blob: b3ccf2985169394a00b5fe55e1c5531bd5fe8ce5 [file] [log] [blame]
# Owner(s): ["module: decompositions"]
import functools
import itertools
import re
import unittest
from collections import defaultdict
from functools import partial
import torch._inductor.decomposition
import torch.autograd
from torch import Tensor
from torch._decomp import core_aten_decompositions, decomposition_table
from torch._dispatch.python import enable_python_dispatcher
from torch._ops import DispatchKey
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
onlyCUDA,
onlyNativeDeviceTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
skip,
skipOps,
xfail,
)
from torch.testing._internal.common_modules import module_db, modules
from torch.testing._internal.common_utils import (
is_iterable_of_tensors,
run_tests,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TEST_WITH_ASAN,
TEST_WITH_SLOW,
TestCase,
unMarkDynamoStrictTest,
)
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
aten = torch.ops.aten
# TODO: this isn't going to work with non-aten namespaces
def overload_to_aten_name(op):
return op._schema.name.split("::")[1]
# All operators that can have decomp tests
decomposition_names = {
overload_to_aten_name(k)
for k in decomposition_table
if isinstance(k, torch._ops.OpOverload)
}
core_decomposition_names = {
overload_to_aten_name(k)
for k in core_aten_decompositions()
if isinstance(k, torch._ops.OpOverload)
}
_decomp_test_ops = [
op
for op in op_db
if op.aten_name in decomposition_names
or op.aten_backward_name in decomposition_names
]
_decomp_test_ops_core_autograd = [
op
for op in op_db
if op.aten_name in core_decomposition_names and op.supports_autograd
]
_sdpa_op_info = [op for op in op_db if "scaled_dot_product_attention" in op.aten_name]
def diff_arg(arg, requires_grad=True):
def is_differentiable_arg(arg):
if requires_grad:
return arg.requires_grad
else:
return arg.is_floating_point() or arg.is_complex()
if is_iterable_of_tensors(arg):
if all(is_differentiable_arg(a) for a in arg):
return True
if all(not is_differentiable_arg(a) for a in arg):
return False
raise RuntimeError("NYI: The test runner can't handle this")
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
# Version of autograd.grad with some differences:
# - pytree inputs is allowed (but leaves of the pytree have to all
# be tensors)
# - if an input is not used as part of derivatives, we will return a
# zero-filled tensor for the result
def _autograd_grad(
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
):
inputs, inputs_spec = tree_flatten(inputs)
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
if grad_outputs is None:
diff_outputs = tuple(out for out in outputs if out.requires_grad)
else:
diff_grad_outputs = [
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
]
if len(diff_grad_outputs) == 0:
diff_outputs, grad_outputs = (), ()
else:
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs,
retain_graph=retain_graph,
create_graph=create_graph,
allow_unused=True,
)
result = []
grad_inputs_iter = iter(grad_inputs)
for inp in inputs:
if inp.requires_grad:
grad_input = next(grad_inputs_iter)
if grad_input is None:
result.append(torch.zeros_like(inp))
else:
result.append(grad_input)
else:
result.append(torch.zeros_like(inp))
return tree_unflatten(result, inputs_spec)
def _as_tuple(val):
if isinstance(val, tuple):
return val
return (val,)
def ref_vjp_no_create(f, *primals):
result = f(*primals)
def wrapped(cotangents):
return _autograd_grad(
_as_tuple(result),
primals,
_as_tuple(cotangents),
create_graph=False,
retain_graph=True,
)
