blob: c91c88abcb4cbe970c3700d12a6ccbaa38807c74 [file] [log] [blame]
# Owner(s): ["module: mta"]
import itertools
import os
import random
import re
import unittest
import weakref
from contextlib import nullcontext
from numbers import Number
import torch
from torch.testing import make_tensor
from torch.testing._comparison import default_tolerances
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCUDA,
OpDTypes,
ops,
)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and,
floating_types,
floating_types_and,
integral_types_and,
)
from torch.testing._internal.common_methods_invocations import (
foreach_binary_op_db,
foreach_other_op_db,
foreach_pointwise_op_db,
foreach_reduce_op_db,
foreach_unary_op_db,
)
from torch.testing._internal.common_utils import (
gradcheck,
parametrize,
run_tests,
skipIfRocmVersionLessThan,
skipIfTorchDynamo,
TEST_WITH_ROCM,
TestCase,
)
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
class RegularFuncWrapper:
def __init__(self, func):
self.func = func
def __call__(self, inputs, scalars=None, **kwargs):
if scalars is not None:
assert len(inputs) == 3
# We need to distribute each scalar to the regular func and it needs
# special consideration as it is a keyword only argument to the
# regular func. (Strangely, it is not a keyword only argument to the
# foreach func)
return [
self.func(*i, value=scalars[idx], **kwargs)
for idx, i in enumerate(zip(*inputs))
]
if len(inputs) == 2 and isinstance(inputs[1], (Number, torch.Tensor)):
# binary op with tensorlist and scalar.
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
return [self.func(*i, **kwargs) for i in zip(*inputs)]
class ForeachFuncWrapper:
def __init__(self, func):
self.func = func
# Some foreach functions don't have in-place implementations.
self.is_inplace = False if func is None else func.__name__.endswith("_")
def __call__(self, inputs, is_cuda, expect_fastpath, **kwargs):
actual = None
zero_size = kwargs.pop("zero_size", False)
if (
is_cuda
and torch.autograd.kineto_available()
and torch.profiler.ProfilerActivity.CUDA
in torch.profiler.supported_activities()
):
with torch.profiler.profile() as p:
actual = self.func(*inputs, **kwargs)
keys = tuple([e.key for e in p.key_averages()])
mta_called = any("multi_tensor_apply_kernel" in k for k in keys)
assert (
mta_called == (expect_fastpath and (not zero_size))
), f"{mta_called=}, {expect_fastpath=}, {zero_size=}, {self.func.__name__=}, {keys=}"
else:
actual = self.func(*inputs, **kwargs)
if self.is_inplace:
assert id(inputs[0]) == id(actual)
return actual
class InplaceForeachVersionBumpCheck:
def __init__(
self,
testcase: TestCase,
tensorlist: "List[torch.Tensor]", # noqa: F821
) -> None:
self._testcase = testcase
self._tensorlist = tensorlist
self._orig_version_counts = [t._version for t in tensorlist]
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, traceback):
# note(crcrpar): some methods e.g. `_binary_test` could call the given inplace function multiple times
self._testcase.assertGreaterEqual(
[t._version for t in self._tensorlist], self._orig_version_counts
)
def get_transform_func(num_tensors, dtype, device, is_fastpath):
def transform(t):
if not torch.is_tensor(t):
return t
if torch.is_tensor(t) and t.ndim == 0:
return t
return make_tensor(
(num_tensors, num_tensors),
dtype=dtype,
device=device,
requires_grad=True,
noncontiguous=not is_fastpath,
)
return transform
# note(crcrpar): `zero_size` is `False` unless (dtype, device) == (torch.float32, "cuda")
# as the pair would go through `multi_tensor_apply_kernel` if inputs are not zero size.
@unittest.mock.patch.dict(os.environ, {"KINETO_LOG_LEVEL": "5"})
class TestForeach(TestCase):
@property
def is_cuda(self):
return self.device_type == "cuda"
def _get_funcs(self, op):
return (
ForeachFuncWrapper(op.method_variant),
RegularFuncWrapper(op.ref),
ForeachFuncWrapper(op.inplace_variant),
RegularFuncWrapper(op.ref_inplace),
)
