blob: 1c31f64d2e0a2e54e1324bbab237238f0f7047d9 [file] [log] [blame]
"""
PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes
with test_sym_bool)
"""
# Owner(s): ["oncall: export"]
import copy
import io
import tempfile
import unittest
import zipfile
from pathlib import Path
import torch
import torch._dynamo as torchdynamo
import torch.export._trace
import torch.utils._pytree as pytree
from torch._export.db.case import ExportCase, SupportLevel
from torch._export.db.examples import all_examples
from torch._export.serde.serialize import (
canonicalize,
deserialize,
ExportedProgramDeserializer,
ExportedProgramSerializer,
serialize,
SerializeError,
)
from torch._higher_order_ops.torchbind import enable_torchbind_tracing
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch.export import Dim, export, load, save
from torch.fx.experimental.symbolic_shapes import is_concrete_int, ValueRanges
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
run_tests,
TemporaryFileName,
TestCase,
)
from torch.testing._internal.torchbind_impls import init_torchbind_implementations
def get_filtered_export_db_tests():
return [
(name, case)
for name, case in all_examples().items()
if case.support_level == SupportLevel.SUPPORTED
]
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSerialize(TestCase):
def test_export_with_extension_op_serialization(self):
class TestModule(torch.nn.Module):
def forward(self, x):
return x + x
class FooExtensionOp:
def __hash__(self):
return 0
def __eq__(self, other):
return type(other) == type(self)
def __call__(self, *args, **kwargs):
return torch.ops.aten.add.Tensor(*args, **kwargs)
@property
def __name__(self):
return "foo.my_op"
class ExtensionVerifier(torch._export.verifier.Verifier):
dialect = "FOO"
def allowed_op_types(self):
return super().allowed_op_types() + (FooExtensionOp,)
class FooExtensionHandler(torch._export.serde.serialize.ExtensionHandler):
@classmethod
def namespace(cls):
return "foo"
@classmethod
def to_op_name(cls, op):
return "my_op"
@classmethod
def from_op_name(cls, name: str):
self.assertEqual(name, "my_op")
return FooExtensionOp()
@classmethod
def op_schema(cls, op):
return torch.ops.aten.add.Tensor._schema
inp = (torch.ones(10),)
ep = export(TestModule(), inp)
# Register the custom op handler.
foo_custom_op = FooExtensionOp()
torch._export.serde.serialize.register_extension(
FooExtensionOp, FooExtensionHandler
)
new_gm = copy.deepcopy(ep.graph_module)
# Inject the custom operator.
for node in new_gm.graph.nodes:
if node.name == "add":
node.target = foo_custom_op
new_ep = ep._update(new_gm, ep.graph_signature, verifiers=[ExtensionVerifier])
serialized = serialize(new_ep)
deserialized = deserialize(serialized)
self.assertEqual(
len(
deserialized.graph.find_nodes(op="call_function", target=foo_custom_op)
),
1,
)
def test_predispatch_export_with_autograd_op(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
with torch.enable_grad():
return x + x
inp = (torch.ones(10),)
with torch.no_grad():
from torch.export._trace import _export
ep = _export(Foo(), inp, pre_dispatch=True)
buffer = io.BytesIO()
torch.export.save(ep, buffer)
buffer.seek(0)
loaded_ep = torch.export.load(buffer)
exp_out = ep.module()(*inp)
actual_out = loaded_ep.module()(*inp)
self.assertEqual(exp_out, actual_out)
self.assertEqual(exp_out.requires_grad, actual_out.requires_grad)
def test_export_example_inputs_preserved(self):
class MyModule(torch.nn.Module):
"""A test module with that has multiple args and uses kwargs"""
def __init__(self) -> None:
super().__init__()
self.p = torch.nn.Parameter(torch.ones(2, 3))
def forward(self, x, y, use_p=False):
out = x + y
if use_p:
out += self.p
return out
model = MyModule().eval()
random_inputs = (torch.rand([2, 3]), torch.rand([2, 3]))
exp_program = torch.export.export(model, random_inputs, {"use_p": True})
output_buffer = io.BytesIO()
# Tests that example inputs are preserved when saving and loading module.
torch.export.save(exp_program, output_buffer)
loaded_model = torch.export.load(output_buffer)
# Extract the example inputs from before and after saving.
orig_args, orig_kwargs = exp_program.example_inputs
loaded_args, loaded_kwargs = loaded_model.example_inputs
# Run both modules and confirm that outputs match.
orig_out = exp_program.module()(*orig_args, **orig_kwargs)
loaded_out = loaded_model.module()(*loaded_args, **loaded_kwargs)
self.assertEqual(orig_out, loaded_out)
def test_metadata_parsing_with_layer_split(self):