return result, wrapped
dtype_precisions = {
torch.float16: (0.001, 1e-5),
torch.bfloat16: (0.016, 1e-4),
torch.float32: (1.3e-6, 1e-5),
torch.float64: (1e-7, 1e-7),
torch.complex32: (0.001, 1e-5),
torch.complex64: (1.3e-6, 1e-5),
torch.complex128: (1e-7, 1e-7),
}
# Returns the "default" rtol and atol for comparing scalars or
# tensors of the given dtypes.
def _getDefaultRtolAndAtol(dtype0, dtype1):
rtol = max(
dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0]
)
atol = max(
dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1]
)
return rtol, atol
def op_assert_ref(test_case, op, test_dtype, i, orig, decomp, ref, args, kwargs):
assert orig.dtype == decomp.dtype, f"{i} Operation: {op}"
if orig.numel() == 0 or decomp.numel() == 0:
assert orig.numel() == decomp.numel()
return
assert orig.shape == decomp.shape, f"{i} Operation: {op}"
tol_table = {
(torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm_backward.default): 1e-3,
(torch.bfloat16, torch.ops.aten.native_layer_norm_backward.default): 2e-2,
(torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
(torch.bfloat16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
(torch.float16, torch.ops.aten._native_batch_norm_legit.default): 1e-5,
(torch.float16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5,
(torch.bfloat16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
(torch.float16, torch.ops.aten.linalg_vector_norm.default): 1e-4,
(torch.bfloat16, torch.ops.aten.var_mean.correction): 5e-7,
(torch.float16, torch.ops.aten.var_mean.correction): 5e-7,
(torch.bfloat16, torch.ops.aten.var_mean.dim): 5e-7,
(torch.float16, torch.ops.aten.var_mean.dim): 5e-7,
(torch.float16, torch.ops.aten.nll_loss_forward.default): 1e-2,
(torch.bfloat16, torch.ops.aten.nll_loss_forward.default): 1e-1,
(torch.float16, torch.ops.aten.nll_loss2d_forward.default): 1e-2,
(torch.bfloat16, torch.ops.aten.nll_loss2d_forward.default): 2e-1,
(torch.float16, torch.ops.aten.hardswish.default): 2e-7,
(torch.bfloat16, torch.ops.aten.hardswish.default): 2e-7,
(torch.float16, torch.ops.aten.multi_margin_loss.default): 3e-2,
(torch.bfloat16, torch.ops.aten.multi_margin_loss.default): 5e-2,
(torch.float16, torch.ops.aten.multilabel_margin_loss_forward.default): 3e-2,
(torch.bfloat16, torch.ops.aten.multilabel_margin_loss_forward.default): 3e-2,
(torch.float16, torch.ops.aten.reflection_pad1d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad1d_backward.default): 5e-3,
(torch.float16, torch.ops.aten.reflection_pad2d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad2d_backward.default): 5e-3,
(torch.float16, torch.ops.aten.reflection_pad3d_backward.default): 5e-3,
(torch.bfloat16, torch.ops.aten.reflection_pad3d_backward.default): 5e-2,
# see https://github.com/pytorch/pytorch/pull/96264
(torch.float16, torch.ops.aten.mv.default): 1e-5,
(torch.bfloat16, torch.ops.aten.mv.default): 1e-5,
(torch.float16, torch.ops.aten.log_sigmoid_backward.default): 2e-5,
(torch.float16, torch.ops.aten._softmax_backward_data.default): 3e-7,
}
if ref.is_floating_point():
orig_diff = (orig - ref).abs().max()
decomp_diff = (decomp - ref).abs().max()
atol = tol_table.get((test_dtype, op), 1e-7)
if decomp_diff > orig_diff + atol:
raise RuntimeError(
f"Difference from float64 is larger with decomposition {op.__name__}"
f" than original on output {i}. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n"
f"atol = {atol}\n"
f"args = {args}\n"
f"kwargs = {kwargs}"
)
else:
test_case.assertEqual(
orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}"
)
def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs):
test_case.assertEqual(
orig.dtype,
decomp.dtype,
f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}",
)
# Before adding an entry to this table, make sure your decomposition is right :)
tol_table = {
# Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161
(torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3),
(torch.float32, torch.ops.aten.native_layer_norm_backward.default): (
1e-3,
1e-3,
),
(torch.float64, torch.ops.aten.native_layer_norm.default): (1e-6, 1e-6),
# This exceeds default tolerances only on CPU, on CUDA it's fine
(torch.float32, torch.ops.aten.grid_sampler_2d.default): (7e-6, 3e-5),
# Exceeds tolerances on CUDA, likely due to fma
(torch.float32, torch.ops.aten.mv.default): (1e-5, 3e-5),
(torch.complex64, torch.ops.aten.mv.default): (5e-5, 5e-5),
(torch.float64, torch.ops.aten.upsample_bicubic2d.vec): (1e-5, 5e-4),
(torch.float64, torch.ops.aten.upsample_bicubic2d.default): (1e-5, 5e-4),
# The decomposition is TOO correct. It computes everything in int64, so sometimes
# there's an off-by-one error. See
# https://github.com/pytorch/pytorch/issues/81996
# https://github.com/pytorch/pytorch/issues/82230
(torch.int8, torch.ops.aten.linspace.default): (0, 1),
(torch.uint8, torch.ops.aten.linspace.default): (0, 1),
(torch.int16, torch.ops.aten.linspace.default): (0, 1),
(torch.int32, torch.ops.aten.linspace.default): (0, 1),
(torch.int64, torch.ops.aten.linspace.default): (0, 1),
(torch.int8, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int16, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int32, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int64, torch.ops.aten.linspace.Tensor_Tensor): (0, 1),
(torch.int8, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int16, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int32, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int64, torch.ops.aten.linspace.Tensor_Scalar): (0, 1),