# note(crcrpar): Make sure 0-size tensors are appropriately ignored by `multi_tensor_apply`
# which is originally reported in https://github.com/pytorch/pytorch/issues/94865.
# rel:
# - https://github.com/pytorch/pytorch/pull/94655
# - https://github.com/pytorch/pytorch/issues/100701
# - https://github.com/pytorch/pytorch/pull/100811
@onlyCUDA
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_reduce_op_db
+ foreach_other_op_db,
dtypes=(torch.float32,),
)
def test_all_zero_size_tensors_do_not_launch_kernel(self, device, dtype, op):
wrapped_op, _, inplace_op, _ = self._get_funcs(op)
for sample in op.sample_zero_size_inputs(device, dtype):
if op.method_variant is not None:
wrapped_op(
(sample.input, *sample.args),
is_cuda=self.is_cuda,
expect_fastpath=True,
zero_size=True,
)
if op.inplace_variant is not None:
with InplaceForeachVersionBumpCheck(self, sample.input):
inplace_op(
(sample.input, *sample.args),
is_cuda=self.is_cuda,
expect_fastpath=True,
zero_size=True,
)
@skipIfRocmVersionLessThan((6, 0))
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_reduce_op_db
+ foreach_other_op_db,
)
@parametrize(
"noncontiguous,inplace",
[(False, False), (False, True), (True, False), (True, True)],
name_fn=lambda x, y: "{}_{}".format(
"fastpath" if not x else "slowpath", "inplace" if y else "outplace"
),
)
def test_parity(self, device, dtype, op, noncontiguous, inplace):
if inplace:
_, _, func, ref = self._get_funcs(op)
else:
func, ref, _, _ = self._get_funcs(op)
for sample in op.sample_inputs(
device, dtype, noncontiguous=noncontiguous, allow_higher_dtype_scalars=True
):
ref_kwargs = sample.kwargs
# div promotes ints to floats, so we cannot go on the fastpath there
div_slowpath = (
dtype in integral_types_and(torch.bool) and op.name == "_foreach_div"
)
expect_fastpath = not (
noncontiguous or sample.disable_fastpath or div_slowpath
)
ref_input, ctxmgr = sample.input, nullcontext()
if inplace:
with torch.no_grad():
ref_input = [t.clone().detach() for t in sample.input]
ctxmgr = InplaceForeachVersionBumpCheck(self, sample.input)
try:
with ctxmgr:
actual = func(
[sample.input, *sample.args],
self.is_cuda,
expect_fastpath,
**sample.kwargs,
)
except Exception as e:
with self.assertRaises(type(e)):
ref([ref_input, *sample.ref_args], **ref_kwargs)
else:
expected = ref([ref_input, *sample.ref_args], **ref_kwargs)
self.assertEqual(expected, actual)
def _binary_test(
self,
dtype,
op,
ref,
inputs,
is_fastpath,
is_inplace,
*,
alpha,
scalar_self_arg: bool,
):
ref_inputs = (
[[t.clone().detach() for t in inputs[0]], inputs[1]]
if is_inplace
else inputs
)
try:
with InplaceForeachVersionBumpCheck(
self, inputs[0]
) if op.is_inplace else nullcontext():
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
if not scalar_self_arg:
ref(ref_inputs)
else:
[ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
else:
expected = (
ref(ref_inputs)
if not scalar_self_arg
else [ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
)
self.assertEqual(actual, expected)
if alpha is not None and not scalar_self_arg:
kwargs = {"alpha": alpha}
ref_inputs = inputs
try:
op_kwargs = {}
op_kwargs.update(kwargs)
with InplaceForeachVersionBumpCheck(
self, inputs[0]
) if op.is_inplace else nullcontext():
actual = op(inputs, self.is_cuda, is_fastpath, **op_kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(
expected, actual, atol=1.0e-3, rtol=default_tolerances(dtype)[0]
)
else:
self.assertEqual(expected, actual)
@ops(filter(lambda op: op.supports_scalar_self_arg, foreach_binary_op_db))
@parametrize("is_fastpath", (True, False))
def test_binary_op_with_scalar_self_support(self, device, dtype, op, is_fastpath):
def clone(arg):
if isinstance(arg, (list, tuple)):
return [clone(a) for a in arg]
if torch.is_tensor(arg):
return arg.clone().detach().requires_grad_()
else:
return arg
scalar_self_arg_test_complete = False
for i, sample in enumerate(
op.sample_inputs(
device,
dtype,
noncontiguous=not is_fastpath,
allow_higher_dtype_scalars=True,
)
):
(rhs_arg,) = sample.args
kwargs = {} or sample.kwargs
alpha = kwargs.pop("alpha", None)
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
if isinstance(rhs_arg, Number) and not scalar_self_arg_test_complete:
scalar_self_arg_test_complete = True
self._binary_test(
dtype,
wrapped_op,
ref,
[rhs_arg, sample.input],
is_fastpath,
False,
alpha=alpha,
scalar_self_arg=True,
)
if op.supports_autograd and dtype == torch.float32:
transformed_sample = sample.transform(
get_transform_func(
len(sample.input), dtype, device, is_fastpath
)
)
tensors = transformed_sample.input
(rhs_arg,) = transformed_sample.args
ref_tensors, ref_rhs_arg = clone(tensors), clone(rhs_arg)
sum(
wrapped_op(
[rhs_arg, tensors], is_cuda=False, expect_fastpath=False
)
).mean().backward()
sum(ref.func(ref_rhs_arg, t) for t in ref_tensors).mean().backward()
self.assertEqual(
[t.grad for t in tensors], [t.grad for t in ref_tensors]
)
@ops(foreach_pointwise_op_db)
@parametrize("is_fastpath", (True, False))
def test_pointwise_op_with_tensor_of_scalarlist_overload(
self, device, dtype, op, is_fastpath
):
for sample in op.sample_inputs(
device,
dtype,
noncontiguous=not is_fastpath,
allow_higher_dtype_scalars=True,
):
assert isinstance(sample.args, tuple)
