blob: 5474f04527f2e4a1cbc6b9a31a5f3a04150a9afa [file] [log] [blame]
import os
import shutil
import unittest
import warnings
from collections import namedtuple
import torch
import torch.testing._internal.common_nn as common_nn
import torch.utils.cpp_extension
from torch.testing._internal.common_cuda import TEST_CUDA
# Note that this namedtuple is for C++ parity test mechanism's internal use.
# For guidance on how to add a new C++ parity test, please see
# NOTE [How to check NN module / functional API parity between Python and C++ frontends]
TorchNNModuleTestParams = namedtuple(
"TorchNNModuleTestParams",
[
# NN module name (e.g. "BCELoss")
"module_name",
# Unique identifier for this module config (e.g. "BCELoss_weights_cuda")
"module_variant_name",
# An instance of an NN test class (e.g. `CriterionTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# Constructor arguments passed to the C++ module constructor, which must be
# strictly equivalent to the Python module constructor arguments
# (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`,
# which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss`
# constructor in Python)
"cpp_constructor_args",
# All arguments used in NN module's forward pass.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN module test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
# Note that this namedtuple is for C++ parity test mechanism's internal use.
# For guidance on how to add a new C++ parity test, please see
# NOTE [How to check NN module / functional API parity between Python and C++ frontends]
TorchNNFunctionalTestParams = namedtuple(
"TorchNNFunctionalTestParams",
[
# NN functional name (e.g. "binary_cross_entropy")
"functional_name",
# Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda")
"functional_variant_name",
# An instance of an NN test class (e.g. `NewModuleTest`) which stores
# necessary information (e.g. input / target / extra_args) for running the Python test
"test_instance",
# The C++ function call that is strictly equivalent to the Python function call
# (e.g. "F::binary_cross_entropy(
# i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))",
# which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python)
"cpp_function_call",
# All arguments used in NN functional's function call.
# Please see `compute_arg_dict` function for details on how we construct this dict.
# (e.g.
# ```
# arg_dict = {
# 'input': [python_input_tensor],
# 'target': [python_target_tensor],
# 'extra_args': [],
# 'other': [],
# }
# ```
# )
"arg_dict",
# Whether we expect this NN functional test to pass the Python/C++ parity test
# (e.g. `True`)
"has_parity",
# Device (e.g. "cuda")
"device",
# Temporary folder to store C++ outputs (to be compared with Python outputs later)
"cpp_tmp_folder",
],
)
CppArg = namedtuple("CppArg", ["name", "value"])
TORCH_NN_COMMON_TEST_HARNESS = """
#include <torch/script.h>
void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) {
auto bytes = torch::jit::pickle_save(ivalue);
std::ofstream fout(file_path, std::ios::out | std::ios::binary);
fout.write(bytes.data(), bytes.size());
fout.close();
}
c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) {
c10::Dict<std::string, torch::Tensor> arg_dict;
auto arg_dict_module = torch::jit::load(file_path);
for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) {
arg_dict.insert(p.name, p.value);
}
return arg_dict;
}
// Generates rand tensor with non-equal values. This ensures that duplicate
// values won't be causing test failure for modules like MaxPooling.
// size should be small, otherwise randperm fails / long overflows.
torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) {
int64_t total = 1;
for (int64_t elem : size) {
total *= elem;
}
return torch::randperm(total).view(size).to(torch::kDouble);
}
"""
def compile_cpp_code_inline(name, cpp_sources, functions):
cpp_module = torch.utils.cpp_extension.load_inline(
name=name,
cpp_sources=cpp_sources,
extra_cflags=[
"-g"
], # Enable debug symbols by default for debugging test failures.