(torch.int8, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.uint8, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int16, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int32, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
(torch.int64, torch.ops.aten.linspace.Scalar_Tensor): (0, 1),
}
if (decomp.dtype, op) in tol_table:
rtol, atol = tol_table[(decomp.dtype, op)]
else:
rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype)
test_case.assertEqual(
orig,
decomp,
rtol=rtol,
atol=atol,
msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}",
)
# Given f, returns an f' such that:
# - f' takes only positional arguments
# - All arguments to f' are floating-point Tensors
# - All outputs of f' are floating-point Tensors
def normalize_op_input_output2(
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
):
flat_args, args_spec = tree_flatten(args)
diff_argnums = tuple(
i
for i, arg in enumerate(flat_args)
if diff_arg(arg, requires_grad=requires_grad)
)
assert len(diff_argnums) > 0
primals = tuple(flat_args[i] for i in diff_argnums)
@functools.wraps(f)
def wrapped(*primals):
_args = list(flat_args)
for num, arg in zip(diff_argnums, primals):
_args[num] = arg
_args = tree_unflatten(_args, args_spec)
result = f(*_args, **kwargs)
if output_process_fn_grad is not None:
result = output_process_fn_grad(result)
if isinstance(result, tuple):
# TODO We should check that the integer outputs also agree
result = tuple(
r
for r in result
if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex())
)
assert len(result) > 0
return result
return wrapped, primals
# NB: This also upcasts dtype arguments
# TODO: handle complex correctly
def upcast_tensor(x, dtype=torch.float32):
if isinstance(x, Tensor) and x.dtype.is_floating_point:
return x.to(dtype=dtype)
elif isinstance(x, torch.dtype) and x in [
torch.float16,
torch.bfloat16,
torch.float,
]:
return dtype
else:
return x
def normalize_op_input_output(f, sample, requires_grad=True):
args = tuple([sample.input] + list(sample.args))
return normalize_op_input_output2(
f,
args,
sample.kwargs,
sample.output_process_fn_grad,
requires_grad=requires_grad,
)
CROSS_REF_EXCLUDE_SET = {
# CUBLAS_STATUS_NOT_SUPPORTED when calling
# `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k,
# (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF,
# (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec,
# (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)`
("cuda", torch.bfloat16, "nn.functional.bilinear"),
# randomness
(None, None, "special.ndtr"), # aten.special_ndtr was not decomposed
(None, None, "new_empty"),
(None, None, "empty_like"),
(None, None, "empty"),
# AssertionError: False is not true : aten.item was not decomposed, saw calls for: aten._local_scalar_dense.default.
(None, None, "item"),
# It's the only in-place op without an out-of-place equivalent in the Python API
# Its OpInfo wrongly registers it as `torch.zero_(x.clone())`.
(None, None, "zero_"),
# No idea what's going on here
# In the recursive test logsumexp.default fails with args = (torch.tensor(-math.inf), [])
# in the test, but it seems to pass when tested locally and in the logsumexp test
(None, torch.float32, "masked.logsumexp"),
(None, torch.float64, "masked.logsumexp"),
# exp_vml_cpu not implemented for Half
(torch.cpu, torch.float16, "signal.windows.exponential"),
(torch.cpu, torch.float16, "signal.windows.gaussian"),
# sin_vml_cpu not implemented for Half
(torch.cpu, torch.float16, "signal.windows.cosine"),
# CompositeAutogradImplicit
# See https://github.com/pytorch/pytorch/issues/81669
(None, None, "nn.functional.relu6"),
# This decomp runs before autograd.
(None, None, "nn.functional.rrelu"),
(None, None, "meshgrid"),
# Decomposition registered as Autograd
(None, None, "nn.functional.hardshrink"),
(None, None, "nn.functional.softshrink"),
# diag was not decomposed (it just registers a decomp for diag_out, torch.diag is CompImplicit)
(None, None, "diag"),
# _softmax_backward_data's CPU kernel for bfloat16 always return the grad_input as float32
("cpu", torch.bfloat16, "_softmax_backward_data"),
(None, None, "norm"),
# native_batch_norm is only implicit when python dispatcher is on (and noncomposite otherwise)
(None, None, "native_batch_norm"),
(None, None, "_upsample_bilinear2d_aa"),
(None, None, "empty_strided"), # aten.empty_strided was not decomposed
}
CROSS_REF_BACKWARD_EXCLUDE_SET = {
# Decomposed backward formula is not as precise
("cpu", torch.bfloat16, "nn.functional.hardswish"),
("cuda", torch.float16, "nn.functional.cross_entropy"),
}
all_decomposed = set()
all_called = defaultdict(int)
# Helpful snippet for testing coverage
"""
import atexit
def check_coverage():
print("missing coverage:")
print("\n".join(map(str, decomposition_table.keys() - all_decomposed)))
atexit.register(check_coverage)
"""
# Helpful snippet for Horace to create his google sheet :)
"""
import atexit
def dump_ops():
with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g:
for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__):
f.write(f'{op.__name__}\n')
g.write(f'{count}\n')
with open('run_decompositions.txt', 'w') as f:
for op in sorted([i.__name__ for i in all_decomposed]):
f.write(f'{op}\n')
atexit.register(dump_ops)
"""
def any_unsupported(args, kwargs):
def test_unsupported(t):