# Tests that modules with more complicated layer patterns can be serialized
# and deserialized correctly.
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.SiLU(),
torch.nn.SiLU(),
)
def forward(self, x):
# Splitting layers of a sequential stack introduces commas and parens
# into metadata trace.
out_start, out_rest = self.layers[0], self.layers[1:]
h = out_start(x)
h = out_rest(h)
return h
inp = (torch.ones(10),)
# Module will only be able to roundtrip if metadata
# can be correctly parsed.
ep = export(MyModule(), inp)
buffer = io.BytesIO()
save(ep, buffer)
loaded_ep = load(buffer)
# Check that both modules run to confirm load was successful.
exp_out = ep.module()(*inp)
actual_out = loaded_ep.module()(*inp)
self.assertEqual(exp_out, actual_out)
def test_serialize_constant_outputs(self):
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
# Along with tensor output, return Nonetype
# and constant. Although these outputs aren't
# very useful, they do show up in graphs.
return x + 1, None, 1024
# Check that module can be roundtripped, thereby confirming proper deserialization.
inp = (torch.ones(10),)
ep = export(MyModule(), inp)
buffer = io.BytesIO()
save(ep, buffer)
loaded_ep = load(buffer)
exp_out = ep.module()(*inp)
actual_out = loaded_ep.module()(*inp)
self.assertEqual(exp_out, actual_out)
def test_serialize_multiple_returns_from_node(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x, w, b):
return torch.nn.functional.layer_norm(
x,
x.size()[1:],
weight=w,
bias=b,
eps=1e-5,
)
exported_module = export(
MyModule(),
(
torch.ones([512, 512], requires_grad=True),
torch.ones([512]),
torch.ones([512]),
),
).run_decompositions()
serialized = ExportedProgramSerializer().serialize(exported_module)
node = serialized.exported_program.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.native_layer_norm.default")
# aten::native_layer_norm returns 3 tensors
self.assertEqual(len(node.outputs), 3)
# check the names are unique
seen = set()
for output in node.outputs:
name = output.as_tensor.name
self.assertNotIn(name, seen)
seen.add(name)
def test_serialize_sym_int(self) -> None:
class DynamicShapeSimpleModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b, c) -> torch.Tensor:
d = (torch.matmul(a, b) + c) / 2
d_s0 = d.shape[0]
d_s1 = d.shape[1]
d_s3 = d_s0 * d_s1
e = d.view(d_s3)
return torch.cat([e, e])
inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
dim0_ac = torch.export.Dim("dim0_ac")
dim1_bc = torch.export.Dim("dim1_b")
dynamic_shapes = {
"a": {0: dim0_ac},
"b": {1: dim1_bc},
"c": {0: dim0_ac, 1: dim1_bc},
}
exported_module = export(
DynamicShapeSimpleModel(), inputs, dynamic_shapes=dynamic_shapes
).run_decompositions()
serialized = ExportedProgramSerializer().serialize(exported_module)
sym_size_nodes = [
node
for node in serialized.exported_program.graph_module.graph.nodes
if node.target == "torch.ops.aten.sym_size.int"
]
for node in sym_size_nodes:
self.assertEqual(node.inputs[0].name, "self")
self.assertEqual(node.inputs[1].name, "dim")
def test_serialize_list_returns(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
return torch.split(x, 2)
input = torch.arange(10.0).reshape(5, 2)
exported_module = export(MyModule(), (input,)).run_decompositions()
serialized = ExportedProgramSerializer().serialize(exported_module)
node = serialized.exported_program.graph_module.graph.nodes[-1]
# split.Tensor gets decomposed to split_with_sizes by the core ATen decomposition table
self.assertEqual(node.target, "torch.ops.aten.split_with_sizes.default")
self.assertEqual(len(node.outputs), 1)
# Input looks like:
# tensor([[0, 1],
# [2, 3],
# [4, 5],
# [6, 7],
# [8, 9]])
# Output looks like:
# (tensor([[0, 1],
# [2, 3]]),
# tensor([[4, 5],
# [6, 7]]),
# tensor([[8, 9]]))
self.assertEqual(len(node.outputs[0].as_tensors), 3)
# check the names are unique
seen = set()
for output in node.outputs[0].as_tensors:
name = output.name
self.assertNotIn(name, seen)
seen.add(name)
def test_multi_return_some_unused(self) -> None:
"""
Make sure the serialized output matches the op schema, even if some of
the arguments are never used in the graph.