assert len(sample.args) == 2
inputs = [sample.input, *sample.args]
kwargs = sample.kwargs.copy()
disable_fastpath = sample.disable_fastpath and is_fastpath
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
scalars = kwargs.pop("scalars", None)
if is_fastpath and scalars:
sample = sample.transform(
lambda t: t.clone().detach() if torch.is_tensor(t) else t
)
inputs = [sample.input, *sample.args]
tensor_values = torch.tensor(scalars)
# 1D Tensor of scalars
for is_inplace, op_, ref_ in (
(False, wrapped_op, ref),
(True, inplace_op, inplace_ref),
):
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values,
**kwargs,
)
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values[0],
custom_values_err="Expected packed scalar Tensor to be of dimension 1. Got 0 instead.",
**kwargs,
)
if self.is_cuda:
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values.cuda(),
custom_values_err="Expected scalars to be on CPU, got cuda:0 instead.",
**kwargs,
)
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=tensor_values[:2],
custom_values_err=f"Expected length of scalars to match input of length {len(scalars)} but got 2 instead.",
**kwargs,
)
self._pointwise_test(
op_,
ref_,
inputs,
is_fastpath and not disable_fastpath,
is_inplace,
scalars=torch.tensor([[0, 1], [2, 3]])[:, 1],
custom_values_err="Expected scalars to be contiguous.",
**kwargs,
)
# Tests of implicit broadcasting
N = len(sample.input)
inputs = [
[
make_tensor(
(N, N),
device=device,
dtype=dtype,
noncontiguous=not is_fastpath,
)
for _ in range(N)
],
[
make_tensor(
(N - i, 1),
device=device,
dtype=dtype,
noncontiguous=not is_fastpath,
)
for i in range(N)
],
[
make_tensor(
(1, N - i),
device=device,
dtype=dtype,
noncontiguous=not is_fastpath,
)
for i in range(N)
],
]
self._pointwise_test(
wrapped_op,
ref,
inputs,
is_fastpath and disable_fastpath,
is_inplace=False,
scalars=scalars,
**kwargs,
)
self._pointwise_test(
inplace_op,
inplace_ref,
inputs,
is_fastpath and disable_fastpath,
is_inplace=True,
scalars=scalars,
**kwargs,
)
def _pointwise_test(
self,
op,
ref,
inputs,
is_fastpath,
is_inplace,
*,
scalars=None,
custom_values_err=None,
**kwargs,
):
ref_inputs = (
[[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]]
if is_inplace
else inputs
)
try:
with (
InplaceForeachVersionBumpCheck(self, inputs[0])
if is_inplace
else nullcontext()
):
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
self.assertEqual(expected, actual)
if scalars is not None:
kwargs = kwargs.copy()
kwargs["scalars"] = scalars
try:
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
# Match with error messages from regular non-foreach reference if no
# custom error message was provided.
if custom_values_err is None:
with self.assertRaisesRegex(
type(e), re.escape(str(e).splitlines()[0])
):
ref(ref_inputs, **kwargs)
else:
self.assertEqual(re.escape(str(e)), re.escape(custom_values_err))
else:
expected = ref(ref_inputs, **kwargs)
self.assertEqual(expected, actual)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [
[torch.randn([0], device=device, dtype=dtype)],
[torch.empty_strided((0, 1), (0, 0), dtype=dtype, device=device)],
]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
# Regression test for https://github.com/pytorch/pytorch/issues/113156
torch._foreach_mul_(tensors, 1)
@onlyCUDA
@dtypes(torch.float32)
def test_foreach_check_stride_ignore_dims_of_one(self, device, dtype):
# default tensor stride is (9, 9, 3, 1).
tensor = torch.ones((2, 1, 3, 3), device=device, dtype=dtype)
strided_tensor = torch.ones(
(2, 1, 3, 3), device=device, dtype=dtype
).as_strided((2, 1, 3, 3), (9, 1, 3, 1))
left_inputs = [tensor, strided_tensor]
right_inputs = [strided_tensor, tensor]
compare_result = tensor + strided_tensor
foreach_add_check_ = ForeachFuncWrapper(torch._foreach_add)
out = foreach_add_check_(
(left_inputs, right_inputs), is_cuda=True, expect_fastpath=True
)
for res in out:
self.assertEqual(res, compare_result)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
foreach_op, ref = op.method_variant, op.ref
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
if ref == torch.sub and dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
[ref(t, 1) for t in tensors]
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op(tensors, 1)
return
expected = [ref(t, 1) for t in tensors]
res = foreach_op(tensors, 1)
self.assertEqual(res, expected)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
allowed_dtypes=[torch.float],
)
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
foreach_op = op.method_variant
tensors = [
torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device),
]
runtime_error = None
try:
foreach_op(tensors, 1)
except RuntimeError as e:
runtime_error = e
self.assertIsNone(runtime_error)
@skipIfTorchDynamo("Different error msgs, TODO")
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_list_error_cases(self, device, dtype, op):
foreach_op, foreach_op_, ref, ref_ = (
op.method_variant,
op.inplace_variant,
op.ref,
op.ref_inplace,
)
tensors1 = []
tensors2 = []
ops_to_test = [foreach_op, foreach_op_]
# Empty lists
for fop in ops_to_test:
with self.assertRaisesRegex(
RuntimeError, "Tensor list must have at least one tensor."
