reductions, SplitNonReduceAxis) {
BufHandle in("in", {16, 8}, kFloat);
std::vector<float> in_(16 * 8);
for (const auto i : c10::irange(16)) {
for (const auto j : c10::irange(8)) {
in_[i * 8 + j] = i;
}
}
std::vector<float> out(16, -1.f);
Tensor tensor = Reduce("sum", {16}, Sum(), in, {8});
LoopNest l({tensor});
std::vector<ForPtr> loops = l.getLoopStmtsFor(tensor);
LoopNest::splitWithTail(loops[0], 2);
LoopNest::splitWithTail(loops[0], 2);
l.prepareForCodegen();
StmtPtr s = l.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in, tensor});
cg.call({in_, out});
for (const auto i : c10::irange(16)) {
ASSERT_EQ(out[i], i * 8);
}
}
TEST(Reductions, ReorderedReductionInitializer) {
/* From the quip:
for k in 0..1: // blockIdx
for m in 0..128:
for n in 0..64: // threadIdx
SumOp(c(k, n), 0, a(k, m, n), {m})
*/
BufHandle in("in", {1, 12, 6}, kFloat);
std::vector<float> in_(12 * 6, 1.f);
Tensor tensor_ = Reduce("sum", {1, 12}, Sum(), in, {6});
LoopNest l_({tensor_});
l_.prepareForCodegen();
StmtPtr s_ = Stmt::clone(l_.root_stmt());
s_ = IRSimplifier::simplify(s_);
Tensor tensor = Reduce("sum", {1, 12}, Sum(), in, {6});
LoopNest l({tensor});
auto loops = l.getLoopStmtsFor(tensor);
loops[0]->set_gpu_block_index(0);
loops[1]->set_gpu_thread_index(0);
LoopNest::reorderAxis(loops[1], loops[2]);
StmtPtr s = l.root_stmt();
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
s = IRSimplifier::simplify(s);
l.prepareForCodegen();
s = l.root_stmt();
s = IRSimplifier::simplify(s);
std::vector<float> out1(16, -1.f);
SimpleIREvaluator cg(s_, {in, tensor_});
cg.call({in_, out1});
std::vector<float> out2(16, -1.f);
SimpleIREvaluator cg2(s, {in, tensor});
cg2.call({in_, out2});
for (const auto i : c10::irange(16)) {
ASSERT_EQ(out1[i], out2[i]);
}
}
TEST(Reductions, ReduceRfactor) {
const int M = 10;
const int N = 10;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
BufHandle b("b", {m, n}, kFloat);
std::vector<float> in(M * N);
for (int j = 0; j < M * N; ++j) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {m, n});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
auto c_body = loop.getAllWritesToBuf(c.buf())[1];
ASSERT_TRUE(loop.rfactor(c_body, loops.at(0)));
auto rc = NodeFinder<ReduceOp>::find(loop.root_stmt());
ASSERT_EQ(rc.size(), 2);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c, m, n});
cg.call({in, out, M, N});
ASSERT_EQ(out[0], 4950);
}
TEST(Reductions, Reduce3DRfactorInner) {
const int M = 10;
const int N = 10;
const int K = 10;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle k("k", kInt);
BufHandle b("b", {m, n, k}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {m, n, k});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
auto c_body = loop.getAllWritesToBuf(c.buf())[1];
ASSERT_FALSE(loop.rfactor(c_body, loops.at(2)));
auto rc = NodeFinder<ReduceOp>::find(loop.root_stmt());
ASSERT_EQ(rc.size(), 1);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c, m, n, k});
cg.call({in, out, M, N, K});
ASSERT_EQ(out[0], 499500);
}
TEST(Reductions, Reduce3DRfactorOuter) {
const int M = 10;
const int N = 10;
const int K = 10;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle k("k", kInt);
BufHandle b("b", {m, n, k}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {m, n, k});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
auto c_body = loop.getAllWritesToBuf(c.buf())[1];
ASSERT_TRUE(loop.rfactor(c_body, loops.at(0)));
auto rc = NodeFinder<ReduceOp>::find(loop.root_stmt());
ASSERT_EQ(rc.size(), 2);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c, m, n, k});
cg.call({in, out, M, N, K});
ASSERT_EQ(out[0], 499500);
}
TEST(Reductions, ReduceRepeatedInternalRfactor) {
BufHandle in_("in_", {2, 3, 4, 5, 6}, kFloat);
const int InputSize = 2 * 3 * 4 * 5 * 6;
std::vector<float> in(InputSize, 1.f);
std::vector<float> out(1, -1.f);
std::vector<float> ref(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), in_, {2, 3, 4, 5, 6});
LoopNest orig_loop({c});
// Try rfactoring N outer loops
for (const auto rfac_number : c10::irange(1, 5)) {
LoopNest refloop(orig_loop);
LoopNest loop(orig_loop);
refloop.prepareForCodegen();
SimpleIREvaluator ref_cg(
IRSimplifier::simplify(refloop.root_stmt()), {in_, c});
ref_cg.call({in, ref});
BufPtr tmp_buf = c.buf();
for (const auto idx : c10::irange(rfac_number)) {
auto reduce = loop.getAllWritesToBuf(tmp_buf)[1];
ASSERT_TRUE(loop.rfactor(
reduce, loop.getLoopStmtsFor(tmp_buf).at(idx), &tmp_buf));
}
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {in_, c});
cg.call({in, out});
ASSERT_EQ(ref[0], out[0]);
}
}
// Split a reduction axis with a tail loop.
