blob: e5ed6e078c9eabc205dff9964bd1ce25be34bd76 [file] [log] [blame]
# Owner(s): ["module: fx.passes"]
from dataclasses import dataclass
import operator
import logging
import sys
import torch
from torch.fx._symbolic_trace import symbolic_trace
from torch.fx.passes.infra.partitioner import CapabilityBasedPartitioner
from torch.fx.passes.operator_support import OperatorSupport
from torch.fx.passes.utils.fuser_utils import fuse_by_partitions
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher
from torch.testing._internal.common_utils import run_tests, parametrize, instantiate_parametrized_tests
from torch.testing._internal.jit_utils import JitTestCase
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)
class TestModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
self.param = torch.nn.Parameter(torch.rand(4, 4))
def forward(self, a, b, c):
add = a + b
linear_1 = self.linear(add)
add_1 = add + c
add_2 = add_1 + self.param
add_3 = add_1 + linear_1
add_4 = add_2 + add_3
linear_2 = self.linear2(add_4)
add_5 = linear_2 + add_4
add_6 = add_5 + a
relu = add_6.relu()
return add_4, add_6, relu
class TestDeepModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a, b, c):
o = a + b
o = o + 1.0
# testing to avoid DFS uses in passes. Since Python has max recursion depth.
for _ in range(sys.getrecursionlimit() + 1):
o = o - c
return o
class TestPartitionFunctions:
@staticmethod
def forward1(a, b, c):
add = a + b
add_1 = add + b
add_2 = add_1 + c
relu_1 = add_2.relu()
add_3 = add_1 + add_2
add_4 = add_1 + relu_1 + add_3
relu_2 = add_4.relu()
add_5 = relu_2 + add_4
add_6 = add_5 + add_4
return add_4, add_6
@staticmethod
def forward2(a, b, _):
add = a + b
add_1 = add + b
relu_1 = add_1.relu() # blocked by this
add_3 = add_1 + relu_1
add_4 = add_1 + add_3
return add_4, add_1
@staticmethod
def forward3(a, b, c):
add = a + b
add_1 = a + c
add_2 = b + c
return add, add_1, add_2
@staticmethod
def forward4(a, b, c):
add = a + b
add_1 = a + c
add_2 = b + c
return torch.where(add > 0, add_1, add_2)
@staticmethod
def forward5(a, b, c):
# add should be fused right branch, as left branch is not supported
add = a + 1
# left branch
relu = add.relu()
# right branch
add_1 = add + 2
return relu, add_1
@staticmethod
def forward6(a, b, c):
# add should have its own partition, as neither branchs are supported
add = a + 1
# left branch
relu = add.relu()
# right branch
relu_1 = add.relu()
return relu, relu_1
@staticmethod
def forward7(a, b, c):
# both branches are supported, all adds should be fused together
add = a + 1
# left branch
add_1 = add + 2
# right branch is larger
add_2 = add + 1
add_3 = add_2 + 1
return add_3, add_1
@staticmethod
def forward8(a, b, c):
# both branches are in the same partition, add should join the same partition
add = a + 1
# left branch
add_1 = add + 2
# right branch
add_2 = add + 1
# left and right branch merges
add_3 = add_2 + add_1
return add_3
@staticmethod
def forward9(a, b, c):
add = a + 1
# branch 1
add_1 = add + 1
# branch 2
add_2 = add + 1
# branch_3
add_3 = add + 1
out = torch.stack([add_1, add_2, add_3])
return out
@staticmethod
def forward10(a, b, c):
add = a + 1
# branch 1
add_1 = add + 1
# branch 2
add_2 = add + 1
# branch 3: depends on branch 2
add_3 = add + add_2
out = torch.stack([add_1, add_2, add_3])
return out
@staticmethod
def forward11(a, b, c):
add = a + 1
# branch 1
add_1 = add.relu()
# branch 2 depends on branch 1
add_2 = add + add_1
# branch 3
add_3 = add.relu()
out = torch.stack([add_1, add_2, add_3])
return out
@staticmethod
def forward12(a, b, c):
b0 = a + 1.0
c0 = a + 1.5
x0 = b0.relu()
x1 = c0.relu()
b1 = b0 + x1
c1 = c0 + 1.2
# c2 has dependency on x0 & b0, when we merge {c0, c1, c2}
# this dependency should be updated to the fusion group and reflected
# on the decision to not fuse b0 & b1, which forms a cyclic dependency in
# the new graph
c2 = x0 + c0
return b1, c2
@staticmethod
def forward13(a, b, c):
a0, a1, a2, a3 = a.split(1, 0)
b1 = a0 + b
c1 = a1 + c
return b1 + c1
@staticmethod
def forward14(a, b, c):
a0, a1 = torch.ops.aten.std_mean(a)
out = a0 + 1.0
return out