):
fop(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
for fop in ops_to_test:
with self.assertRaisesRegex(
RuntimeError,
"Tensor list must have same number of elements as scalar list.",
):
fop(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
for fop in ops_to_test:
with self.assertRaisesRegex(
RuntimeError,
"Tensor lists must have the same number of tensors, got 1 and 2",
):
fop(tensors1, tensors2)
with self.assertRaisesRegex(
RuntimeError,
"Tensor lists must have the same number of tensors, got 2 and 1",
):
fop(tensors2, tensors1)
# Corresponding tensors with different sizes that aren't compatible with broadcast
# If sizes are different then foreach chooses slow path, thus error messages are expected
# to be the same as torch regular function.
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
if dtype == torch.bool and foreach_op == torch._foreach_sub:
for fop in ops_to_test:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
fop(tensors1, tensors2)
return
with self.assertRaisesRegex(
RuntimeError,
r"The size of tensor a \(10\) must match the size of tensor b \(11\) at non-singleton dimension 1",
):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(
RuntimeError,
r"The size of tensor a \(10\) must match the size of tensor b \(11\) at non-singleton dimension 1",
):
foreach_op_(tensors1, tensors2)
# different devices
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
with self.assertRaisesRegex(
RuntimeError, "Expected all tensors to be on the same device"
):
foreach_op([tensor1], [tensor2])
if (
dtype in integral_types_and(torch.bool)
and foreach_op == torch._foreach_div
):
with self.assertRaisesRegex(RuntimeError, "result type"):
foreach_op_([tensor1], [tensor2])
else:
with self.assertRaisesRegex(
RuntimeError, "Expected all tensors to be on the same device"
):
foreach_op_([tensor1], [tensor2])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_list_slow_path(self, device, dtype, op):
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op)
# 0-strides
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
inputs = ([tensor1], [tensor2.t()])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
# non contiguous
tensor1 = make_tensor(
(5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True
)
tensor2 = make_tensor(
(5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True
)
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
# sliced tensor
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[
:, :, :, ::7
]
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype,
foreach_op,
native_op,
inputs,
is_fastpath=False,
is_inplace=False,
alpha=None,
scalar_self_arg=False,
)
self._binary_test(
dtype,
foreach_op_,
native_op_,
inputs,
is_fastpath=False,
is_inplace=True,
alpha=None,
scalar_self_arg=False,
)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=floating_types_and(torch.half, torch.bfloat16),
)
def test_binary_op_float_inf_nan(self, device, dtype, op):
inputs = (
[
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([-float("inf")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
],
[
torch.tensor([-float("inf")], device=device, dtype=dtype),
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
],
)
op, ref, inplace_op, inplace_ref = self._get_funcs(op)
self._binary_test(
dtype, op, ref, inputs, True, False, alpha=None, scalar_self_arg=False
)
self._binary_test(
dtype,
inplace_op,
inplace_ref,
inputs,
True,
True,
alpha=None,
scalar_self_arg=False,
)
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
# checks whether foreach works with lists of tensors on different devices
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
@onlyCUDA
@ops(foreach_unary_op_db)
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
method, ref, inplace_method, ref_inplace = self._get_funcs(op)
# tensors: ['cuda', 'cpu]
tensors = next(
iter(
op.sample_inputs(
device,
dtype,
num_input_tensors=[2],
allow_higher_dtype_scalars=True,
)
)
).input
tensors[1] = tensors[1].to("cpu")