functions=functions,
verbose=False,
)
return cpp_module
def compute_temp_file_path(cpp_tmp_folder, variant_name, file_suffix):
return os.path.join(cpp_tmp_folder, f"{variant_name}_{file_suffix}.pt")
def is_torch_nn_functional_test(test_params_dict):
return "wrap_functional" in str(test_params_dict.get("constructor", ""))
def convert_to_list(python_input):
if isinstance(python_input, torch.Tensor):
return [python_input]
else:
return list(python_input)
def set_python_tensors_requires_grad(python_tensors):
return [
tensor.requires_grad_(True) if tensor.dtype != torch.long else tensor
for tensor in python_tensors
]
def move_python_tensors_to_device(python_tensors, device):
return [tensor.to(device) for tensor in python_tensors]
def has_test(unit_test_class, test_name):
return hasattr(unit_test_class, test_name)
def add_test(unit_test_class, test_name, test_fn):
if has_test(unit_test_class, test_name):
raise RuntimeError("Found two tests with the same name: " + test_name)
setattr(unit_test_class, test_name, test_fn)
def set_cpp_tensors_requires_grad(cpp_tensor_stmts, python_tensors):
assert len(cpp_tensor_stmts) == len(python_tensors)
return [
f"{tensor_stmt}.requires_grad_(true)"
if tensor.dtype != torch.long
else tensor_stmt
for tensor_stmt, (_, tensor) in zip(cpp_tensor_stmts, python_tensors)
]
def move_cpp_tensors_to_device(cpp_tensor_stmts, device):
return [f'{tensor_stmt}.to("{device}")' for tensor_stmt in cpp_tensor_stmts]
def is_criterion_test(test_instance):
return isinstance(test_instance, common_nn.CriterionTest)
# This function computes the following:
# - What variable declaration statements should show up in the C++ parity test function
# - What arguments should be passed into the C++ module/functional's forward function
#
# For example, for the "L1Loss" test, the return values from this function are:
# ```
# // Note that `arg_dict` stores all tensor values we transfer from Python to C++
# cpp_args_construction_stmts = [
# "auto i0 = arg_dict.at("i0").to("cpu").requires_grad_(true)",
# "auto t0 = arg_dict.at("t0").to("cpu")",
# ],
# cpp_forward_args_symbols = [
# "i0",
# "t0",
# ]
# ```
def compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params):
device = test_params.device
cpp_forward_args_symbols = []
def add_cpp_forward_args(args):
args_stmts = []
for arg_name, _ in args:
args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")')
cpp_forward_args_symbols.append(arg_name)
return args_stmts
cpp_forward_input_args_stmts = set_cpp_tensors_requires_grad(
move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["input"]), device
),
test_params.arg_dict["input"],
)
cpp_forward_target_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["target"]), device
)
cpp_forward_extra_args_stmts = move_cpp_tensors_to_device(
add_cpp_forward_args(test_params.arg_dict["extra_args"]), device
)
# Build the list of other arguments needed
cpp_other_args_stmts = []
for arg_name, _ in test_params.arg_dict["other"]:
cpp_other_args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")')
cpp_other_args_stmts = move_cpp_tensors_to_device(cpp_other_args_stmts, device)
cpp_args_construction_stmts = (
cpp_forward_input_args_stmts
+ cpp_forward_target_args_stmts
+ cpp_forward_extra_args_stmts
+ cpp_other_args_stmts
)
return cpp_args_construction_stmts, cpp_forward_args_symbols
def serialize_arg_dict_as_script_module(arg_dict):
arg_dict_flat = dict(
arg_dict["input"]
+ arg_dict["target"]
+ arg_dict["extra_args"]
+ arg_dict["other"]
)
arg_dict_module = torch.nn.Module()
for arg_name, arg_value in arg_dict_flat.items():
assert isinstance(arg_value, torch.Tensor)
arg_dict_module.register_buffer(arg_name, arg_value)
return torch.jit.script(arg_dict_module)