"""
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
return torch.ops.aten.var_mean.correction(x, [1])[0]
exported_module = export(
MyModule(),
(torch.ones([512, 512], requires_grad=True),),
).run_decompositions()
serialized = ExportedProgramSerializer().serialize(exported_module)
node = serialized.exported_program.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.var_mean.correction")
self.assertEqual(len(node.outputs), 2)
# check the names are unique
seen = set()
for output in node.outputs:
name = output.as_tensor.name
self.assertNotIn(name, seen)
seen.add(name)
def test_rational_ranges(self) -> None:
class M(torch.nn.Module):
def forward(self, x):
return x + x
ep = torch.export.export(
M(), (torch.randn(4),), dynamic_shapes=({0: Dim("temp")},)
)
range_constraints = list(ep.range_constraints.keys())
assert len(range_constraints) == 1
symint = range_constraints[0]
import sympy
upper_range = sympy.Rational(10, 3)
lower_range = sympy.Rational(10, 6)
ep.range_constraints[symint] = ValueRanges(lower=lower_range, upper=upper_range)
serialized = ExportedProgramSerializer().serialize(ep)
self.assertEqual(serialized.exported_program.range_constraints["s0"].min_val, 2)
self.assertEqual(serialized.exported_program.range_constraints["s0"].max_val, 3)
def test_kwargs_default(self) -> None:
"""
Tests that the kwargs default values are serialized even if they are not
specified
"""
class Foo(torch.nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
values = torch.randn(3, 2)
return torch.searchsorted(x, values, side="right", right=True)
f = Foo()
x, _ = torch.sort(torch.randn(3, 4))
exported_module = export(f, (x,)).run_decompositions()
serialized = ExportedProgramSerializer().serialize(exported_module)
node = serialized.exported_program.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.searchsorted.Tensor")
self.assertEqual(len(node.inputs), 4)
self.assertEqual(node.inputs[2].name, "right")
self.assertEqual(node.inputs[2].arg.as_bool, True)
self.assertEqual(node.inputs[3].name, "side")
self.assertEqual(node.inputs[3].arg.as_string, "right")
def test_canonicalize(self) -> None:
class Module(torch.nn.Module):
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
a = y + x
b = x + y
return b + a
ep = torch.export.export(Module(), (torch.randn(3, 2), torch.randn(3, 2)))
s = ExportedProgramSerializer().serialize(ep)
c = canonicalize(s.exported_program)
g = c.graph_module.graph
self.assertLess(
g.nodes[0].inputs[0].arg.as_tensor.name,
g.nodes[1].inputs[0].arg.as_tensor.name,
)
def test_int_list(self) -> None:
class M(torch.nn.Module):
def forward(self, x):
return torch.ops.aten.sum.dim_IntList(x, [])
ep = torch.export.export(M(), (torch.randn(3, 2),))
serialized = ExportedProgramSerializer().serialize(ep)
for node in serialized.exported_program.graph_module.graph.nodes:
if "aten.sum.dim_IntList" in node.target:
self.assertEqual(node.inputs[1].arg.type, "as_ints")
@unittest.skipIf(IS_WINDOWS, "Windows not supported for this test")
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestDeserialize(TestCase):
def setUp(self):
super().setUp()
init_torchbind_implementations()
def _check_graph_nodes(self, gm1, gm2, _check_meta=True):
# TODO: The _check_meta flag bypasses checking for
# source_fn/nn_module_stack as there is an issue with
# roundtripping the source_fn value on torch.ops.map nodes
# original source_fn: <functorch.experimental._map.MapWrapper object at 0x7f80a0549930>
# deserialized source_fn: 'functorch.experimental._map.map'
self.assertEqual(len(gm1.graph.nodes), len(gm2.graph.nodes))
for node1, node2 in zip(gm1.graph.nodes, gm2.graph.nodes):
self.assertEqual(node1.op, node2.op)
if node1.op == "call_function":
# Check "val" metadata
val1 = node1.meta.get("val", None)
val2 = node2.meta.get("val", None)
if val1 is None or val2 is None:
# Either both are None
self.assertEqual(val1, val2)
elif isinstance(val1, FakeTensor) and isinstance(val2, FakeTensor):
# Or both are fake tensors with the same shape/dtype
self.assertEqual(len(val1.shape), len(val2.shape))
for s1, s2 in zip(val1.shape, val2.shape):
if is_concrete_int(s1) and is_concrete_int(s2):
self.assertEqual(s1, s2)
else:
self.assertEqual(str(s1), str(s2))
self.assertEqual(val1.dtype, val2.dtype)
elif isinstance(val1, (list, tuple)) and isinstance(
val2, (list, tuple)
):
# Or both are fake tensors lists with one element and with the
# same shape/dtype
for v1, v2 in zip(
pytree.tree_leaves(val1), pytree.tree_leaves(val2)
):
if isinstance(v1, FakeTensor):
self.assertEqual(v1.shape, v2.shape)
self.assertEqual(v1.dtype, v2.dtype)
else:
# For expressions like 's0 < 10' can only compare through string
self.assertEqual(str(val1), str(val2))
# Check "stack_trace" metadata
self.assertEqual(
node1.meta.get("stack_trace", None),
node2.meta.get("stack_trace", None),
)
if node1.target == torch.ops.higher_order.cond:
true_graph1 = getattr(gm1, node1.args[1].target)
true_graph2 = getattr(gm2, node2.args[1].target)
self._check_graph_nodes(true_graph1, true_graph2)
false_graph1 = getattr(gm1, node1.args[2].target)
false_graph2 = getattr(gm2, node2.args[2].target)
self._check_graph_nodes(false_graph1, false_graph2)
elif node1.target == torch.ops.higher_order.map_impl:
map_graph1 = getattr(gm1, node1.args[0].target)
map_graph2 = getattr(gm2, node2.args[0].target)
self._check_graph_nodes(map_graph1, map_graph2, False)
if _check_meta and node1.op not in ("get_attr", "placeholder", "output"):
# Check "nn_module_stack" metadata
self.assertEqual(
node1.meta.get("nn_module_stack", None),
node2.meta.get("nn_module_stack", None),
)
# Check "source_fn_stack" metadata
self.assertEqual(
node1.meta.get("source_fn_stack", None),
node2.meta.get("source_fn_stack", None),
)
def check_graph(
self,
fn,
inputs,
dynamic_shapes=None,
_check_meta=True,
use_pre_dispatch=True,
strict=True,
) -> None:
"""Export a graph, serialize it, deserialize it, and compare the results."""