TEST(Reductions, ReduceSplitTail) {
const int M = 10;
const int N = 10;
const int K = 10;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
for (const auto i : c10::irange(3)) {
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithTail(loops[i], 8);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
}
}
// Split a reduction axis cleanly so there is no tail loop.
TEST(Reductions, ReduceSplitNoTail) {
const int M = 10;
const int N = 10;
const int K = 10;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
for (const auto i : c10::irange(3)) {
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithTail(loops[i], 5);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
}
}
// Split a reduction axis with only a tail loop (the split loop will be size 0
// and eliminated out).
TEST(Reductions, ReduceOverSplitTail) {
const int M = 10;
const int N = 10;
const int K = 10;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
for (const auto i : c10::irange(3)) {
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithTail(loops[i], 16);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
}
}
// Split a reduction axis with a mask.
TEST(Reductions, ReduceSplitMask) {
const int M = 10;
const int N = 10;
const int K = 10;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
for (const auto i : c10::irange(3)) {
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithMask(loops[i], 8);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
}
}
// Split a reduction axis cleanly not requiring a mask.
TEST(Reductions, ReduceSplitNoMask) {
const int M = 10;
const int N = 10;
const int K = 10;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
for (const auto i : c10::irange(3)) {
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithMask(loops[i], 5);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
}
}
// Split a reduction axis with all logic in the mask.
TEST(Reductions, ReduceOverSplitMask) {
const int M = 10;
const int N = 10;
const int K = 10;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
for (const auto i : c10::irange(3)) {
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithMask(loops[i], 16);
loop.prepareForCodegen();
StmtPtr s = loop.root_stmt();
s = IRSimplifier::simplify(s);
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
}
}
// Test an rfactor when there are two ReduceOps in the graph due to a
// splitWithTail.
TEST(Reductions, ReduceSplitRfactor) {
const int M = 2;
const int N = 10;
const int K = 10;
const int SPLIT_FACTOR = 4;
BufHandle b("b", {M, N, K}, kFloat);
std::vector<float> in(M * N * K);
for (const auto m : c10::irange(M)) {
for (int j = 0; j < N * K; ++j) {
in[m * N * K + j] = j;
}
}
std::vector<float> out(M, -1.f);
Tensor c = Reduce("sum", {M}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::splitWithTail(loops[2], SPLIT_FACTOR);
auto c_body = loop.getAllWritesToBuf(c.buf())[2];
auto all_loops = loop.getAllLoopNestsWritingToBuf(c.buf());
ASSERT_TRUE(all_loops.size() == 3 && all_loops.at(2).size() == 3);
LoopNest::reorderAxis(all_loops[2][1], all_loops[2][2]);
all_loops = loop.getAllLoopNestsWritingToBuf(c.buf());
ASSERT_TRUE(all_loops.size() == 3 && all_loops.at(2).size() == 3);
ASSERT_TRUE(loop.rfactor(c_body, all_loops[2][1]));
loop.prepareForCodegen();
loop.simplify();
StmtPtr s = loop.root_stmt();
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
for (const auto i : c10::irange(M)) {
(void)i; // Suppress unused variable warning
ASSERT_EQ(out[0], 4950);
}
}
// Test an rfactor which ends up being eliminated since the total loop size is
// smaller than the split factor.
