| import os |
| import shutil |
| import unittest |
| import warnings |
| from collections import namedtuple |
| |
| import torch |
| import torch.testing._internal.common_nn as common_nn |
| import torch.utils.cpp_extension |
| from torch.testing._internal.common_cuda import TEST_CUDA |
| |
| |
| # Note that this namedtuple is for C++ parity test mechanism's internal use. |
| # For guidance on how to add a new C++ parity test, please see |
| # NOTE [How to check NN module / functional API parity between Python and C++ frontends] |
| TorchNNModuleTestParams = namedtuple( |
| "TorchNNModuleTestParams", |
| [ |
| # NN module name (e.g. "BCELoss") |
| "module_name", |
| # Unique identifier for this module config (e.g. "BCELoss_weights_cuda") |
| "module_variant_name", |
| # An instance of an NN test class (e.g. `CriterionTest`) which stores |
| # necessary information (e.g. input / target / extra_args) for running the Python test |
| "test_instance", |
| # Constructor arguments passed to the C++ module constructor, which must be |
| # strictly equivalent to the Python module constructor arguments |
| # (e.g. `torch::nn::BCELossOptions().weight(torch::rand(10))`, |
| # which is strictly equivalent to passing `torch.rand(10)` to `torch.nn.BCELoss` |
| # constructor in Python) |
| "cpp_constructor_args", |
| # All arguments used in NN module's forward pass. |
| # Please see `compute_arg_dict` function for details on how we construct this dict. |
| # (e.g. |
| # ``` |
| # arg_dict = { |
| # 'input': [python_input_tensor], |
| # 'target': [python_target_tensor], |
| # 'extra_args': [], |
| # 'other': [], |
| # } |
| # ``` |
| # ) |
| "arg_dict", |
| # Whether we expect this NN module test to pass the Python/C++ parity test |
| # (e.g. `True`) |
| "has_parity", |
| # Device (e.g. "cuda") |
| "device", |
| # Temporary folder to store C++ outputs (to be compared with Python outputs later) |
| "cpp_tmp_folder", |
| ], |
| ) |
| |
| # Note that this namedtuple is for C++ parity test mechanism's internal use. |
| # For guidance on how to add a new C++ parity test, please see |
| # NOTE [How to check NN module / functional API parity between Python and C++ frontends] |
| TorchNNFunctionalTestParams = namedtuple( |
| "TorchNNFunctionalTestParams", |
| [ |
| # NN functional name (e.g. "binary_cross_entropy") |
| "functional_name", |
| # Unique identifier for this functional config (e.g. "BCELoss_no_reduce_cuda") |
| "functional_variant_name", |
| # An instance of an NN test class (e.g. `NewModuleTest`) which stores |
| # necessary information (e.g. input / target / extra_args) for running the Python test |
| "test_instance", |
| # The C++ function call that is strictly equivalent to the Python function call |
| # (e.g. "F::binary_cross_entropy( |
| # i, t.to(i.options()),F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))", |
| # which is strictly equivalent to `F.binary_cross_entropy(i, t.type_as(i), reduction='none')` in Python) |
| "cpp_function_call", |
| # All arguments used in NN functional's function call. |
| # Please see `compute_arg_dict` function for details on how we construct this dict. |
| # (e.g. |
| # ``` |
| # arg_dict = { |
| # 'input': [python_input_tensor], |
| # 'target': [python_target_tensor], |
| # 'extra_args': [], |
| # 'other': [], |
| # } |
| # ``` |
| # ) |
| "arg_dict", |
| # Whether we expect this NN functional test to pass the Python/C++ parity test |
| # (e.g. `True`) |
| "has_parity", |
| # Device (e.g. "cuda") |
| "device", |
| # Temporary folder to store C++ outputs (to be compared with Python outputs later) |
| "cpp_tmp_folder", |
| ], |
| ) |
| |
| CppArg = namedtuple("CppArg", ["name", "value"]) |