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
# These are all things that we haven't coded decompositions
# to handle correctly. Maybe they should.
return any(
[
t.is_sparse_csr,
t.is_sparse,
t.is_mkldnn,
t.is_quantized,
t.is_nested,
torch._is_functional_tensor(t),
]
)
elif torch.overrides.is_tensor_like(t):
# Decompositions will generally change the behavior of Tensor-like
# subclasses, so bypass tests in this case too
return True
else:
return False
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
return any(test_unsupported(x) for x in flat_args)
core_backward_failures = {
skip("_softmax_backward_data"), # slow: fails with --timeout=360 secs
xfail("addcdiv"),
skip("addcmul"), # slow: fails with --timeout=360 secs
skip("deg2rad"), # slow: fails with --timeout=360 secs
skip("diag_embed"), # slow: fails with --timeout=360 secs
skip("frac"), # slow: fails with --timeout=360 secs
skip("grid_sampler_2d"), # slow: fails with --timeout=360 secs
xfail("lerp"),
skip("logaddexp"), # slow: fails with --timeout=360 secs
skip("native_dropout_backward"), # slow: fails with --timeout=360 secs
xfail("nn.functional.binary_cross_entropy_with_logits"),
skip("nn.functional.glu"), # slow: fails with --timeout=360 secs
xfail("nn.functional.hardshrink"),
xfail("nn.functional.softshrink"),
skip("nn.functional.unfold"), # slow: fails with --timeout=360 secs
xfail("norm"),
xfail("norm", "fro"),
xfail("norm", "inf"),
xfail("norm", "nuc"),
skip("rad2deg"), # slow: fails with --timeout=360 secs
skip("renorm"), # slow: fails with --timeout=360 secs
skip("rot90"), # slow: fails with --timeout=360 secs
skip("rsub"), # slow: fails with --timeout=360 secs
skip("sgn"), # slow: fails with --timeout=360 secs
skip("special.xlog1py"), # slow: fails with --timeout=360 secs
xfail("stack"),
skip("tril"), # slow: fails with --timeout=360 secs
skip("triu"), # slow: fails with --timeout=360 secs
skip("unfold_copy"), # slow: fails with --timeout=360 secs
skip("xlogy"), # slow: fails with --timeout=360 secs
xfail("zero_"),
}
if not TEST_WITH_SLOW:
core_backward_failures.update(
{
skip("addr"), # slow: takes 46 sec on A100
skip("baddbmm"), # slow: takes 800+ sec on A100
skip("clamp_min"), # slow: takes 800 sec on A100
skip("clamp_max"), # slow: takes 800 sec on A100
skip("logit"), # slow: takes 44 sec on A100
skip("nn.functional.hardswish"), # slow: takes 60 sec on A100
skip("std_mean"), # slow: takes 170 sec on A100
skip("split", variant_name="list_args"), # slow: takes 118 sec on A100
skip("transpose"), # slow: takes 50 sec on A100
skip("unbind"), # slow: takes 70 sec on A100
skip("unsafe_split"), # slow: takes 49 sec on A100
}
)
comprehensive_failures = {
xfail(
"nn.functional.interpolate", "bilinear", dtypes=(torch.uint8,)
), # off by one error
xfail(
"nn.functional.interpolate", "bicubic", dtypes=(torch.uint8,)
), # off by one error
xfail(
"nn.functional.upsample_bilinear", "", dtypes=(torch.uint8,)
), # off by one error
}
@unMarkDynamoStrictTest
class TestDecomp(TestCase):
longMessage = True
# NB: This actually overlaps with test_comprehensive, but it only
# runs on things that are definitely decomposed so it's a lot faster
# to run
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops)
def test_quick(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=False)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipOps("TestDecomp", "test_quick_core_backward", core_backward_failures)
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops_core_autograd, allowed_dtypes=(torch.float64,))
def test_quick_core_backward(self, device, dtype, op):
for sample_input in op.sample_inputs(device, dtype, requires_grad=True):
aten_name = op.decomp_aten_name or op.aten_name
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
func = partial(op.get_op(), **kwargs)
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all=False
) as mode, enable_python_dispatcher():
torch.autograd.gradcheck(func, args)
self.check_decomposed(aten_name, mode)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@skipOps("TestDecomp", "test_comprehensive", comprehensive_failures)
@suppress_warnings
@ops(op_db)
def test_comprehensive(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=True)
def test_uniform(self, device):
size = (2, 3, 4, 5)
dtype = torch.float32
x = make_tensor(size, dtype=dtype, device=device)
low = 0.3
high = 0.9
torch.manual_seed(123)
ref = torch.ops.aten.uniform(x, low, high)
torch.manual_seed(123)
res = torch._decomp.decompositions.uniform(x, low=low, high=high)
self.assertEqual(ref, res)
def test_broadcasting_index_copy(self, device):
x = torch.zeros([1, 10], device=device)
xs = torch.ones([2, 10], device=device)
def index_copy(xs, x):
torch._decomp.decompositions.index_copy_(
xs, 0, torch.tensor(0).to(device), x
)