def _deepcopy_inputs(inputs):
# copy.deepcopy(deepcopy) can fail if tensor inputs have attribute (i.e. __dict__).
# we remove __dict__ when deepcopying.
dict_mapping = dict()
inputs_clone = ()
for idx, i in enumerate(inputs):
if isinstance(i, torch.Tensor) and hasattr(inputs[0], "__dict__"):
dict_mapping[idx] = i.__dict__
i.__dict__ = {}
inputs_clone += (copy.deepcopy(i),)
# Add __dict__ back.
for k, v in dict_mapping.items():
inputs[k].__dict__ = v
inputs_clone[k].__dict__ = v
return inputs_clone
def _check_graph(pre_dispatch):
if pre_dispatch:
ep = torch.export._trace._export(
fn,
_deepcopy_inputs(inputs),
{},
dynamic_shapes=dynamic_shapes,
pre_dispatch=True,
strict=strict,
)
else:
ep = torch.export.export(
fn,
_deepcopy_inputs(inputs),
{},
dynamic_shapes=dynamic_shapes,
strict=strict,
)
ep.graph.eliminate_dead_code()
serialized_artifact = serialize(ep, opset_version={"aten": 0})
deserialized_ep = deserialize(
serialized_artifact, expected_opset_version={"aten": 0}
)
deserialized_ep.graph.eliminate_dead_code()
orig_outputs = ep.module()(*_deepcopy_inputs(inputs))
loaded_outputs = deserialized_ep.module()(*_deepcopy_inputs(inputs))
flat_orig_outputs = pytree.tree_leaves(orig_outputs)
flat_loaded_outputs = pytree.tree_leaves(loaded_outputs)
for orig, loaded in zip(flat_orig_outputs, flat_loaded_outputs):
self.assertEqual(type(orig), type(loaded))
if isinstance(orig, torch.Tensor):
if orig.is_meta:
self.assertEqual(orig, loaded)
else:
self.assertTrue(torch.allclose(orig, loaded))
else:
self.assertEqual(orig, loaded)
self._check_graph_nodes(
ep.graph_module, deserialized_ep.graph_module, _check_meta
)
if use_pre_dispatch:
_check_graph(pre_dispatch=True)
_check_graph(pre_dispatch=False)
else:
_check_graph(pre_dispatch=False)
def test_optional_tuple(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo",
"(Tensor a, Tensor b, Tensor? c) -> (Tensor, Tensor?)",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo", "cpu", lib=lib)
@torch.library.impl_abstract("mylib::foo")
def foo_impl(a, b, c):
res2 = None
if c is not None:
res2 = c + a + b
return a + b, res2
class M(torch.nn.Module):
def forward(self, a, b, c):
return torch.ops.mylib.foo(a, b, c)
self.check_graph(M(), (torch.randn(3), torch.randn(3), torch.randn(3)))
def test_auto_functionalize(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo1",
"(Tensor(a!) x, Tensor[] y, Tensor(b!) z, SymInt w, Tensor n) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
torch.library.define(
"mylib::foo2",
"(Tensor(a!) x, Tensor[] y, Tensor(b!) z, SymInt w, Tensor n) -> (Tensor, Tensor)",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
torch.library.define(
"mylib::foo3",
"(Tensor(a!) x, Tensor[] y, Tensor(b!) z, SymInt w, Tensor n) -> ()",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo1", "cpu", lib=lib)
@torch.library.impl_abstract("mylib::foo1")
def foo1_impl(x, y, z, w, n):
x.add_(y[0] + w)
z.add_(y[1] + n)
return n + n
@torch.library.impl("mylib::foo2", "cpu", lib=lib)
@torch.library.impl_abstract("mylib::foo2")
def foo2_impl(x, y, z, w, n):
x.add_(y[0] + w)
z.add_(y[1] + n)
return (n + n, n * n)
@torch.library.impl("mylib::foo3", "cpu", lib=lib)
@torch.library.impl_abstract("mylib::foo3")
def foo3_impl(x, y, z, w, n):
x.add_(y[0] + w)
z.add_(y[1] + n)
return
class M(torch.nn.Module):
def forward(self, x, y, z, n):
n = torch.ops.mylib.foo1(x, y, z, 2, n)
torch.ops.mylib.foo3(x, y, z, 2, n)
return torch.ops.mylib.foo2(x, y, z, 2, n)
x = torch.randn(3)
y = (torch.randn(3), torch.randn(3))
z = torch.randn(3)
n = torch.randn(3)
orig_args = (x, y, z, n)
# TODO Auto_functionalize is not supported on pre_dispatch IR
self.check_graph(M(), orig_args, use_pre_dispatch=False)
def test_multi_return(self) -> None:
"""
Test multiple return from a single node (ex. layer_norm has 2 outputs)
"""
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x, w, b):
return torch.nn.functional.layer_norm(
x,
x.size()[1:],
weight=w,
bias=b,
eps=1e-5,
)
inputs = (
torch.ones([512, 512], requires_grad=True),