TEST(Reductions, ReduceOverSplitRfactor) {
const int N = 10;
const int K = 10;
const int SPLIT_FACTOR = 16;
BufHandle b("b", {N, K}, kFloat);
std::vector<float> in(N * K);
for (int j = 0; j < N * K; ++j) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {N, K});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr i, t;
LoopNest::splitWithTail(loops[1], SPLIT_FACTOR, &i, &t);
LoopNest::reorderAxis(loops[0], i);
auto all_loops = loop.getAllLoopNestsWritingToBuf(c.buf());
ASSERT_TRUE(all_loops.size() == 3 && all_loops.at(1).size() == 3);
auto c_body = loop.getAllWritesToBuf(c.buf())[1];
ASSERT_TRUE(loop.rfactor(c_body, all_loops[1][0]));
LoopNest::reorderAxis(all_loops[1][0], all_loops[1][2]);
loop.prepareForCodegen();
loop.simplify();
StmtPtr s = loop.root_stmt();
SimpleIREvaluator cg(s, {b, c});
cg.call({in, out});
ASSERT_EQ(out[0], 4950);
std::ostringstream oss;
oss << *cg.stmt();
// Check the IR to verify the rfactored reduce is eliminated.
// TODO: The alloc free should be eliminated here since it is size 0.
/*
const std::string& verification_pattern =
R"IR(
# CHECK: Allocate(tmp_buf); // dtype=float, dims=[0]
# CHECK: sum[0] = 0.f;
# CHECK: for (int n = 0; n < 10; n++) {
# CHECK: for (int k_tail = 0; k_tail < 10; k_tail++) {
# CHECK: sum[0] = (sum[0]) + (b[k_tail + 10 * n]);
# CHECK: }
# CHECK: }
# CHECK: Free(tmp_buf);)IR";
*/
// TODO: rfactor output is not consistent yet, will fix (@nickg).
// torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
}
TEST(Reductions, ReduceInlineReduction) {
const int M = 4;
const int N = 5;
const int K = 6;
BufHandle a_buf("a", {M}, kFloat);
BufHandle b_buf("b", {M, N, K}, kFloat);
Tensor x = Reduce("x", {M}, Sum(), b_buf, {N, K});
Tensor y = Compute(
"y", {M}, [&](const VarHandle& m) { return a_buf.load(m) + x.load(m); });
PaddedBuffer<float> a_v(M);
PaddedBuffer<float> b_v(M, N, K);
for (const auto i : c10::irange(M)) {
a_v(i) = i * i;
}
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
for (const auto k : c10::irange(K)) {
b_v(i, j, k) = j * j * k;
}
}
}
LoopNest l1({y}, {x, y});
// Cannot inline a reduction computation
ASSERT_FALSE(l1.computeInline(x.buf()));
}
TEST(Reductions, ReduceInlineConsumer) {
const int M = 4;
const int N = 5;
const int K = 6;
BufHandle a_buf("a", {M, N, K}, kFloat);
BufHandle b_buf("b", {M, N, K}, kFloat);
Tensor x = Compute(
"x",
{M, N, K},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n, k) + b_buf.load(m, n, k);
});
Tensor y = Reduce("y", {M}, Sum(), x, {N, K});
PaddedBuffer<float> a_v(M, N, K);
PaddedBuffer<float> b_v(M, N, K);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
for (const auto k : c10::irange(K)) {
a_v(i, j, k) = i * i + k;
b_v(i, j, k) = j * j + k;
}
}
}
LoopNest l1({y}, {x, y});
LoopNest l2(l1);
l2.computeInline(x.buf());
l1.prepareForCodegen();
l2.prepareForCodegen();
StmtPtr stmt1 = IRSimplifier::simplify(l1.root_stmt());
StmtPtr stmt2 = IRSimplifier::simplify(l2.root_stmt());
SimpleIREvaluator eval1(stmt1, {a_buf, b_buf, y});
SimpleIREvaluator eval2(stmt2, {a_buf, b_buf, y});
PaddedBuffer<float> y_1(M);
PaddedBuffer<float> y_2(M);
eval1(a_v, b_v, y_1);
eval2(a_v, b_v, y_2);
ExpectAllNear(y_1, y_2, 1e-5);
std::ostringstream oss1, oss2;
oss1 << *stmt1;
oss2 << *stmt2;
ASSERT_GT(oss1.str().size(), oss2.str().size());
}
TEST(Reductions, ReduceInlineReducerInternal) {
const int M = 4;
const int N = 5;
const int K = 6;
BufHandle a_buf("a", {M, N, K}, kFloat);
BufHandle b_buf("b", {M, N, K}, kFloat);
Tensor x = Compute(
"x",
{M, N, K},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf.load(m, n, k) + b_buf.load(m, n, k);
});
Reducer minimum(ExprHandle(0.f), [&](ExprHandle a, ExprHandle b) {
return Add::make(ExprHandle(1.f), Min::make(a, b, false));
});
Tensor y = Reduce("y", {M}, minimum, x, {N, K});
PaddedBuffer<float> a_v(M, N, K);
PaddedBuffer<float> b_v(M, N, K);
for (const auto i : c10::irange(M)) {
for (const auto j : c10::irange(N)) {
for (const auto k : c10::irange(K)) {
a_v(i, j, k) = i * i + k;
b_v(i, j, k) = j * j + k;