index_copy(xs, x)
xs_two = torch.ones([2, 10], device=device)
xs_two[0] = x
self.assertEqual(xs, xs_two)
def test_cat_single_input(self, device):
decomp_table = torch._inductor.decomposition.select_decomp_table()
cat_inductor = decomp_table[torch.ops.aten.cat.default]
inp = torch.rand([2048, 2048], device=device)
inps = [inp for _ in range(10)]
for dim in (-1, 0, 1):
self.assertEqual(torch.cat(inps, dim), cat_inductor(inps, dim))
def test_rrelu_with_noise(self, device):
# rrelu_with_noise behavior depends on a) whether elements in the input
# are <= 0, and b) whether we're in training mode. Cover all cases:
dtype = torch.float64
x = torch.tensor([-3.0, -2.0, -1.0, 0.0, 1.0, 2.0], dtype=dtype, device=device)
lower = 1.0
upper = 4.0
training = False
torch.manual_seed(123)
noise_ref = torch.zeros(x.shape, dtype=dtype, device=device)
ref = torch.ops.aten.rrelu_with_noise(x, noise_ref, lower, upper, training)
torch.manual_seed(123)
noise_res = torch.zeros(x.shape, dtype=dtype, device=device)
res = torch._decomp.decompositions.rrelu_with_noise(
x,
noise_res,
lower,
upper,
training,
)
self.assertEqual(ref, res)
self.assertEqual(noise_ref, noise_res)
# Now with training=True:
training = True
torch.manual_seed(123)
noise_ref = torch.zeros(x.shape, dtype=dtype, device=device)
ref = torch.ops.aten.rrelu_with_noise(x, noise_ref, lower, upper, training)
torch.manual_seed(123)
noise_res = torch.zeros(x.shape, dtype=dtype, device=device)
res = torch._decomp.decompositions.rrelu_with_noise(
x,
noise_res,
lower,
upper,
training,
)
self.assertEqual(ref, res)
self.assertEqual(noise_ref, noise_res)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@suppress_warnings
@tf32_off()
# only tests RNNs since we have py dispsatcher decomps for them
@modules(
filter(
lambda m: m.module_cls in (torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU),
module_db,
)
)
def test_rnn_decomp_module(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(
module_info,
device=device,
dtype=dtype,
requires_grad=True,
training=training,
)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = (
module_input.constructor_input.args,
module_input.constructor_input.kwargs,
)
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
args, kwargs = (
module_input.forward_input.args,
module_input.forward_input.kwargs,
)
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all=True
), enable_python_dispatcher():
decomp_out = m(*args, **kwargs)
non_decomp_out = m(*args, **kwargs)
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level
self.assertEqual(decomp_out, non_decomp_out)
def test_batch_norm_unflatten_weight_bias(self, device):
# https://github.com/pytorch/pytorch/issues/100970
shape = (1, 3, 2, 2)
input = torch.randn(shape, device=device)
weight = torch.randn((3, 1, 1, 1), device=device)
bias = torch.randn(3, device=device)
mean = torch.randn(3, device=device)
var = torch.randn(3, device=device)
res = torch._decomp.decompositions.native_batch_norm(
input, weight, bias, mean, var, False, 1, 1e-05
)
self.assertEqual(shape, res[0].shape)
def test_arange_graph(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
def func(x, start):
le = x.shape[-1]
if start is None:
a = torch.arange(le, dtype=torch.float32, device=x.device)
else:
a = torch.arange(start, le, dtype=torch.float32, device=x.device)
return a
pattern = r", device = device\(.+\), requires_grad = False"
cfunc = make_fx(func, decomposition_table=decomposition_table)
fx_g = cfunc(torch.rand(10, device=device), None)
fx_g_code = fx_g.code.strip()
# Remove device and requires_grad
fx_g_code = re.sub(pattern, "", fx_g_code)
self.assertExpectedInline(
fx_g_code,
"""\
def forward(self, x_1, start_1):
iota = torch.ops.prims.iota.default(10, start = 0, step = 1, dtype = torch.int64)
mul = torch.ops.prims.mul.default(iota, 1); iota = None
add = torch.ops.prims.add.default(mul, 0); mul = None
convert_element_type = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None
return convert_element_type""",
)
fx_g = cfunc(torch.rand(10, device=device), 1)
fx_g_code = fx_g.code.strip()
# Remove device and requires_grad
fx_g_code = re.sub(pattern, "", fx_g_code)
self.assertExpectedInline(
fx_g_code,
"""\
def forward(self, x_1, start_1):
iota = torch.ops.prims.iota.default(9, start = 0, step = 1, dtype = torch.int64)
mul = torch.ops.prims.mul.default(iota, 1); iota = None
add = torch.ops.prims.add.default(mul, 1); mul = None
convert_element_type = torch.ops.prims.convert_element_type.default(add, torch.float32); add = None
return convert_element_type""",
)
def test_masked_fill(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
if torch.device(device).type not in [
"xpu",
"cuda",
torch._C._get_privateuse1_backend_name(),
]:
self.skipTest("only runs on XPU and CUDA and PrivateUse1.")
