blob: f890c35e15a11a93e1a869aa61d8c8d1b98b1e61 [file] [log] [blame]
# Owner(s): ["module: cuda"]
import multiprocessing
import os
import sys
import unittest
from unittest.mock import patch
import torch
# NOTE: Each of the tests in this module need to be run in a brand new process to ensure CUDA is uninitialized
# prior to test initiation.
with patch.dict(os.environ, {"PYTORCH_NVML_BASED_CUDA_CHECK": "1"}):
# Before executing the desired tests, we need to disable CUDA initialization and fork_handler additions that would
# otherwise be triggered by the `torch.testing._internal.common_utils` module import
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_JETSON,
IS_WINDOWS,
NoTest,
parametrize,
run_tests,
TestCase,
)
# NOTE: Because `remove_device_and_dtype_suffixes` initializes CUDA context (triggered via the import of
# `torch.testing._internal.common_device_type` which imports `torch.testing._internal.common_cuda`) we need
# to bypass that method here which should be irrelevant to the parameterized tests in this module.
torch.testing._internal.common_utils.remove_device_and_dtype_suffixes = lambda x: x
TEST_CUDA = torch.cuda.is_available()
if not TEST_CUDA:
print("CUDA not available, skipping tests", file=sys.stderr)
TestCase = NoTest # type: ignore[misc, assignment] # noqa: F811
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestExtendedCUDAIsAvail(TestCase):
SUBPROCESS_REMINDER_MSG = (
"\n REMINDER: Tests defined in test_cuda_nvml_based_avail.py must be run in a process "
"where there CUDA Driver API has not been initialized. Before further debugging, ensure you are either using "
"run_test.py or have added --subprocess to run each test in a different subprocess."
)
def setUp(self):
super().setUp()
torch.cuda._cached_device_count = (
None # clear the lru_cache on this method before our test
)
@staticmethod
def in_bad_fork_test() -> bool:
_ = torch.cuda.is_available()
return torch.cuda._is_in_bad_fork()
# These tests validate the behavior and activation of the weaker, NVML-based, user-requested
# `torch.cuda.is_available()` assessment. The NVML-based assessment should be attempted when
# `PYTORCH_NVML_BASED_CUDA_CHECK` is set to 1, reverting to the default CUDA Runtime API check otherwise.
# If the NVML-based assessment is attempted but fails, the CUDA Runtime API check should be executed
@unittest.skipIf(IS_WINDOWS, "Needs fork")
@parametrize("nvml_avail", [True, False])
@parametrize("avoid_init", ["1", "0", None])
def test_cuda_is_available(self, avoid_init, nvml_avail):
if IS_JETSON and nvml_avail and avoid_init == "1":
self.skipTest("Not working for Jetson")
patch_env = {"PYTORCH_NVML_BASED_CUDA_CHECK": avoid_init} if avoid_init else {}
with patch.dict(os.environ, **patch_env):
if nvml_avail:
_ = torch.cuda.is_available()
else:
with patch.object(torch.cuda, "_device_count_nvml", return_value=-1):
_ = torch.cuda.is_available()
with multiprocessing.get_context("fork").Pool(1) as pool:
in_bad_fork = pool.apply(TestExtendedCUDAIsAvail.in_bad_fork_test)
if os.getenv("PYTORCH_NVML_BASED_CUDA_CHECK") == "1" and nvml_avail:
self.assertFalse(
in_bad_fork, TestExtendedCUDAIsAvail.SUBPROCESS_REMINDER_MSG
)
else:
assert in_bad_fork
@torch.testing._internal.common_utils.markDynamoStrictTest
class TestVisibleDeviceParses(TestCase):
def test_env_var_parsing(self):
def _parse_visible_devices(val):
from torch.cuda import _parse_visible_devices as _pvd
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": val}, clear=True):
return _pvd()
# rest of the string is ignored
self.assertEqual(_parse_visible_devices("1gpu2,2ampere"), [1, 2])
# Negatives abort parsing
self.assertEqual(_parse_visible_devices("0, 1, 2, -1, 3"), [0, 1, 2])
# Double mention of ordinal returns empty set
self.assertEqual(_parse_visible_devices("0, 1, 2, 1"), [])
# Unary pluses and minuses
self.assertEqual(_parse_visible_devices("2, +3, -0, 5"), [2, 3, 0, 5])
# Random string is used as empty set
self.assertEqual(_parse_visible_devices("one,two,3,4"), [])
# Random string is used as separator
self.assertEqual(_parse_visible_devices("4,3,two,one"), [4, 3])
# GPU ids are parsed
self.assertEqual(_parse_visible_devices("GPU-9e8d35e3"), ["GPU-9e8d35e3"])
# Ordinals are not included in GPUid set
self.assertEqual(_parse_visible_devices("GPU-123, 2"), ["GPU-123"])
# MIG ids are parsed
self.assertEqual(_parse_visible_devices("MIG-89c850dc"), ["MIG-89c850dc"])
def test_partial_uuid_resolver(self):
from torch.cuda import _transform_uuid_to_ordinals
uuids = [
"GPU-9942190a-aa31-4ff1-4aa9-c388d80f85f1",
"GPU-9e8d35e3-a134-0fdd-0e01-23811fdbd293",
"GPU-e429a63e-c61c-4795-b757-5132caeb8e70",
"GPU-eee1dfbc-0a0f-6ad8-5ff6-dc942a8b9d98",
"GPU-bbcd6503-5150-4e92-c266-97cc4390d04e",
"GPU-472ea263-58d7-410d-cc82-f7fdece5bd28",
"GPU-e56257c4-947f-6a5b-7ec9-0f45567ccf4e",
"GPU-1c20e77d-1c1a-d9ed-fe37-18b8466a78ad",
]
self.assertEqual(_transform_uuid_to_ordinals(["GPU-9e8d35e3"], uuids), [1])
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-e4", "GPU-9e8d35e3"], uuids), [2, 1]
)
self.assertEqual(
_transform_uuid_to_ordinals("GPU-9e8d35e3,GPU-1,GPU-47".split(","), uuids),
[1, 7, 5],
)
# First invalid UUID aborts parsing
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-123", "GPU-9e8d35e3"], uuids), []
)
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-123", "GPU-47"], uuids),
[1],
)
# First ambigous UUID aborts parsing
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-e", "GPU-47"], uuids), [1]
)
# Duplicate UUIDs result in empty set
self.assertEqual(
_transform_uuid_to_ordinals(["GPU-9e8d35e3", "GPU-47", "GPU-9e8"], uuids),
[],
)
def test_ordinal_parse_visible_devices(self):
def _device_count_nvml(val):
from torch.cuda import _device_count_nvml as _dc
with patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": val}, clear=True):
return _dc()
with patch.object(torch.cuda, "_raw_device_count_nvml", return_value=2):
self.assertEqual(_device_count_nvml("1, 0"), 2)
# Ordinal out of bounds aborts parsing
self.assertEqual(_device_count_nvml("1, 5, 0"), 1)
instantiate_parametrized_tests(TestExtendedCUDAIsAvail)
if __name__ == "__main__":
run_tests()