}
}
}
LoopNest l1({y}, {x, y});
LoopNest l2(l1);
l2.computeInline(x.buf());
l1.prepareForCodegen();
l2.prepareForCodegen();
StmtPtr stmt1 = IRSimplifier::simplify(l1.root_stmt());
StmtPtr stmt2 = IRSimplifier::simplify(l2.root_stmt());
SimpleIREvaluator eval1(stmt1, {a_buf, b_buf, y});
SimpleIREvaluator eval2(stmt2, {a_buf, b_buf, y});
PaddedBuffer<float> y_1(M);
PaddedBuffer<float> y_2(M);
eval1(a_v, b_v, y_1);
eval2(a_v, b_v, y_2);
ExpectAllNear(y_1, y_2, 1e-5);
std::ostringstream oss1, oss2;
oss1 << *stmt1;
oss2 << *stmt2;
ASSERT_GT(oss1.str().size(), oss2.str().size());
}
TEST(Reductions, ReductionCacheAccessesOperatorAxis) {
int L = 4;
int N = 3;
int M = 2;
BufHandle a("a", {L, N, M}, kFloat);
BufHandle b("b", {L, N, M}, kFloat);
Tensor c = Compute(
"scale",
{L, N, M},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {L}, Sum(), c, {N, M});
Tensor e = Compute("scale", {L}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
LoopNest l_before(l);
l_before.prepareForCodegen();
SimpleIREvaluator cg_before(
LoopNest::sanitizeNames(l_before.root_stmt()), {a, b, e});
StmtPtr d_loop = l.getLoopStmtsFor(d)[0];
l.cacheAccesses(d.buf(), "d_local", d_loop);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg_after(result, {a, b, e});
std::ostringstream oss;
oss << *cg_after.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Allocate(d_local); // dtype=float, dims=[4]
#CHECK: for (int i_2
#CHECK: d_local[i_2] = 0.f
#CHECK: for (int
#CHECK: for (int
#CHECK: d_local[i_2] = (d_local[i_2]) + (scale[
#CHECK: }
#CHECK: }
#CHECK: }
#CHECK: for (int i_3
#CHECK: sum[i_3] = d_local[i_3]
#CHECK: Free(d_local);
#CHECK-NOT: d_local
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
PaddedBuffer<float> a_v(L, M, N, "a");
PaddedBuffer<float> b_v(L, M, N, "b");
PaddedBuffer<float> c_v(L, M, N, "c");
PaddedBuffer<float> d_v(L, "d");
PaddedBuffer<float> e_before(L, "e_before");
PaddedBuffer<float> e_after(L, "e_after");
for (const auto l : c10::irange(L)) {
for (const auto m : c10::irange(M)) {
for (const auto n : c10::irange(N)) {
a_v(l, m, n) = at::randn({1}).item().to<float>();
b_v(l, m, n) = at::randn({1}).item().to<float>();
}
}
}
cg_before.call({a_v, b_v, e_before});
cg_after.call({a_v, b_v, e_after});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
ExpectAllNear(e_before, e_after, 1e-5);
}
TEST(Reductions, ReductionCacheAccessesOuterReduceAxis) {
int L = 4;
int N = 3;
int M = 2;
BufHandle a("a", {L, N, M}, kFloat);
BufHandle b("b", {L, N, M}, kFloat);
Tensor c = Compute(
"scale",
{L, N, M},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {L}, Sum(), c, {N, M});
Tensor e = Compute("scale", {L}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
LoopNest l_before(l);
l_before.prepareForCodegen();
SimpleIREvaluator cg_before(l_before.root_stmt(), {a, b, e});
StmtPtr d_loop = l.getLoopStmtsFor(d)[1];
l.cacheAccesses(d.buf(), "d_local", d_loop);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg_after(result, {a, b, e});
std::ostringstream oss;
oss << *cg_after.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Allocate(d_local); // dtype=float, dims=[1]
#CHECK: sum[i_1] = 0
#CHECK: d_local[0] = sum[i_1]
#CHECK: for (int j_1
#CHECK: for (int k_1
#CHECK: d_local[0] = (d_local[0]) + (scale[
#CHECK: }
#CHECK: }
#CHECK: sum[i_1] = d_local[0]
#CHECK: Free(d_local);
#CHECK-NOT: d_local
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
PaddedBuffer<float> a_v(L, M, N, "a");
PaddedBuffer<float> b_v(L, M, N, "b");
PaddedBuffer<float> c_v(L, M, N, "c");
PaddedBuffer<float> d_v(L, "d");
PaddedBuffer<float> e_before(L, "e_before");
PaddedBuffer<float> e_after(L, "e_after");
for (const auto l : c10::irange(L)) {
for (const auto m : c10::irange(M)) {
for (const auto n : c10::irange(N)) {
a_v(l, m, n) = at::randn({1}).item().to<float>();
b_v(l, m, n) = at::randn({1}).item().to<float>();
}
}
}
cg_before.call({a_v, b_v, e_before});
cg_after.call({a_v, b_v, e_after});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