def func(scores, mask, value):
return scores.masked_fill(mask, value)
scores_t = torch.tensor([1, 2, 3, 4], device=device)
mask_t = torch.tensor([True, True, True, True], device=device)
value_t = torch.tensor(0, dtype=scores_t.dtype)
cfunc = make_fx(func, decomposition_table=decomposition_table)
fx_g = cfunc(scores_t, mask_t, value_t)
self.assertExpectedInline(
fx_g.code.strip(),
"""\
def forward(self, scores_1, mask_1, value_1):
where = torch.ops.prims.where.default(mask_1, value_1, scores_1); mask_1 = value_1 = scores_1 = None
return where""",
)
class DecompCrossRefMode(TorchDispatchMode):
def __init__(self, test_case, saved_precision, saved_rel_tol, dtype, run_all):
self.test_case = test_case
self.saved_precision = saved_precision
self.saved_rel_tol = saved_rel_tol
self.test_dtype = dtype
self.run_all = run_all
# We check the correctness of each decomposition right after running it.
# So, when we encounter a decomposition, we run the function normally, and
# then run the decomposition, and ensure they're identical.
self.called = set()
self.decomposed = set()
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
self.test_case.precision = self.saved_precision
self.test_case.rel_tol = self.saved_rel_tol
self.called.add(func)
all_called[func] += 1
# Stuff we shouldn't bother testing
# (TODO: remove detach from the decomp table?)
# N.b. Testing in-place ops would need dedicated logic
in_place = func.name()[-1] == "_"
ignored_ops = [
torch.ops.aten.detach.default,
# non-deterministic ops
torch.ops.aten.empty.memory_format,
torch.ops.aten.empty_like.default,
torch.ops.aten.new_empty.default,
torch.ops.aten.empty_strided.default,
torch.ops.aten.new_empty_strided.default,
torch.ops.aten.randn.default,
torch.ops.aten.native_dropout.default,
]
if (
func not in decomposition_table
or func in ignored_ops
or torch.Tag.nondeterministic_seeded in func.tags
or any_unsupported(args, kwargs)
or in_place
):
return func(*args, **kwargs)
self.decomposed.add(func)
all_decomposed.add(func)
# We take 2 main strategies for verifying correctness/numerical stability of decompositions
# The first one is simply tolerance checking between decomp_out and pytorch_out
# However, for fp16/bf16 and reductions, this becomes very
# finicky, as there are not many guarantees we can make.
# So, for fp16/bf16, we instead compare the difference of
# {decomp_out, pytorch_out_64} and {pytorch_out,
# pytorch_out_64}. In other words, we compare how far the
# decomposition and pytorch are from the "ground truth" (i.e.
# fp64). If the decomposition results in more error, we error
# We also decompose the decomposition recursively for
# further coverage, as some paths not be exercised directly by
# OpInfos (sadly) but just by other ops
decomposition = decomposition_table[func]
do_relative_check = self.test_dtype in [torch.float16, torch.bfloat16]
if self.run_all:
# Execute recursively via DFS, to find the root of a possible error first
with self:
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
else:
decomp_out = pytree.tree_leaves(decomposition(*args, **kwargs))
# At this stage we should not be decomposing an in-place op
# We'd like to have decompositions that decompose out-of-place ops into out-of-place ops
# because decompositions are run after functionalisation and we would not like them to
# de-functionalise the graph, as that would break AoTAutograd
# We run the real function *after* the decomposition to make sure that the
# decomposition does not modify any of the inputs in-place. If it does
# real_out should be differen than decom_out so we should catch this
real_out_unflat = func(*args, **kwargs)
real_out = pytree.tree_leaves(real_out_unflat)
assert len(real_out) == len(decomp_out)
if do_relative_check:
upcast = partial(upcast_tensor, dtype=torch.float64)
real_out_double, _ = tree_flatten(
func(*tree_map(upcast, args), **tree_map(upcast, kwargs))
)
for i, (orig, decomp, ref) in enumerate(
zip(real_out, decomp_out, real_out_double)
):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_ref(
self.test_case,
func,
self.test_dtype,
i,
orig,
decomp,
ref,
args,
kwargs,
)
else:
for orig, decomp in zip(real_out, decomp_out):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_equal(
self.test_case,
func,
self.test_dtype,
orig,
decomp,
args,
kwargs,
)
return real_out_unflat
def check_decomposed(self, aten_name, mode):
self.assertTrue(
any(overload_to_aten_name(c) == aten_name for c in mode.decomposed),
msg=(
f"aten.{aten_name} was not decomposed, saw calls for: "
f"{', '.join(map(str, list(mode.called)))}. If your op is "
f"CompositeImplicitAutograd you should skip this test "
f"by updating CROSS_REF_EXCLUDE_SET."