if not op.supports_out:
try:
actual = method((tensors,), False, False, zero_size=False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e).splitlines()[0]):
ref((tensors,))
else:
expected = ref((tensors,))
self.assertEqual(expected, actual)
try:
inplace_method((tensors,), False, False, zero_size=False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e).splitlines()[0]):
ref_inplace((tensors,))
else:
if not op.supports_out:
self.assertEqual(expected, tensors)
else:
self.assertEqual([torch.zeros_like(t) for t in tensors], tensors)
@onlyCUDA
@ops(filter(lambda op: op.supports_out, foreach_binary_op_db))
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
_cuda_tensors = next(
iter(
op.sample_inputs(
device,
dtype,
num_input_tensors=[2],
same_size=True,
allow_higher_dtype_scalars=True,
)
)
).input
_cpu_tensors = next(
iter(
op.sample_inputs(
"cpu",
dtype,
num_input_tensors=[2],
same_size=True,
allow_higher_dtype_scalars=True,
)
)
).input
tensors1, tensors2 = list(zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
native_op, native_op_ = op.ref, op.ref_inplace
try:
actual = foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
self.assertEqual(expected, actual)
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])):
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
self.assertEqual(actual, tensors1)
@onlyCUDA
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
# tensors1: ['cuda', 'cpu]
# tensors2: ['cuda', 'cpu]
# tensors3: ['cuda', 'cpu]
# first tensorlist is zero-size when float32
_cuda_tensors = list(
op.sample_inputs(
device,
dtype,
num_input_tensors=[3],
same_size=True,
allow_higher_dtype_scalars=True,
)
)[int(dtype == torch.float32)].input
_cpu_tensors = next(
iter(
op.sample_inputs(
"cpu",
dtype,
num_input_tensors=[3],
same_size=True,
allow_higher_dtype_scalars=True,
)
)
).input
tensors1, tensors2, tensors3 = list(zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_, native_op = (
op.method_variant,
op.inplace_variant,
op.ref,
)
actual = foreach_op(tensors1, tensors2, tensors3)
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
self.assertEqual(expected, actual)
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
foreach_op_(tensors1, tensors2, tensors3)
self.assertEqual(expected, tensors1)
# note: BFloat16 has the same number of exponent bits as FP32
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
@onlyCUDA
@ops(
[o for o in foreach_reduce_op_db if "norm" in o.name],
allowed_dtypes=(torch.half, torch.bfloat16),
)
def test_foreach_l2_large_value_input(self, device, dtype, op):
ord, N = 2, 10
max_value = torch.finfo(dtype).max
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
inputs = (
[
t * scaler
for t in next(
iter(
op.sample_inputs(
device,
dtype,
requries_grad=True,
num_input_tensors=[N],
low=1,
)
)
).input
][:-1],
)
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
self.assertTrue(scaler * scaler * N > max_value)
fn, ref_fn, *_ = self._get_funcs(op)
actual = fn(
inputs, is_cuda=True, expect_fastpath=True, ord=ord, zero_size=False
)
expect = ref_fn(inputs, ord=ord)
if dtype == torch.float16:
# making sure the reference L2 norm values are in the range of FP16.
self.assertFalse(any(torch.isinf(e) for e in expect))
else:
self.assertTrue(
all(
inputs[0][i].numel() == 0 or torch.isinf(e)
for i, e in enumerate(expect)
)
)
self.assertEqual(expect, actual, equal_nan=False)
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=floating_types())
@parametrize("use_cuda_graph", (False, True))
def test_big_num_tensors(self, device, dtype, op, use_cuda_graph):
N = 600
tensorlist = [
make_tensor((2, 3), dtype=dtype, device=device, noncontiguous=False)
for _ in range(N)
]
fn, ref_fn, *_ = self._get_funcs(op)
import math
if op.name == "_foreach_norm":
ords = (1, 2, math.inf)
else:
ords = (None,)
for ord in ords:
kwargs = {"ord": ord} if ord else {}
if not use_cuda_graph:
actual = fn(
inputs=[tensorlist],
is_cuda=True,
expect_fastpath=True,
zero_size=False,
**kwargs,
)
else:
# When using CUDA graphs and the tensor metadata doesn't fit in
# the static kernel argument space, multi_tensor_apply creates
# the launch arguments once, uses cudaUserObject_t to tie its
# lifetime to the graph, and reuses it throughout replays. This
# test verifies multi_tensor_apply's behavior in the scenario.
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
actual = fn.func(tensorlist, **kwargs)
g.replay()
expect = ref_fn(inputs=[tensorlist], **kwargs)
self.assertEqual(expect, actual, equal_nan=True)
@onlyCUDA
@ops(foreach_reduce_op_db)
def test_foreach_reduce_large_input(self, device, dtype, op):
# test inputs larger than kChunkSize = 65536
N = 65536 * 2
disable_fastpath = False
kwargs = {}
if op.name == "_foreach_norm":
ord = 2
disable_fastpath = not (
ord in (1, 2)
and dtype in floating_types_and(torch.half, torch.bfloat16)
)
kwargs["ord"] = ord
inputs = ([make_tensor((N,), dtype=dtype, device=device, noncontiguous=False)],)
wrapped_op, ref, _, _ = self._get_funcs(op)
self.assertEqual(
ref(inputs, **kwargs),
wrapped_op(
inputs, self.is_cuda, not disable_fastpath, zero_size=False, **kwargs
),
)
@onlyCUDA
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_other_op_db,
dtypes=(torch.float,),
)
def test_inplace_foreach_leaf_check_and_grad_fn(self, device, dtype, op):
inplace_op = op.inplace_variant
if inplace_op is None:
self.skipTest("no in-place op available")
sample = next(
iter(
op.sample_inputs(
dtype=dtype, device=device, num_input_tensors=[2], same_size=True
)
)
)
sample.input[0].requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
inplace_op(sample.input, *sample.args)
sample.input[1].requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
inplace_op(sample.input, *sample.args)
_tensors = [
t.clone().detach().requires_grad_(i == 0)
for i, t in enumerate(sample.input)
]
tensors = [t.clone() for t in _tensors]
inplace_op(tensors, *sample.args)
self.assertIsNotNone(tensors[0].grad_fn)
self.assertIsNone(tensors[1].grad_fn)
@onlyCUDA
@ops(
filter(
lambda op: op.supports_out,
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_other_op_db,
),
dtypes=(torch.float,),
)
def test_outplace_with_invalid_grads(self, device, dtype, op):
func, *_ = self._get_funcs(op)
sample = next(
iter(
op.sample_inputs(
dtype=dtype,
device=device,
requires_grad=True,
num_input_tensors=[2],
same_size=True,
)
)
)
self.assertTrue(all(t.requires_grad for t in sample.input))
(out1, out2) = func(
[sample.input, *sample.args],
is_cuda=False,
expect_fastpath=False,
**sample.kwargs,
)
out1.backward(torch.ones_like(out1))
self.assertIsNotNone(sample.input[0].grad)
self.assertIsNone(sample.input[1].grad)
@ops(
filter(
lambda op: op.backward_requires_result,
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_other_op_db,
),
dtypes=(torch.float32,),
)
def test_lifetime_of_grad_fn_when_result_is_saved(self, device, dtype, op):
def get_ref(func, sample):
class Foo:
pass
out = func(
(sample.input, *sample.args),
is_cuda=False,
expect_fastpath=False,
**sample.kwargs,
)
foo = Foo()
meta_dict = out[0].grad_fn.metadata
meta_dict[0] = foo
ref = weakref.ref(foo)
return out, ref
def _test(func, sample):
out, ref = get_ref(func, sample)
self.assertIsNotNone(ref())
del out
self.assertIsNone(ref())
func = self._get_funcs(op)[0]
for sample in op.sample_inputs(
device, dtype, requires_grad=True, num_input_tensors=[1]
):
for key in ("is_fastpath", "disable_fastpath"):
if key in sample.kwargs:
del sample.kwargs[key]
# note: `_foreach_pow.Scalar` and `_foreach_pow.ScalarList` don't depend on `result`
# see: https://github.com/pytorch/pytorch/blob/5403c777/tools/autograd/derivatives.yaml#L3048-L3049
if op.name == "_foreach_pow":
if (
isinstance(sample.args[0], list)
and isinstance(sample.args[0][0], Number)
) or (
isinstance(sample.args[0], Number)
and not isinstance(sample.args[0], float)
):
continue
if isinstance(sample.args[0], float):
new_args = (sample.input,)
sample.input = sample.args[0]
sample.args = new_args
_test(func, sample)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_tensors_grouping(self):
num_tensors_per_list = 10
num_devices = torch.cuda.device_count()
dtypes = (torch.float16, torch.float32, torch.float64)
list1 = [
torch.tensor(
i,
device=torch.device("cuda", random.randint(0, num_devices - 1)),
dtype=dtypes[random.randint(0, 2)],
)
for i in range(num_tensors_per_list)
]
list2 = [None for _ in list1]
list3 = [torch.rand_like(t) for t in list1]
nested_tensorlists = [list1, list2, list3]
grouped_tensors = torch.utils._foreach_utils._group_tensors_by_device_and_dtype(