ExpectAllNear(e_before, e_after, 1e-5);
}
TEST(Reductions, ReductionCacheAccessesInnerReduceAxis) {
int L = 4;
int N = 3;
int M = 2;
BufHandle a("a", {L, N, M}, kFloat);
BufHandle b("b", {L, N, M}, kFloat);
Tensor c = Compute(
"scale",
{L, N, M},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {L}, Sum(), c, {N, M});
Tensor e = Compute("scale", {L}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
LoopNest l_before(l);
l_before.prepareForCodegen();
SimpleIREvaluator cg_before(l_before.root_stmt(), {a, b, e});
StmtPtr d_loop = l.getLoopStmtsFor(d)[2];
l.cacheAccesses(d.buf(), "d_local", d_loop);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg_after(result, {a, b, e});
std::ostringstream oss;
oss << *cg_after.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Allocate(d_local); // dtype=float, dims=[1]
#CHECK: sum[i_1] = 0
#CHECK: for (int
#CHECK: d_local[0] = 0
#CHECK: for (int
#CHECK: d_local[0] = (d_local[0]) + (scale[
#CHECK: }
#CHECK: sum[i_1] = (sum[i_1]) + (d_local[0])
#CHECK: }
#CHECK: Free(d_local);
#CHECK-NOT: d_local
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
PaddedBuffer<float> a_v(L, M, N, "a");
PaddedBuffer<float> b_v(L, M, N, "b");
PaddedBuffer<float> c_v(L, M, N, "c");
PaddedBuffer<float> d_v(L, "d");
PaddedBuffer<float> e_before(L, "e_before");
PaddedBuffer<float> e_after(L, "e_after");
for (const auto l : c10::irange(L)) {
for (const auto m : c10::irange(M)) {
for (const auto n : c10::irange(N)) {
a_v(l, m, n) = at::randn({1}).item().to<float>();
b_v(l, m, n) = at::randn({1}).item().to<float>();
}
}
}
cg_before.call({a_v, b_v, e_before});
cg_after.call({a_v, b_v, e_after});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
ExpectAllNear(e_before, e_after, 1e-5);
}
TEST(Reductions, ReductionCacheBodyAccess) {
BufHandle a("a", {24, 32, 12}, kFloat);
BufHandle b("b", {24, 32, 12}, kFloat);
Tensor c = Compute(
"scale",
{24, 32, 12},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {24}, Sum(), c, {32, 12});
Tensor e = Compute("scale", {24}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
StmtPtr d_loop = l.getLoopStmtsFor(d)[1];
l.cacheAccesses(c.buf(), "scale_local", d_loop);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg(result, {a, b, e});
std::ostringstream oss;
oss << *cg.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Allocate(scale_local); // dtype=float, dims=[1, 32, 12]
#CHECK: for (int j_1 = 0; j_1 < 32; j_1++) {
#CHECK: for (int k_1 = 0; k_1 < 12; k_1++) {
#CHECK: scale_local[k_1 + 12 * j_1] = scale[(k_1 + 12 * j_1) + 384 * i_1];
#CHECK: sum[i_1] = (sum[i_1]) + (scale_local[k_2 + 12 * j_2]);
#CHECK: scale_1[i_2] = (b[i_2]) * (sum[i_2]);
#CHECK: Free(scale_local);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(Reductions, ReductionCacheConsumerAccess) {
BufHandle a("a", {24, 32, 12}, kFloat);
BufHandle b("b", {24, 32, 12}, kFloat);
Tensor c = Compute(
"scale",
{24, 32, 12},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {24}, Sum(), c, {32, 12});
Tensor e = Compute("scale", {24}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
LoopNest::splitWithMask(l.getLoopStmtsFor(e)[0], 4);
StmtPtr e_loop = l.getLoopStmtsFor(e)[1];
l.cacheAccesses(d.buf(), "sum_local", e_loop);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg(result, {a, b, e});
std::ostringstream oss;
oss << *cg.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Alias(sum_local,scale);
#CHECK: sum[i_1] = (sum[i_1]) + (scale[
#CHECK: for (int j_2 = 0; j_2 < 4
#CHECK: sum_local[j_2] = sum[j_2 + 4 * i_2];
#CHECK: scale_1[j_3 + 4 * i_2] = (b[j_3 + 4 * i_2]) * (sum_local[j_3]);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(Reductions, ReductionSplitCacheConsumerAccess) {
BufHandle a("a", {24, 32, 12}, kFloat);
BufHandle b("b", {24, 32, 12}, kFloat);
Tensor c = Compute(
"scale",
{24, 32, 12},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {24}, Sum(), c, {32, 12});
Tensor e = Compute("scale", {24}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner;
// Split outer reduction axis.