),
)
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def do_cross_ref(self, device, dtype, op, *, run_all):
test_keys = [
(torch.device(device).type, dtype, op.name),
(None, dtype, op.name),
(None, None, op.name),
]
if any(key in CROSS_REF_EXCLUDE_SET for key in test_keys):
self.skipTest(f"{op.name} in {dtype} not supported")
skip_decomp_vjp = any(
key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys
)
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(torch.device(device).type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, dtype, requires_grad=requires_grad)
aten_name = op.decomp_aten_name or op.aten_name
func = op.get_op()
def run_without_python_dispatcher(mode):
return any(
isinstance(op, torch._ops.OpOverload)
and op.has_kernel_for_dispatch_key(
DispatchKey.CompositeImplicitAutograd
)
for op in mode.decomposed.union([func])
)
for sample_input in samples:
if requires_grad:
fn, primals = normalize_op_input_output(func, sample_input)
primals = tree_map(
lambda x: x if isinstance(x, torch.Tensor) else x, primals
)
# Once https://github.com/pytorch/pytorch/pull/75965/ I can
# store the called list on the mode object instance and no
# explicit clearing is necessary as I will create a fresh mode
# for each region
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode, enable_python_dispatcher():
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if aten_name in decomposition_names:
self.check_decomposed(aten_name, mode)
if not skip_decomp_vjp and (
op.aten_backward_name in decomposition_names or run_all
):
cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out)
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode, enable_python_dispatcher():
decomp_vjp_fn(cotangents)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
decomp_vjp_fn(cotangents)
if not run_all:
self.check_decomposed(op.aten_backward_name, mode)
elif aten_name in decomposition_names or run_all:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
# A failure here might be because the decomposition for the op is wrong or because a
# decomposition used by the particular op is wrong.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode, enable_python_dispatcher():
func(*args, **kwargs)
if run_without_python_dispatcher(mode):
# without this check, incorrect decomps at the python dispatcher level can still pass because
# they're checking aten decomps at the torch_dispatch level.
with self.DecompCrossRefMode(
self, self.precision, self.rel_tol, dtype, run_all
) as mode:
func(*args, **kwargs)
if not run_all:
self.check_decomposed(aten_name, mode)
else:
assert op.supports_autograd
self.skipTest(
"only backwards is decomposed, but dtype doesn't support AD"
)
instantiate_device_type_tests(TestDecomp, globals())
class DecompOneOffTests(TestCase):
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._softmax(x, -1, False)
res = torch._decomp.decompositions._softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_log_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._log_softmax(x, -1, False)
res = torch._decomp.decompositions._log_softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@onlyCUDA
def test_exponential_non_inf(self, device):
inp = torch.empty((4, 400, 256), device=device)
with torch._dynamo.utils.preserve_rng_state():
exp_ref = inp.exponential_()
exp = torch._refs.exponential(inp)
self.assertEqual(exp, exp_ref)
self.assertFalse(exp.isinf().any())
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@onlyCUDA
def test_amp_batch_norm_backward(self):
device = "cuda"
grad_out = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
x = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device)
weight = torch.randn((2,), dtype=torch.float32, device=device)
rmean = torch.randn((2,), dtype=torch.float32, device=device)
rvar = torch.randn((2,), dtype=torch.float32, device=device)
mean = torch.randn((0,), dtype=torch.float32, device=device)
ref = torch.ops.aten.native_batch_norm_backward(
grad_out,
x,
weight,
rmean,
rvar,
mean,
mean,
False,
1e-05,
[True, True, True],
)
res = torch._decomp.decompositions.native_batch_norm_backward(
grad_out,
x,
weight,
rmean,
rvar,
mean,
mean,
False,
1e-05,
[True, True, True],
)
for a, b in zip(ref, res):
self.assertEqual(a.stride(), b.stride())
self.assertEqual(a.dtype, b.dtype)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_elu_backward(self, device):
size = (2, 4, 3, 3)
dtype = torch.float32
grad_out = torch.randn(size, dtype=dtype, device=device)
out = torch.randn(size, dtype=dtype, device=device)
ref = torch.ops.aten.elu_backward(grad_out, 1.0, 1, 1, True, out)
res = torch._decomp.decompositions.elu_backward(grad_out, 1.0, 1, 1, True, out)
self.assertEqual(ref, res)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_threshold_backward_dtype(self, device):
grad = torch.randint(10, (4,), device=device)
input_tensor = torch.randint(10, (4,), device=device)
ref = torch.ops.aten.threshold_backward(grad, input_tensor, 1)
res = torch._decomp.decompositions.threshold_backward(grad, input_tensor, 1)
self.assertEqual(ref.dtype, res.dtype)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_weight_norm_interface(self, device):
g = torch.randn((3, 10, 10), device=device)
v = torch.randn((1, 1, 10), device=device)
ref = torch.ops.aten._weight_norm_interface(g, v, 2)
res = torch._decomp.decompositions._weight_norm_interface(g, v, 2)
self.assertTrue(torch.allclose(ref[0], res[0]))
self.assertTrue(torch.allclose(ref[1], res[1]))
inp = torch.rand([30, 10], device=device)
inp2 = torch.rand([30, 1], device=device)
self.assertEqual(
torch.ops.aten._weight_norm_interface(inp, inp2),
torch._decomp.decompositions._weight_norm_interface(inp, inp2),
)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyCPU
@skipIfCrossRef
@skipOps(
"DecompOneOffTests",
"test_sdpa",
[
xfail(
"nn.functional.scaled_dot_product_attention",
dtypes=[torch.half],
),
],
)
@ops(_sdpa_op_info)
def test_sdpa(self, device, dtype, op):