torch.ones([512]),
torch.ones([512]),
)
self.check_graph(MyModule(), inputs)
def test_basic(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
x = x + x
x = x * x
x = x / x
return x, x.clone()
inputs = (torch.ones([512], requires_grad=True),)
self.check_graph(MyModule(), inputs)
def test_dynamic(self) -> None:
class DynamicShapeSimpleModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, a, b, c) -> torch.Tensor:
d = (torch.matmul(a, b) + c) / 2
d_s0 = d.shape[0]
d_s1 = d.shape[1]
d_s3 = d_s0 * d_s1
e = d.view(d_s3)
return torch.cat([e, e])
inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
dim0_ac = torch.export.Dim("dim0_ac")
dynamic_shapes = {"a": {0: dim0_ac}, "b": None, "c": {0: dim0_ac}}
self.check_graph(DynamicShapeSimpleModel(), inputs, dynamic_shapes)
def test_sym_bool(self):
class Module(torch.nn.Module):
def forward(self, x, y):
assert x.size(0) in y
return x + y
f = Module()
self.check_graph(f, (torch.ones(1), torch.ones(3)))
def test_shape(self):
class Foo(torch.nn.Module):
def forward(self, x):
z, y = x.size()
return z + y + x[0], z
inputs = (torch.ones(2, 3),)
dim0_x, dim1_x = torch.export.dims("dim0_x", "dim1_x")
dynamic_shapes = {"x": (dim0_x, dim1_x)}
self.check_graph(Foo(), inputs, dynamic_shapes)
def test_module(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = torch.nn.Linear(3, 3)
self.relu = torch.nn.ReLU()
self.linear2 = torch.nn.Linear(3, 5)
def forward(self, x):
x = self.linear1(x)
x = self.linear1(x)
x = torch.nn.functional.relu(x)
x = self.linear2(x)
return x
inputs = (torch.randn(3, 3),)
self.check_graph(M(), inputs)
def test_module_meta(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.p = torch.nn.Parameter(torch.ones(3, 3))
def forward(self, x):
return self.p + x
with torch.device("meta"):
mod = M()
inputs = (torch.randn(3, 3, device="meta"),)
self.check_graph(mod, inputs)
def test_cond(self):
from functorch.experimental.control_flow import cond
inputs = torch.ones(4, 3), torch.zeros(4, 3)
class M(torch.nn.Module):
def forward(self, x, y):
def t(x, y):
return x + y
def f(x, y):
return x - y
return cond(x[0][0] > 4, t, f, [x, y])
self.check_graph(M(), inputs)
def test_map(self):
from functorch.experimental import control_flow
def f(x, y):
return x + y
class Module(torch.nn.Module):
def forward(self, xs, y):
return control_flow.map(f, xs, y)
g = Module()
inputs = (torch.ones(3, 2, 2), torch.ones(2))
self.check_graph(g, inputs, _check_meta=False)
def test_tensor_tensor_list(self):
with torch.library._scoped_library("_export", "FRAGMENT") as lib:
lib.define(
"_test_tensor_tensor_list_output(Tensor x, Tensor y) -> (Tensor, Tensor[])",
tags=torch.Tag.pt2_compliant_tag,
)
def _test_tensor_tensor_list_output(x, y):
return y, [x]
lib.impl(
"_test_tensor_tensor_list_output",
_test_tensor_tensor_list_output,
"CPU",
)
lib.impl(
"_test_tensor_tensor_list_output",
_test_tensor_tensor_list_output,
"Meta",
)
class M(torch.nn.Module):
def forward(self, x, y):
a, b = torch.ops._export._test_tensor_tensor_list_output.default(
x, y
)
return a + b[0]
self.check_graph(M(), (torch.rand(3, 2), torch.rand(3, 2)))
def test_list_of_optional_tensors(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x, y, z):
indices = [None, None, torch.tensor([1, 3, 5, 7])]
indexed = torch.ops.aten.index.Tensor(x + y, indices)
return indexed + z
inputs = (torch.rand(8, 8, 8), torch.rand(8, 8, 8), torch.rand(8, 8, 4))
self.check_graph(MyModule(), inputs)
def test_sym_ite(self):
class Foo(torch.nn.Module):
def forward(self, x):
b = x.shape[0] == 5
ret = torch.sym_ite(b, x.shape[0], x.shape[1])
return ret
dynamic_shapes = {"x": {0: Dim("dim0"), 1: Dim("dim1")}}
self.check_graph(Foo(), (torch.ones(4, 5),), dynamic_shapes=dynamic_shapes)
def test_multiple_getitem(self):
class M(torch.nn.Module):
def forward(self, x):
a, b = torch.topk(x, 2)
a = a * 2
return a, b
ep = torch.export.export(M(), (torch.ones(3),))
# insert another getitem node
for node in ep.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.mul.Tensor:
getitem_0 = node.args[0]
with ep.graph.inserting_before(getitem_0):
getitem_copy = ep.graph.node_copy(getitem_0)
mul_node = ep.graph.call_function(
torch.ops.aten.mul.Tensor, (getitem_copy, 2)
)
mul_node.meta = copy.copy(getitem_copy.meta)
node.args = (getitem_0, mul_node)
deserialized_ep = deserialize(serialize(ep))
inp = (torch.randn(3),)
orig_res = ep.module()(*inp)
res = deserialized_ep.module()(*inp)
self.assertTrue(torch.allclose(orig_res[0], res[0]))
self.assertTrue(torch.allclose(orig_res[1], res[1]))
# The deserialized graph should have deduped getitem calls
self.assertExpectedInline(
deserialized_ep.graph_module.code.strip("\n"),
"""\
def forward(self, x):
topk_default = torch.ops.aten.topk.default(x, 2); x = None
getitem = topk_default[0]
getitem_1 = topk_default[1]; topk_default = None
mul_tensor = torch.ops.aten.mul.Tensor(getitem, 2)
mul = torch.ops.aten.mul.Tensor(getitem, mul_tensor); getitem = mul_tensor = None
return (mul, getitem_1)
""",
)
@parametrize(
"name,case",
get_filtered_export_db_tests(),
name_fn=lambda name, case: f"case_{name}",
)
def test_exportdb_supported(self, name: str, case: ExportCase) -> None:
model = case.model
_check_meta = "map" not in name
self.check_graph(model, case.example_args, _check_meta=_check_meta)
def test_constraints(self):
class Module(torch.nn.Module):
def forward(self, x, y):
n = x.item()
torch._check_is_size(n)
return y.sum() + torch.ones(n, 5).sum()
f = Module()
self.check_graph(f, (torch.tensor(3), torch.randn(4, 5)))
def test_get_attr(self) -> None:
class Module(torch.nn.Module):
def forward(self, x):
return x + torch.tensor(3)
f = Module()
self.check_graph(f, (torch.tensor(3),))
def test_get_attr_list(self) -> None:
class Module(torch.nn.Module):
def forward(self, x):
return torch.cat([x, torch.tensor([1, 1])])
f = Module()
self.check_graph(f, (torch.tensor([1, 1]),))
@unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
def test_device(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv = torch.nn.Conv2d(3, 16, 3, stride=1, bias=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
conv = self.conv(x)
relu = self.relu(conv)
mul = relu * 0.5
return mul
inp = torch.randn((1, 3, 224, 224), dtype=torch.float).to("cuda")
model = MyModule().eval().cuda()
self.check_graph(model, (inp,))
def test_custom_obj_tuple_out(self):
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
a = torch.ops._TorchScriptTesting.takes_foo_tuple_return(self.attr, x)
y = a[0] + a[1]
b = torch.ops._TorchScriptTesting.takes_foo(self.attr, y)
return x + b
m = MyModule()
inputs = (torch.ones(2, 3),)
self.check_graph(m, inputs, strict=False)
def test_custom_obj(self):
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
a = torch.ops._TorchScriptTesting.takes_foo(self.attr, x)
b = torch.ops._TorchScriptTesting.takes_foo(self.attr, a)
return x + b
m = MyModule()
inputs = (torch.ones(2, 3),)
self.check_graph(m, inputs, strict=False)
def test_custom_obj_list_out(self):
class MyModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.attr = torch.classes._TorchScriptTesting._Foo(10, 20)
def forward(self, x):
a = torch.ops._TorchScriptTesting.takes_foo_list_return(self.attr, x)
y = a[0] + a[1] + a[2]
b = torch.ops._TorchScriptTesting.takes_foo(self.attr, y)
return x + b
m = MyModule()
inputs = (torch.ones(2, 3),)
self.check_graph(m, inputs, strict=False)
def test_export_no_inputs(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.p = torch.ones(3, 3)
def forward(self):
return self.p * self.p
ep = torch.export.export(M(), ())
ep._example_inputs = None
roundtrip_ep = deserialize(serialize(ep))
self.assertTrue(torch.allclose(ep.module()(), roundtrip_ep.module()()))
instantiate_parametrized_tests(TestDeserialize)
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSchemaVersioning(TestCase):
def test_error(self):
class Module(torch.nn.Module):
def forward(self, x):
return x + x
f = Module()
ep = export(f, (torch.randn(1, 3),))
serialized_program = ExportedProgramSerializer().serialize(ep)