# NOTE: any argument symbol used in `cpp_constructor_args` / `cpp_options_args` / `cpp_function_call`
# must have a mapping in `cpp_var_map`.
#
# The mapping can take one of the following formats:
#
# 1. `argument_name` -> Python value
# 2. `argument_name` -> '_get_input()' (which means `argument_name` in C++ will be bound to `test_instance._get_input()`)
#
# For example:
# ```
# def bceloss_weights_no_reduce_test():
# t = torch.randn(15, 10).gt(0).double()
# weights = torch.rand(10)
# return dict(
# fullname='BCELoss_weights_no_reduce',
# constructor=wrap_functional(
# lambda i: F.binary_cross_entropy(i, t.type_as(i),
# weight=weights.type_as(i), reduction='none')),
# cpp_function_call='''F::binary_cross_entropy(
# i, t.to(i.options()),
# F::BinaryCrossEntropyFuncOptions()
# .weight(weights.to(i.options()))
# .reduction(torch::kNone))''',
# input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2),
# cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights},
# reference_fn=lambda i, p, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights,
# )
# ```
def compute_arg_dict(test_params_dict, test_instance):
arg_dict = {
"input": [],
"target": [],
"extra_args": [],
"other": [],
}
def put_args_into_arg_dict(arg_type, arg_type_prefix, args):
for i, arg in enumerate(args):
arg_dict[arg_type].append(CppArg(name=arg_type_prefix + str(i), value=arg))
put_args_into_arg_dict("input", "i", convert_to_list(test_instance._get_input()))
if is_criterion_test(test_instance):
put_args_into_arg_dict(
"target", "t", convert_to_list(test_instance._get_target())
)
if test_instance.extra_args:
put_args_into_arg_dict(
"extra_args", "e", convert_to_list(test_instance.extra_args)
)
cpp_var_map = test_params_dict.get("cpp_var_map", {})
for arg_name, arg_value in cpp_var_map.items():
if isinstance(arg_value, str):
if arg_value == "_get_input()":
arg_dict["other"].append(
CppArg(name=arg_name, value=test_instance._get_input())
)
else:
raise RuntimeError(
f"`{arg_name}` has unsupported string value: {arg_value}"
)
elif isinstance(arg_value, torch.Tensor):
arg_dict["other"].append(CppArg(name=arg_name, value=arg_value))
else:
raise RuntimeError(f"`{arg_name}` has unsupported value: {arg_value}")
return arg_dict
def decorate_test_fn(test_fn, test_cuda, has_impl_parity, device):
if device == "cuda":
test_fn = unittest.skipIf(not TEST_CUDA, "CUDA unavailable")(test_fn)
test_fn = unittest.skipIf(not test_cuda, "Excluded from CUDA tests")(test_fn)
# If `Implementation Parity` entry in parity table for this module is `No`,
# or `has_parity` entry in test params dict is `False`, we mark the test as
# expected failure.
if not has_impl_parity:
test_fn = unittest.expectedFailure(test_fn)
return test_fn
MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE = """
What should I do when C++ API parity test is failing?
- If you are changing the implementation of an existing `torch.nn` module / `torch.nn.functional` function:
Answer: Ideally you should also change the C++ API implementation for that module / function
(you can start by searching for the module / function name in `torch/csrc/api/` folder).
- If you are adding a new test for an existing `torch.nn` module / `torch.nn.functional` function:
Answer: Ideally you should fix the C++ API implementation for that module / function
to exactly match the Python API implementation (you can start by searching for the module /
function name in `torch/csrc/api/` folder).
- If you are adding a test for a *new* `torch.nn` module / `torch.nn.functional` function:
Answer: Ideally you should add the corresponding C++ API implementation for that module / function,
and it should exactly match the Python API implementation. (We have done a large effort on this
which is tracked at https://github.com/pytorch/pytorch/issues/25883.)
However, if any of the above is proven to be too complicated, you can just add
`test_cpp_api_parity=False` to any failing test in `torch/testing/_internal/common_nn.py`,
and the C++ API parity test will be skipped accordingly. Note that you should
also file an issue when you do this.
For more details on how to add a C++ API parity test, please see:
NOTE [How to check NN module / functional API parity between Python and C++ frontends]
"""
def generate_error_msg(name, cpp_value, python_value):
return (
f"Parity test failed: {name} in C++ has value: {cpp_value}, "
f"which does not match the corresponding value in Python: {python_value}.\n{MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE}"
)
def try_remove_folder(folder_path):
if os.path.exists(folder_path):
# Don't block the process if this fails, but show the error message as warning.
try:
shutil.rmtree(folder_path)
except Exception as e:
warnings.warn(
f"Non-blocking folder removal fails with the following error:\n{str(e)}"
)