# SDPA doesn't support float16, this is aligned with aten/src/ATen/native/transformers/attention.cpp. If we
# add support for float16 over there we should update this test as well.
class ScaledDotProductAttention(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(
self, query_layer, key_layer, value_layer, mask=None, is_causal=True
):
attn_output = op(
query_layer,
key_layer,
value_layer,
attn_mask=mask,
dropout_p=0.0,
is_causal=is_causal,
)
return attn_output
query_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
key_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
value_layer = torch.randn(1, 128, 100, 64, device=device, dtype=dtype)
masks = [None, torch.ones((1, 1, 100, 100), device=device, dtype=torch.bool)]
atol, rtol = dtype_precisions[dtype]
for mask in masks:
is_causal = mask is None
attention = ScaledDotProductAttention()
decomposed_res = (
torch._decomp.decompositions.scaled_dot_product_flash_attention_for_cpu(
query_layer, key_layer, value_layer, 0.0, is_causal, attn_mask=mask
)
)
eager_res = op(
query_layer,
key_layer,
value_layer,
attn_mask=mask,
dropout_p=0.0,
is_causal=is_causal,
)
self.assertTrue(
torch.allclose(decomposed_res[0], eager_res, atol=atol, rtol=rtol)
)
instantiate_device_type_tests(DecompOneOffTests, globals())
class HasDecompTest(TestCase):
def setUp(self):
super().setUp()
self.maxDiff = None
@staticmethod
def _can_appear_in_trace(op: torch._ops.OpOverload) -> bool:
has_tensor_arg = any(
"Tensor" in str(a.type)
for a in itertools.chain(op._schema.arguments, op._schema.returns)
)
if not has_tensor_arg:
return False
try:
# CompositeImplicitAutograd ops are transparent to the tracer, so don't need decompositions
return not op.has_kernel_for_dispatch_key(
DispatchKey.CompositeImplicitAutograd
)
except RuntimeError as e:
# has_key fails for some jit-registered ops, which shouldn't be
# relevant here anyway
if "does not exist" in str(e):
return False
raise
def test_has_decomposition(self):
def all_aten_overloads():
for name in torch._C._dispatch_get_all_op_names():
if not name.startswith("aten::"):
continue
name = name[6:]
if "." in name:
packet_name, overload_name = name.split(".")
else:
packet_name, overload_name = name, "default"
packet = getattr(aten, packet_name)
assert isinstance(packet, torch._ops.OpOverloadPacket)
op = getattr(packet, overload_name)
yield op
# This is for operators that are only registered in some CI
# configurations, so would cause the test to fail
allow_list = {aten.get_gradients.default}
overloads_wanting_decomp = {
op for op in all_aten_overloads() if self._can_appear_in_trace(op)
}
ops_missing_decomp = overloads_wanting_decomp - decomposition_table.keys()
ops_missing_decomp -= allow_list
self.assertExpected(
"".join(sorted(op.name() + "\n" for op in ops_missing_decomp))
)
def test_aten_core_operators(self):
# If a decomposition isn't included in the core decompositions,
# then it must decompose a core ATen operator.
#
# See NOTE [Core ATen Ops]
#
# If this test fails then either:
# - Add the decomposition to torch._decomp.core_aten_decompositions,
# if decomposition should be used by inductor (not a core operator).
# - Run this test again with EXPECTTEST_ACCEPT=1 to update the list of
# core ATen operators (and inductor will not use the decomposition).
# Some decompositions are registered for CompositeImplicitAutograd
# operators, which never appear in AOTAutograd's graph so are never used.
useful_decomps = {
op
for op in decomposition_table.keys()
if isinstance(op, torch._ops.OpOverload) and self._can_appear_in_trace(op)
}
core_decomps = torch._decomp.core_aten_decompositions().keys()
core_aten_ops = useful_decomps - core_decomps
self.assertExpected("".join(sorted(op.name() + "\n" for op in core_aten_ops)))
if __name__ == "__main__":
run_tests()