serialized_program.exported_program.schema_version.major = -1
with self.assertRaisesRegex(
SerializeError, r"Serialized schema version .* does not match our current"
):
ExportedProgramDeserializer().deserialize(
serialized_program.exported_program,
serialized_program.state_dict,
serialized_program.constants,
serialized_program.example_inputs,
)
# We didn't set up kwargs input yet
unittest.expectedFailure(TestDeserialize.test_exportdb_supported_case_fn_with_kwargs)
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSaveLoad(TestCase):
def test_save_buffer(self):
inp = (torch.tensor([0.1, 0.1]),)
class Module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, x):
x = x + 1
y = x.t()
y = y.relu()
y = self.linear(y)
return y
ep = export(Module(), inp)
buffer = io.BytesIO()
save(ep, buffer)
buffer.seek(0)
loaded_ep = load(buffer)
self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))
def test_save_file(self):
class Foo(torch.nn.Module):
def forward(self, x):
return x * x
f = Foo()
inp = (torch.randn(2, 2),)
ep = export(f, inp)
with tempfile.NamedTemporaryFile() as f:
save(ep, f)
f.seek(0)
loaded_ep = load(f)
self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))
def test_save_path(self):
class Foo(torch.nn.Module):
def forward(self, x, y):
return x + y
f = Foo()
inp = (torch.tensor([6]), torch.tensor([7]))
ep = export(f, inp)
with TemporaryFileName() as fname:
path = Path(fname)
save(ep, path)
loaded_ep = load(path)
self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))
def test_save_extra(self):
inp = (torch.tensor([0.1, 0.1]),)
class Foo(torch.nn.Module):
def forward(self, x):
return x * x + x
f = Foo()
ep = export(f, inp)
buffer = io.BytesIO()
save(ep, buffer, extra_files={"extra.txt": "moo"})
buffer.seek(0)
extra_files = {"extra.txt": ""}
loaded_ep = load(buffer, extra_files=extra_files)
self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))
self.assertEqual(extra_files["extra.txt"], "moo")
def test_version_error(self):
class Foo(torch.nn.Module):
def forward(self, x):
return x + x
f = Foo()
ep = export(f, (torch.randn(1, 3),))
with tempfile.NamedTemporaryFile() as f:
save(ep, f)
f.seek(0)
# Modify the version
with zipfile.ZipFile(f, "a") as zipf:
zipf.writestr("version", "-1.1")
with self.assertRaisesRegex(
RuntimeError, r"Serialized version .* does not match our current"
):
f.seek(0)
load(f)
def test_save_constants(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.a = torch.tensor(3)
def forward(self, x):
list_tensor = [torch.tensor(3), torch.tensor(4)]
return x + self.a + list_tensor[0] + list_tensor[1]
ep = export(Foo(), (torch.tensor(1),))
buffer = io.BytesIO()
save(ep, buffer)
buffer.seek(0)
loaded_ep = load(buffer)
inp = (torch.tensor(1),)
self.assertTrue(torch.allclose(ep.module()(*inp), loaded_ep.module()(*inp)))
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSerializeCustomClass(TestCase):
def setUp(self):
super().setUp()
init_torchbind_implementations()
def test_custom_class(self):
custom_obj = torch.classes._TorchScriptTesting._PickleTester([3, 4])
class Foo(torch.nn.Module):
def forward(self, x):
return x + x
f = Foo()
inputs = (torch.zeros(4, 4),)
ep = export(f, inputs)
# Replace one of the values with an instance of our custom class
for node in ep.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
with ep.graph.inserting_before(node):
custom_node = ep.graph.call_function(
torch.ops._TorchScriptTesting.take_an_instance.default,
(custom_obj,),
)
custom_node.meta["val"] = torch.ones(4, 4)
custom_node.meta["torch_fn"] = (
"take_an_instance",
"take_an_instance",
)
arg0, _ = node.args
node.args = (arg0, custom_node)
serialized_vals = serialize(ep)
ep_str = serialized_vals.exported_program.decode("utf-8")
assert "class_fqn" in ep_str
assert custom_obj._type().qualified_name() in ep_str
deserialized_ep = deserialize(serialized_vals)
for node in deserialized_ep.graph.nodes:
if (
node.op == "call_function"
and node.target
== torch.ops._TorchScriptTesting.take_an_instance.default
):
arg = node.args[0]