nested_tensorlists, with_indices=True
)
num_tensors_seen = 0
for (device, dtype), ([l1, l2, l3], indices) in grouped_tensors.items():
for t in itertools.chain(l1, l3):
self.assertEqual(t.device, device)
self.assertEqual(t.dtype, dtype)
num_tensors_seen += 1
self.assertEqual(len(l1), len(l2))
self.assertTrue(all(p is None for p in l2))
for i, index in enumerate(indices):
self.assertEqual(l1[i], list1[index])
self.assertEqual(l2[i], list2[index])
self.assertEqual(l3[i], list3[index])
self.assertEqual(num_tensors_seen, 2 * num_tensors_per_list)
@onlyCUDA
def test_0dim_tensor_overload_cpu_ok(self):
tensors = [torch.ones((), device="cuda", dtype=torch.float32) for _ in range(2)]
scalar_cpu_tensor = torch.tensor(4.0, device="cpu")
# For mul and div, the scalar is allowed to be on CPU too
actual = torch._foreach_mul(tensors, scalar_cpu_tensor)
self.assertEqual(actual, [t.mul(scalar_cpu_tensor) for t in tensors])
actual = torch._foreach_div(tensors, scalar_cpu_tensor)
self.assertEqual(actual, [t.div(scalar_cpu_tensor) for t in tensors])
@onlyCUDA
def test_div_reciprocal(self):
expect_m, expect_e = torch.frexp(
torch.div(torch.tensor(0.1, device="cuda"), 10.0)
)
actual_m, actual_e = torch.frexp(
torch._foreach_div([torch.tensor(0.1, device="cuda")], [10.0])[0]
)
self.assertEqual(expect_m, actual_m)
self.assertEqual(expect_e, actual_e)
@onlyCUDA
def test_0dim_tensor_overload_exception(self):
# check exceptions of fast path
tensors = [
make_tensor((2, 2), dtype=torch.float, device="cuda") for _ in range(2)
]
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be on"):
torch._foreach_add(tensors, torch.tensor(1.0, device="cpu"), alpha=1.0)
tensors = [
make_tensor((2, 2), dtype=torch.float, device=d) for d in ("cpu", "cuda")
]
with self.assertRaisesRegex(
RuntimeError, "scalar tensor expected to be 0 dim but"
):
torch._foreach_mul(tensors, torch.tensor([1.0, 1.0], device="cuda"))
with self.assertRaisesRegex(
RuntimeError, "scalar tensor expected to be 0 dim but"
):
torch._foreach_add(tensors, torch.tensor([1.0, 1.0], device="cuda"))
@onlyCUDA
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
def test_foreach_copy_with_multi_device_inputs(self, device, dtype, op):
foreach_copy_ = op.inplace_variant
copy_ = op.ref_inplace
for non_blocking in (False, True):
for sample in op.sample_inputs(
device, dtype, noncontiguous=False, allow_higher_dtype_scalars=True
):
with torch.no_grad():
ref_input = [t.clone().detach() for t in sample.input]
foreach_copy_(sample.input, sample.args[0], non_blocking)
for t, s in zip(ref_input, sample.args[0]):
copy_(t, s, non_blocking)
self.assertEqual(sample.input, ref_input)
if torch.cuda.device_count() > 1:
device = torch.device("cuda", 1)
rhs_tensors = [t.to(device) for t in sample.args[0]]
foreach_copy_(sample.input, rhs_tensors, non_blocking)
for t, s in zip(ref_input, rhs_tensors):
copy_(t, s, non_blocking)
self.assertEqual(ref_input, sample.input)
@onlyCUDA
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
def test_foreach_copy_with_multi_dtypes(self, device, dtype, op):
# check (a) multi_tensor_apply is called and (b) numerical parity with for-loop and Tensor.copy_
foreach_copy_ = ForeachFuncWrapper(op.inplace_variant)
for sample in op.sample_inputs(
device, dtype, noncontiguous=False, allow_higher_dtype_scalars=True
):
for src_dtype in floating_types_and(torch.half, torch.bfloat16):
if src_dtype == dtype:
continue
self_tensors = [t.clone() for t in sample.input]
src_tensors = [t.to(src_dtype) for t in self_tensors]
out = foreach_copy_(
(self_tensors, src_tensors), is_cuda=True, expect_fastpath=True
)
ref_out = [
torch.empty_like(t).copy_(s)
for t, s in zip(self_tensors, src_tensors)
]
for t, ref_t in zip(out, ref_out):
self.assertTrue(torch.equal(t, ref_t))
# Test reverse-mode & forward-mode AD if supported.
@onlyCUDA
@ops(
foreach_unary_op_db
+ foreach_binary_op_db
+ foreach_pointwise_op_db
+ foreach_reduce_op_db
+ foreach_other_op_db,
dtypes=OpDTypes.supported,
allowed_dtypes=(torch.float64, torch.complex128),
)
@parametrize(
"inplace", (False, True), name_fn=lambda x: "inplace" if x else "outplace"
)
def test_autodiff(self, device, dtype, op, inplace):
if (not inplace) and not op.supports_out:
self.skipTest("out-of-place not implemented")
if inplace and op.has_no_in_place:
self.skipTest("in-place not implemented")
if not (
op.supports_autograd
or op.supports_inplace_autograd
or op.supports_forward_ad
):
self.skipTest("neither reverse mode nor forward mode supported")