| |
| TORCH_NN_COMMON_TEST_HARNESS = """ |
| #include <torch/script.h> |
| |
| void write_ivalue_to_file(const torch::IValue& ivalue, const std::string& file_path) { |
| auto bytes = torch::jit::pickle_save(ivalue); |
| std::ofstream fout(file_path, std::ios::out | std::ios::binary); |
| fout.write(bytes.data(), bytes.size()); |
| fout.close(); |
| } |
| |
| c10::Dict<std::string, torch::Tensor> load_dict_from_file(const std::string& file_path) { |
| c10::Dict<std::string, torch::Tensor> arg_dict; |
| auto arg_dict_module = torch::jit::load(file_path); |
| for (const auto& p : arg_dict_module.named_buffers(/*recurse=*/false)) { |
| arg_dict.insert(p.name, p.value); |
| } |
| return arg_dict; |
| } |
| |
| // Generates rand tensor with non-equal values. This ensures that duplicate |
| // values won't be causing test failure for modules like MaxPooling. |
| // size should be small, otherwise randperm fails / long overflows. |
| torch::Tensor _rand_tensor_non_equal(torch::IntArrayRef size) { |
| int64_t total = 1; |
| for (int64_t elem : size) { |
| total *= elem; |
| } |
| return torch::randperm(total).view(size).to(torch::kDouble); |
| } |
| """ |
| |
| |
| def compile_cpp_code_inline(name, cpp_sources, functions): |
| cpp_module = torch.utils.cpp_extension.load_inline( |
| name=name, |
| cpp_sources=cpp_sources, |
| extra_cflags=[ |
| "-g" |
| ], # Enable debug symbols by default for debugging test failures. |
| functions=functions, |
| verbose=False, |
| ) |
| return cpp_module |
| |
| |
| def compute_temp_file_path(cpp_tmp_folder, variant_name, file_suffix): |
| return os.path.join(cpp_tmp_folder, f"{variant_name}_{file_suffix}.pt") |
| |
| |
| def is_torch_nn_functional_test(test_params_dict): |
| return "wrap_functional" in str(test_params_dict.get("constructor", "")) |
| |
| |
| def convert_to_list(python_input): |
| if isinstance(python_input, torch.Tensor): |
| return [python_input] |
| else: |
| return list(python_input) |
| |
| |
| def set_python_tensors_requires_grad(python_tensors): |
| return [ |
| tensor.requires_grad_(True) if tensor.dtype != torch.long else tensor |
| for tensor in python_tensors |
| ] |
| |
| |
| def move_python_tensors_to_device(python_tensors, device): |
| return [tensor.to(device) for tensor in python_tensors] |
| |
| |
| def has_test(unit_test_class, test_name): |
| return hasattr(unit_test_class, test_name) |
| |
| |
| def add_test(unit_test_class, test_name, test_fn): |
| if has_test(unit_test_class, test_name): |
| raise RuntimeError("Found two tests with the same name: " + test_name) |
| setattr(unit_test_class, test_name, test_fn) |
| |
| |
| def set_cpp_tensors_requires_grad(cpp_tensor_stmts, python_tensors): |
| assert len(cpp_tensor_stmts) == len(python_tensors) |
| return [ |
| f"{tensor_stmt}.requires_grad_(true)" |
| if tensor.dtype != torch.long |
| else tensor_stmt |
| for tensor_stmt, (_, tensor) in zip(cpp_tensor_stmts, python_tensors) |
| ] |
| |
| |
| def move_cpp_tensors_to_device(cpp_tensor_stmts, device): |
| return [f'{tensor_stmt}.to("{device}")' for tensor_stmt in cpp_tensor_stmts] |
| |
| |
| def is_criterion_test(test_instance): |
| return isinstance(test_instance, common_nn.CriterionTest) |
| |
| |
| # This function computes the following: |
| # - What variable declaration statements should show up in the C++ parity test function |
| # - What arguments should be passed into the C++ module/functional's forward function |
| # |
| # For example, for the "L1Loss" test, the return values from this function are: |
| # ``` |
| # // Note that `arg_dict` stores all tensor values we transfer from Python to C++ |
| # cpp_args_construction_stmts = [ |