LoopNest::splitWithMask(l.getLoopStmtsFor(d)[0], 4, &inner);
// Split reduction consumer.
LoopNest::splitWithMask(l.getLoopStmtsFor(e)[0], 4, &inner);
l.cacheAccesses(d.buf(), "sum_local", inner);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg(result, {a, b, e});
// reduction changes but cache does not.
std::ostringstream oss;
oss << *cg.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Alias(sum_local,scale);
#CHECK: sum[j_1 + 4 * i_1] = (sum[j_1 + 4 * i_1]) + (scale[((l + 12 * k_1) + 1536 * i_1) + 384 * j_1]);
#CHECK: for (int i_2 = 0; i_2 < 6
#CHECK: for (int j_2 = 0; j_2 < 4
#CHECK: sum_local[j_2] = sum[j_2 + 4 * i_2];
#CHECK: for (int j_3 = 0; j_3 < 4
#CHECK: scale_1[j_3 + 4 * i_2] = (b[j_3 + 4 * i_2]) * (sum_local[j_3]);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(Reductions, ReductionReorderCacheConsumerAccess) {
BufHandle a("a", {24, 32, 12}, kFloat);
BufHandle b("b", {24, 32, 12}, kFloat);
Tensor c = Compute(
"scale",
{24, 32, 12},
[&](const VarHandle& l, const VarHandle& n, const VarHandle& m) {
return b.load(l, n, m) * a.load(l, n, m);
});
Tensor d = Reduce("sum", {24}, Sum(), c, {32, 12});
Tensor e = Compute("scale", {24}, [&](const VarHandle& l) {
return b.load(0, 0, l) * d.load(l);
});
LoopNest l({e}, {c, d, e});
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ForPtr inner;
// reorder outer reduction axes.
auto loops = l.getLoopStmtsFor(d);
LoopNest::reorderAxis(loops[0], loops[1]);
// Split reduction consumer.
LoopNest::splitWithMask(l.getLoopStmtsFor(e)[0], 4, &inner);
l.cacheAccesses(d.buf(), "sum_local", inner);
l.prepareForCodegen();
StmtPtr result =
LoopNest::sanitizeNames(IRSimplifier::simplify(l.root_stmt()));
SimpleIREvaluator cg(result, {a, b, e});
// neither reduction body not cache changes.
std::ostringstream oss;
oss << *cg.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: sum[j_1] = (sum[j_1]) + (scale[(k_1 + 12 * i_2) + 384 * j_1]);
#CHECK: for (int i_3 = 0; i_3 < 6;
#CHECK: for (int j_2 = 0; j_2 < 4;
#CHECK: sum_local[j_2] = sum[j_2 + 4 * i_3];
#CHECK: for (int j_3 = 0; j_3 < 4;
#CHECK: scale_1[j_3 + 4 * i_3] = (b[j_3 + 4 * i_3]) * (sum_local[j_3]);
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
TEST(Reductions, ReductionRfactorCacheTempOuter) {
const int M = 10;
const int N = 10;
const int K = 10;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle k("k", kInt);
BufHandle b("B", {m, n, k}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {m, n, k});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
LoopNest::reorderAxis(loops.at(0), loops.at(1));
loops = loop.getLoopStmtsFor(c);
auto c_body = loop.getAllWritesToBuf(c.buf())[1];
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
BufPtr rfac_buf;
ASSERT_TRUE(loop.rfactor(c_body, loops.at(0), &rfac_buf));
loop.distributeLoop(loops.at(0));
auto all_loops = loop.getAllLoopNestsWritingToBuf(rfac_buf);
ASSERT_TRUE(all_loops.size() == 2 && all_loops.at(1).size() == 3);
LoopNest::reorderAxis(all_loops[1][0], all_loops[1][1]);
all_loops = loop.getAllLoopNestsWritingToBuf(rfac_buf);
LoopNest::cacheAccesses(rfac_buf, "tmp", all_loops[1][1]);
loop.simplify();
loop.prepareForCodegen();
StmtPtr s = LoopNest::sanitizeNames(loop.root_stmt());
SimpleIREvaluator cg(s, {b, c, m, n, k});
std::ostringstream oss;
oss << *cg.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Allocate(sum_rfac); // dtype=float, dims=[n]