# note(crcrpar): without this, some unary functions fail, unlike inplace and/or complex.
if (
(not inplace)
and dtype == torch.float64
and op.name
in (
"_foreach_acos",
"_foreach_asin",
"_foreach_log10",
"_foreach_log1p",
"_foreach_log2",
"_foreach_log",
"_foreach_pow",
"_foreach_sqrt",
)
):
value_range = {"low": 0.5, "high": 1.0}
else:
value_range = {}
for sample in op.sample_inputs(
device,
dtype,
requires_grad=True,
num_input_tensors=[5],
allow_higher_dtype_scalars=True,
**value_range,
):
# Skip `_foreach_pow.ScalarAndTensor(Scalar, Tensor[])`
if op.name == "_foreach_pow" and isinstance(sample.input, Number):
continue
func = None
if inplace:
# Call `clone` to avoid inplace modifications likewise
# `torch.testing._internal.common_utils.TestGradients._get_safe_inplace`
def inplace_func(*tensorlist):
kwargs = (
{"alpha": sample.kwargs["alpha"]}
if "alpha" in sample.kwargs
else {}
)
op.inplace_variant(
tuple(t.clone() for t in tensorlist), *sample.args, **kwargs
)
return tensorlist
func = inplace_func
else:
def outplace_func(*tensorlist):
kwargs = (
{"alpha": sample.kwargs["alpha"]}
if "alpha" in sample.kwargs
else {}
)
return op.method_variant(tensorlist, *sample.args, **kwargs)
func = outplace_func
working_sample, err_msg_pattern = check_autodiff_sample(
op, sample, dtype, inplace
)
def call_gradcheck():
gradcheck(
func,
sample.input,
raise_exception=True,
check_forward_ad=op.supports_forward_ad,
check_batched_forward_grad=False,
check_backward_ad=op.supports_autograd,
check_batched_grad=False,
)
if not working_sample:
if not err_msg_pattern:
# lhs of float64 and rhs of complex.
continue
with self.assertRaisesRegex(RuntimeError, re.escape(err_msg_pattern)):
call_gradcheck()
continue
call_gradcheck()
# Test per-tensor `grad_fn` behavior.
if inplace and op.supports_inplace_autograd:
# per-tensor `grad_fn` check.
hook_buffer = []
def get_grad_fn_hook(i):
def hook(grad_inputs, grad_outputs) -> None:
hook_buffer.append(i)
return hook
_inputs = [t.clone().detach().requires_grad_() for t in sample.input]
inputs = [t.clone() for t in _inputs]
kwargs = (
{"alpha": sample.kwargs["alpha"]}
if "alpha" in sample.kwargs
else {}
)
op.inplace_variant(inputs, *sample.args, **kwargs)
self.assertEqual(len({t.grad_fn for t in inputs}), len(inputs))
for i, t in enumerate(inputs):
t.grad_fn.register_hook(get_grad_fn_hook(i))
torch.autograd.grad(
inputs[0],
inputs=(_inputs[0],),
grad_outputs=(torch.rand_like(inputs[0]),),
retain_graph=True,
)
self.assertEqual(hook_buffer, [0])
hook_buffer.clear()
# tensors have different shapes.
sum_of_cloned_tensors = torch.cat([t.view(-1) for t in inputs]).sum()
grad_output = torch.rand_like(sum_of_cloned_tensors)
torch.autograd.grad(
sum_of_cloned_tensors,
inputs=tuple(_inputs),
grad_outputs=(grad_output,),
retain_graph=False,
)
self.assertEqual(hook_buffer, list(reversed(range(len(inputs)))))
# TODO(crcrpar): Hide this inside torch/testing/_internal.
# would end up adding another layer to `foreach_inputs_sample_func.__call__`
# so that we can use this function as something like the first argument of `filter` function.
# Even after moving this function to testing, I personally think it'd be better to check the error message.
def check_autodiff_sample(op, sample, dtype, is_inplace):
if op.name == "_foreach_abs" and is_inplace and dtype == torch.complex128:
return False, "In-place abs is not supported for complex tensors."
if op.name == "_foreach_sub" and (
(
isinstance(sample.args[-1], list)
and any(isinstance(a, bool) for a in sample.args[-1])
)
or isinstance(sample.args[-1], bool)
):
return False, _BOOL_SUB_ERR_MSG
if op.name == "_foreach_norm" and (not is_inplace):
return (
False,
"Trying to set a forward gradient that has a different size than that of the original Tensor, "
"this is not supported. Tensor is of size [] while the given forward gradient is of size [1, 1].",
)
rhs_arg_has_complex_number = sample.args and (
(
isinstance(sample.args[-1], list)
and any(isinstance(a, complex) for a in sample.args[-1])
)
or (isinstance(sample.args[-1], complex))
)
if rhs_arg_has_complex_number and dtype == torch.float64:
if op.name in (
"_foreach_clamp_max",
"_foreach_clamp_min",
"_foreach_maximum",
"_foreach_minimum",
):
return False, "clamp is not supported for complex types"
if op.name == "_foreach_lerp" and is_inplace:
return False, "value cannot be converted to type double without overflow"
if not is_inplace:
return False, ""
else:
if op.name == "_foreach_pow":
return False, "Found dtype Double but expected ComplexDouble"
if op.name in (
"_foreach_add",
"_foreach_sub",
"_foreach_mul",
"_foreach_div",
):
return (
False,
"result type ComplexDouble can't be cast to the desired output type Double",
)
return True, ""
instantiate_device_type_tests(TestForeach, globals())
if __name__ == "__main__":
run_tests()