| # "auto i0 = arg_dict.at("i0").to("cpu").requires_grad_(true)", |
| # "auto t0 = arg_dict.at("t0").to("cpu")", |
| # ], |
| # cpp_forward_args_symbols = [ |
| # "i0", |
| # "t0", |
| # ] |
| # ``` |
| def compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params): |
| device = test_params.device |
| cpp_forward_args_symbols = [] |
| |
| def add_cpp_forward_args(args): |
| args_stmts = [] |
| for arg_name, _ in args: |
| args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")') |
| cpp_forward_args_symbols.append(arg_name) |
| return args_stmts |
| |
| cpp_forward_input_args_stmts = set_cpp_tensors_requires_grad( |
| move_cpp_tensors_to_device( |
| add_cpp_forward_args(test_params.arg_dict["input"]), device |
| ), |
| test_params.arg_dict["input"], |
| ) |
| cpp_forward_target_args_stmts = move_cpp_tensors_to_device( |
| add_cpp_forward_args(test_params.arg_dict["target"]), device |
| ) |
| cpp_forward_extra_args_stmts = move_cpp_tensors_to_device( |
| add_cpp_forward_args(test_params.arg_dict["extra_args"]), device |
| ) |
| |
| # Build the list of other arguments needed |
| cpp_other_args_stmts = [] |
| for arg_name, _ in test_params.arg_dict["other"]: |
| cpp_other_args_stmts.append(f'auto {arg_name} = arg_dict.at("{arg_name}")') |
| cpp_other_args_stmts = move_cpp_tensors_to_device(cpp_other_args_stmts, device) |
| |
| cpp_args_construction_stmts = ( |
| cpp_forward_input_args_stmts |
| + cpp_forward_target_args_stmts |
| + cpp_forward_extra_args_stmts |
| + cpp_other_args_stmts |
| ) |
| |
| return cpp_args_construction_stmts, cpp_forward_args_symbols |
| |
| |
| def serialize_arg_dict_as_script_module(arg_dict): |
| arg_dict_flat = dict( |
| arg_dict["input"] |
| + arg_dict["target"] |
| + arg_dict["extra_args"] |
| + arg_dict["other"] |
| ) |
| arg_dict_module = torch.nn.Module() |
| for arg_name, arg_value in arg_dict_flat.items(): |
| assert isinstance(arg_value, torch.Tensor) |
| arg_dict_module.register_buffer(arg_name, arg_value) |
| |
| return torch.jit.script(arg_dict_module) |
| |
| |
| # NOTE: any argument symbol used in `cpp_constructor_args` / `cpp_options_args` / `cpp_function_call` |
| # must have a mapping in `cpp_var_map`. |
| # |
| # The mapping can take one of the following formats: |
| # |
| # 1. `argument_name` -> Python value |
| # 2. `argument_name` -> '_get_input()' (which means `argument_name` in C++ will be bound to `test_instance._get_input()`) |
| # |
| # For example: |
| # ``` |
| # def bceloss_weights_no_reduce_test(): |
| # t = torch.randn(15, 10).gt(0).double() |
| # weights = torch.rand(10) |
| # return dict( |
| # fullname='BCELoss_weights_no_reduce', |
| # constructor=wrap_functional( |
| # lambda i: F.binary_cross_entropy(i, t.type_as(i), |
| # weight=weights.type_as(i), reduction='none')), |
| # cpp_function_call='''F::binary_cross_entropy( |
| # i, t.to(i.options()), |
| # F::BinaryCrossEntropyFuncOptions() |
| # .weight(weights.to(i.options())) |
| # .reduction(torch::kNone))''', |
| # input_fn=lambda: torch.rand(15, 10).clamp_(2.8e-2, 1 - 2.8e-2), |
| # cpp_var_map={'i': '_get_input()', 't': t, 'weights': weights}, |
| # reference_fn=lambda i, p, m: -(t * i.log() + (1 - t) * (1 - i).log()) * weights, |
| # ) |
| # ``` |
| def compute_arg_dict(test_params_dict, test_instance): |
| arg_dict = { |
| "input": [], |
| "target": [], |
| "extra_args": [], |
| "other": [], |
| } |
| |
| def put_args_into_arg_dict(arg_type, arg_type_prefix, args): |
| for i, arg in enumerate(args): |
| arg_dict[arg_type].append(CppArg(name=arg_type_prefix + str(i), value=arg)) |
| |
| put_args_into_arg_dict("input", "i", convert_to_list(test_instance._get_input())) |