#CHECK: Allocate(tmp); // dtype=float, dims=[n]
#CHECK: for (int i_1 = 0; i_1 < m
#CHECK: for (int j = 0; j < n
#CHECK: tmp[j] = 0
#CHECK: }
#CHECK: for (int j_1 = 0; j_1 < n
#CHECK: for (int k
#CHECK: tmp[j_1] = (tmp[j_1]) + (B[
#CHECK: }
#CHECK: }
#CHECK: for (int j_2 = 0; j_2 < n
#CHECK: sum_rfac[j_2] = (sum_rfac[j_2]) + (tmp[j_2]);
#CHECK: }
#CHECK: Free(tmp);
#CHECK-NOT: tmp
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
cg.call({in, out, M, N, K});
ASSERT_EQ(out[0], 499500);
}
TEST(Reductions, ReductionRfactorCacheTempInner) {
const int M = 10;
const int N = 10;
const int K = 10;
VarHandle m("m", kInt);
VarHandle n("n", kInt);
VarHandle k("k", kInt);
BufHandle b("B", {m, n, k}, kFloat);
std::vector<float> in(M * N * K);
for (int j = 0; j < M * N * K; ++j) {
in[j] = j;
}
std::vector<float> out(1, -1.f);
Tensor c = Reduce("sum", {}, Sum(), b, {m, n, k});
LoopNest loop({c});
std::vector<ForPtr> loops = loop.getLoopStmtsFor(c);
auto c_body = loop.getAllWritesToBuf(c.buf())[1];
LoopNest::reorderAxis(loops.at(0), loops.at(1));
loops = loop.getLoopStmtsFor(c);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
BufPtr rfac_buf;
ASSERT_TRUE(loop.rfactor(c_body, loops.at(0), &rfac_buf));
loop.distributeLoop(loops.at(0));
auto all_loops = loop.getAllLoopNestsWritingToBuf(rfac_buf);
ASSERT_TRUE(all_loops.size() == 2 && all_loops.at(1).size() == 3);
LoopNest::reorderAxis(all_loops[1][0], all_loops[1][1]);
all_loops = loop.getAllLoopNestsWritingToBuf(rfac_buf);
ASSERT_TRUE(all_loops.size() == 2 && all_loops.at(1).size() == 3);
LoopNest::cacheAccesses(rfac_buf, "tmp", all_loops[1][2]);
loop.prepareForCodegen();
loop.simplify();
StmtPtr s = LoopNest::sanitizeNames(loop.root_stmt());
SimpleIREvaluator cg(s, {b, c, m, n, k});
std::ostringstream oss;
oss << *cg.stmt();
const std::string& expected_ir =
R"IR(
#CHECK: Allocate(sum_rfac); // dtype=float, dims=[n]
#CHECK: Allocate(tmp); // dtype=float, dims=[1]
#CHECK: for (int i_1 = 0; i_1 < m
#CHECK: for (int j = 0; j < n
#CHECK: tmp[0] = 0
#CHECK: for (int k
#CHECK: tmp[0] = (tmp[0]) + (B[
#CHECK: }
#CHECK: sum_rfac[j] = (sum_rfac[j]) + (tmp[0]);
#CHECK: Free(tmp);
#CHECK-NOT: tmp
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
cg.call({in, out, M, N, K});
ASSERT_EQ(out[0], 499500);
}
TEST(Reductions, ReductionVectorize) {
std::vector<float> in_(8 * 8);
for (const auto i : c10::irange(8)) {
for (const auto j : c10::irange(8)) {
in_[i * 8 + j] = i;
}
}
std::vector<float> out_before(8, -1.f);
std::vector<float> out_after(8, -1.f);
BufHandle in("in", {8, 8}, kFloat);
Tensor tensor = Reduce("sum", {8}, Sum(), in, {8});
LoopNest l_before({tensor});
LoopNest l(l_before);
l_before.prepareForCodegen();
SimpleIREvaluator cg_before(l_before.root_stmt(), {in, tensor});
cg_before.call({in_, out_before});
ASSERT_TRUE(LoopNest::vectorize(l.getLoopStmtsFor(tensor)[0]));
StmtPtr s = l.root_stmt();
s = LoopNest::sanitizeNames(IRSimplifier::simplify(s));
std::ostringstream oss;
oss << *s;
const std::string& expected_ir =
R"IR(
#CHECK: sum[Ramp(0, 1, 8)] = Broadcast(0.f, 8);
#CHECK: for (int i = 0; i < 8; i++) {
#CHECK: sum[Ramp(0, 1, 8)] = ReduceOp((sum[Ramp(0, 1, 8)]) + (in[Ramp(i, 8, 8)]), reduce_args={i});
#CHECK: }
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
// Vectorizing should not change result.