self.assertTrue(isinstance(arg, torch._C.ScriptObject))
self.assertEqual(arg._type(), custom_obj._type())
self.assertEqual(arg.__getstate__(), custom_obj.__getstate__())
self.assertEqual(arg.top(), 7)
def test_custom_class_containing_fake_tensor(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.custom_obj = torch.classes._TorchScriptTesting._ContainsTensor(
torch.rand(2, 3)
)
def forward(self, x):
return x + self.custom_obj.get()
with FakeTensorMode():
f = Foo()
inputs = (torch.zeros(2, 3),)
with enable_torchbind_tracing():
ep = export(f, inputs, strict=False)
serialized_vals = serialize(ep)
ep = deserialize(serialized_vals)
self.assertTrue(isinstance(ep.constants["custom_obj"].get(), FakeTensor))
def test_custom_tag_metadata_serialization(self):
class Foo(torch.nn.Module):
def forward(self, x):
return x + x
f = Foo()
inputs = (torch.zeros(4, 4),)
ep = export(f, inputs)
new_gm = copy.deepcopy(ep.graph_module)
new_gm.meta["custom"] = {}
new_gm.meta["custom"]["f"] = "bar"
for node in new_gm.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
node.meta["custom"] = {}
node.meta["custom"]["quantization_tag"] = "foo"
new_ep = ep._update(new_gm, ep.graph_signature)
serialized_vals = serialize(new_ep)
new_ep = deserialize(serialized_vals)
self.assertEqual(new_ep.graph_module.meta["custom"]["f"], "bar")
counter = 0
for node in new_ep.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
counter += 1
self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
self.assertEqual(counter, 1)
def test_custom_tag_metadata_decomp(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, x):
return self.linear(x)
f = Foo()
inputs = (torch.ones(2, 2),)
ep = export(f, inputs)
new_gm = copy.deepcopy(ep.graph_module)
new_gm.meta["custom"] = {}
new_gm.meta["custom"]["f"] = "bar"
counter = 0
for node in new_gm.graph.nodes:
if (
node.op == "call_function"
and node.target == torch.ops.aten.linear.default
):
counter += 1
node.meta["custom"] = {}
node.meta["custom"]["quantization_tag"] = "foo"
self.assertEqual(counter, 1)
new_ep = ep._update(new_gm, ep.graph_signature)
new_ep = new_ep.run_decompositions()
self.assertEqual(new_ep.graph_module.meta["custom"]["f"], "bar")
counter = 0
for node in new_ep.graph.nodes:
if node.op == "call_function":
counter += 1
self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
self.assertTrue(counter > 1)
# TODO For some reason, this doesn't work on Windows ONLY.
# def test_custom_tag_metadata_reexport(self):
# class Foo(torch.nn.Module):
# def forward(self, x):
# return x + x
#
# f = Foo()
#
# inputs = (torch.zeros(4, 4),)
# ep = export(f, inputs)
#
# new_gm = copy.deepcopy(ep.graph_module)
# new_gm.meta["custom"] = {}
# new_gm.meta["custom"]["f"] = "bar"
#
# for node in new_gm.graph.nodes:
# if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
# node.meta["custom"] = {}
# node.meta["custom"]["quantization_tag"] = "foo"
#
# new_ep = ep._update(new_gm, ep.graph_signature)
# new_ep = torch.export.export(new_ep.module(), inputs)
#
# self.assertEqual(new_ep.graph_module.meta["custom"]["f"], "bar")
# counter = 0
# for node in new_ep.graph.nodes:
# if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
# counter += 1
# self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
# self.assertEqual(counter, 1)
def test_custom_tag_metadata_copy(self):
class Foo(torch.nn.Module):
def forward(self, x):
return x + x
f = Foo()
inputs = (torch.zeros(4, 4),)
ep = export(f, inputs)
new_gm = copy.deepcopy(ep.graph_module)
new_gm.meta["custom"] = {}
new_gm.meta["custom"]["f"] = "bar"
for node in new_gm.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
node.meta["custom"] = {}
node.meta["custom"]["quantization_tag"] = "foo"
new_gm = copy.deepcopy(new_gm)
self.assertEqual(new_gm.meta["custom"]["f"], "bar")
counter = 0
for node in new_gm.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
counter += 1
self.assertTrue(node.meta["custom"]["quantization_tag"] == "foo")
self.assertEqual(counter, 1)
if __name__ == "__main__":
run_tests()