| if is_criterion_test(test_instance): |
| put_args_into_arg_dict( |
| "target", "t", convert_to_list(test_instance._get_target()) |
| ) |
| if test_instance.extra_args: |
| put_args_into_arg_dict( |
| "extra_args", "e", convert_to_list(test_instance.extra_args) |
| ) |
| |
| cpp_var_map = test_params_dict.get("cpp_var_map", {}) |
| for arg_name, arg_value in cpp_var_map.items(): |
| if isinstance(arg_value, str): |
| if arg_value == "_get_input()": |
| arg_dict["other"].append( |
| CppArg(name=arg_name, value=test_instance._get_input()) |
| ) |
| else: |
| raise RuntimeError( |
| f"`{arg_name}` has unsupported string value: {arg_value}" |
| ) |
| elif isinstance(arg_value, torch.Tensor): |
| arg_dict["other"].append(CppArg(name=arg_name, value=arg_value)) |
| else: |
| raise RuntimeError(f"`{arg_name}` has unsupported value: {arg_value}") |
| |
| return arg_dict |
| |
| |
| def decorate_test_fn(test_fn, test_cuda, has_impl_parity, device): |
| if device == "cuda": |
| test_fn = unittest.skipIf(not TEST_CUDA, "CUDA unavailable")(test_fn) |
| test_fn = unittest.skipIf(not test_cuda, "Excluded from CUDA tests")(test_fn) |
| |
| # If `Implementation Parity` entry in parity table for this module is `No`, |
| # or `has_parity` entry in test params dict is `False`, we mark the test as |
| # expected failure. |
| if not has_impl_parity: |
| test_fn = unittest.expectedFailure(test_fn) |
| |
| return test_fn |
| |
| |
| MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE = """ |
| What should I do when C++ API parity test is failing? |
| |
| - If you are changing the implementation of an existing `torch.nn` module / `torch.nn.functional` function: |
| Answer: Ideally you should also change the C++ API implementation for that module / function |
| (you can start by searching for the module / function name in `torch/csrc/api/` folder). |
| |
| - If you are adding a new test for an existing `torch.nn` module / `torch.nn.functional` function: |
| Answer: Ideally you should fix the C++ API implementation for that module / function |
| to exactly match the Python API implementation (you can start by searching for the module / |
| function name in `torch/csrc/api/` folder). |
| |
| - If you are adding a test for a *new* `torch.nn` module / `torch.nn.functional` function: |
| Answer: Ideally you should add the corresponding C++ API implementation for that module / function, |
| and it should exactly match the Python API implementation. (We have done a large effort on this |
| which is tracked at https://github.com/pytorch/pytorch/issues/25883.) |
| |
| However, if any of the above is proven to be too complicated, you can just add |
| `test_cpp_api_parity=False` to any failing test in `torch/testing/_internal/common_nn.py`, |
| and the C++ API parity test will be skipped accordingly. Note that you should |
| also file an issue when you do this. |
| |
| For more details on how to add a C++ API parity test, please see: |
| NOTE [How to check NN module / functional API parity between Python and C++ frontends] |
| """ |
| |
| |
| def generate_error_msg(name, cpp_value, python_value): |
| return ( |
| f"Parity test failed: {name} in C++ has value: {cpp_value}, " |
| f"which does not match the corresponding value in Python: {python_value}.\n{MESSAGE_HOW_TO_FIX_CPP_PARITY_TEST_FAILURE}" |
| ) |
| |
| |
| def try_remove_folder(folder_path): |
| if os.path.exists(folder_path): |
| # Don't block the process if this fails, but show the error message as warning. |
| try: |
| shutil.rmtree(folder_path) |
| except Exception as e: |
| warnings.warn( |
| f"Non-blocking folder removal fails with the following error:\n{str(e)}" |
| ) |