l.prepareForCodegen();
s = IRSimplifier::simplify(l.root_stmt());
SimpleIREvaluator cg_after(s, {in, tensor});
cg_after.call({in_, out_after});
for (const auto i : c10::irange(8)) {
ASSERT_EQ(out_before[i], out_after[i]);
}
}
TEST(Reductions, ReductionVectorizeInner) {
BufHandle in("in", {8, 8}, kFloat);
Tensor tensor = Reduce("sum", {8}, Sum(), in, {8});
LoopNest l({tensor});
ASSERT_FALSE(LoopNest::vectorize(l.getLoopStmtsFor(tensor)[1]));
}
TEST(Reductions, ReductionVectorizeRfactor) {
std::vector<float> in_(8 * 8);
for (const auto i : c10::irange(8)) {
for (const auto j : c10::irange(8)) {
in_[i * 8 + j] = i;
}
}
std::vector<float> out_before(1, -1.f);
std::vector<float> out_after(1, -1.f);
BufHandle in("in", {8, 8}, kFloat);
Tensor tensor = Reduce("sum", {}, Sum(), in, {8, 8});
LoopNest l_before({tensor});
LoopNest l(l_before);
l_before.prepareForCodegen();
SimpleIREvaluator cg_before(l_before.root_stmt(), {in, tensor});
cg_before.call({in_, out_before});
ASSERT_FALSE(LoopNest::vectorize(l.getLoopStmtsFor(tensor)[1]));
// But if we rfactor this so it's not a reduce axis we can vectorize that
// loop.
std::vector<ForPtr> loops = l.getLoopStmtsFor(tensor);
LoopNest::reorderAxis(loops[0], loops[1]);
loops = l.getLoopStmtsFor(tensor);
auto tensor_body = l.getAllWritesToBuf(tensor.buf())[1];
BufPtr rfac_buf = nullptr;
ASSERT_TRUE(LoopNest::rfactor(tensor_body, loops.at(0), &rfac_buf));
LoopNest::distributeLoop(loops.at(0));
auto rfac_loops = l.getAllLoopNestsWritingToBuf(rfac_buf);
ASSERT_TRUE(LoopNest::vectorize(rfac_loops[1][0]));
l.simplify();
StmtPtr s = LoopNest::sanitizeNames(l.root_stmt());
std::ostringstream oss;
oss << *s;
const std::string& expected_ir =
R"IR(
#CHECK: sum = 0.f;
#CHECK: for (int i = 0; i < 8; i++) {
#CHECK: sum_rfac[i] = 0.f;
#CHECK: }
#CHECK: for (int i_1 = 0; i_1 < 8; i_1++) {
#CHECK: sum_rfac[Ramp(0, 1, 8)] = ReduceOp((sum_rfac[Ramp(0, 1, 8)]) + (in[Ramp(8 * i_1, 1, 8)]), reduce_args={i_1});
#CHECK: }
#CHECK: for (int i_2 = 0; i_2 < 8; i_2++) {
#CHECK: sum = ReduceOp((sum) + (sum_rfac[i_2]), reduce_args={i_2});
#CHECK: }
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
// Vectorizing should not change result.
l.prepareForCodegen();
s = IRSimplifier::simplify(l.root_stmt());
SimpleIREvaluator cg_after(s, {in, tensor});
cg_after.call({in_, out_after});
ASSERT_EQ(out_before[0], out_after[0]);
}
TEST(Reductions, InitFunction) {
constexpr int M = 32;
constexpr int N = 16;
BufHandle A("A", {M, N}, kFloat);
BufHandle B("B", {N}, kFloat);
Tensor C = Reduce(
"C",
{N},
Sum(),
[&](const std::vector<VarHandle>& v) { return B.load(v[0]); },
[&](const std::vector<VarHandle>& v) { return A.load(v[1], v[0]); },
{M});
LoopNest nest({C});
nest.prepareForCodegen();
StmtPtr s = LoopNest::sanitizeNames(IRSimplifier::simplify(nest.root_stmt()));
std::ostringstream oss;
oss << *s << "\n";
const std::string& expected_ir =
R"IR(
#CHECK: for (int i = 0; i < 16; i++) {
#CHECK: C[i] = B[i];
#CHECK: for (int j = 0; j < 32; j++) {
#CHECK: C[i] = (C[i]) + (A[i + 16 * j]);
#CHECK: }
#CHECK: }
)IR";
torch::jit::testing::FileCheck().run(expected_ir, oss.str());
}
} // namespace jit
} // namespace torch