@staticmethod
def forward15(a, b, c):
a0 = torch.ops.aten.view(a, [2, 2])
a1 = torch.ops.aten.permute(a0, [1, 0])
a2 = a1 + 1.0
a3 = torch.ops.aten.permute(a2, [1, 0])
a4 = a3 + 1.0
a5 = torch.ops.aten.permute(a4, [1, 0])
return torch.ops.aten.permute(a5, [1, 0])
@staticmethod
def forward16(a, b, c):
a0 = a - 1.0
a1 = torch.ops.aten.view(a0, [2, 2])
a2 = torch.ops.aten.permute(a1, [1, 0])
a3 = a2 + 1.0
a4 = torch.ops.aten.permute(a3, [1, 0])
a5 = a4 + 1.0
a6 = torch.ops.aten.permute(a5, [1, 0])
a7 = torch.ops.aten.permute(a6, [1, 0])
return a7 - 1.0
@staticmethod
def forward17(a, b, c, d, e, f):
a0 = a + b
a1 = c + d
a2 = e + f
return a0, a1, a2
@staticmethod
def forward18(a, b, c):
a0, a1 = torch.ops.aten.var_mean(a)
return a0
# A mock OperatorSupport class, where only operator.add is supported
class MockOperatorSupport(OperatorSupport):
def is_node_supported(self, submodules, node: torch.fx.Node) -> bool:
return (node.op == "call_function" and
node.target in {operator.add, operator.getitem,
torch.ops.aten.view,
torch.ops.aten.permute,
torch.ops.aten.std_mean})
@instantiate_parametrized_tests
class TestFXGraphPasses(JitTestCase):
@parametrize("fn, expected_partition, bookend_non_compute_pass", [
(TestPartitionFunctions.forward1, [["add_7", "add_6"], ["add_5", "add_4", "add_3"], ["add_2", "add_1", "add"]], False),
(TestPartitionFunctions.forward2, [["add_3", "add_2"], ["add_1", "add"]], False),
# 1 horizontal fusion with common producer
(TestPartitionFunctions.forward3, [["add_2", "add_1", "add"]], False),
(TestPartitionFunctions.forward4, [["add_2", "add_1", "add"]], False),
# 2 branches cases
(TestPartitionFunctions.forward5, [["add_1", "add"]], False),
(TestPartitionFunctions.forward6, [["add"]], False),
(TestPartitionFunctions.forward7, [["add_3", "add_2", "add", "add_1"]], False),
(TestPartitionFunctions.forward8, [["add_3", "add_2", "add", "add_1"]], False),
# 3 branch cases
(TestPartitionFunctions.forward9, [['add_3', 'add_2', 'add_1', 'add']], False),
(TestPartitionFunctions.forward10, [['add_3', 'add_2', 'add', 'add_1']], False),
(TestPartitionFunctions.forward11, [['add_1'], ['add']], False),
# 4 not necessarily the only partition, just to verify that there's no cyclic dependency after partition
(TestPartitionFunctions.forward12, [["add_2", "add_3", "add_4"], ["add", "add_1"]], False),
# 5 getitem special case
(TestPartitionFunctions.forward13, [["add_2", "add_1", "add"]], False),
(TestPartitionFunctions.forward14, [["add", "std_mean", "getitem", "getitem_1"]], False),
# 6 bookend non_compute pass
(TestPartitionFunctions.forward15, [["permute_1", "add_1", "add"]], True),
(TestPartitionFunctions.forward15, [['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']], False),
(TestPartitionFunctions.forward16, [["permute_1", "add_1", "add"]], True),
(TestPartitionFunctions.forward16, [['add_1', 'add', 'permute_1', 'view', 'permute_2', 'permute_3', 'permute']], False),
# should be empty partition, not a partiton with empty nodes
(TestPartitionFunctions.forward18, [], False),
])
def test_partitioner(self, fn, expected_partition, bookend_non_compute_pass):
traced = symbolic_trace(fn)
non_compute_ops = []
if bookend_non_compute_pass:
non_compute_ops = ["torch.ops.aten.view", "torch.ops.aten.permute"]
supported_ops = MockOperatorSupport()
partitioner = CapabilityBasedPartitioner(traced,
supported_ops,
allows_single_node_partition=True,
non_compute_ops=non_compute_ops)
partitions = partitioner.propose_partitions()
if bookend_non_compute_pass:
partitioner.remove_bookend_non_compute_ops(partitions)
partitions_name = [[node.name for node in partition.nodes] for partition in partitions]
assert len(partitions_name) == len(expected_partition)
for i in range(len(partitions_name)):
assert set(partitions_name[i]) == set(expected_partition[i])
fused_graph = partitioner.fuse_partitions(partitions)
a, b, c = torch.rand(4), torch.rand(4), torch.rand(4)
expected = fn(a, b, c)
result = fused_graph(a, b, c)
torch.testing.assert_close(expected, result)
@parametrize("fn, expected_partition", [
(TestPartitionFunctions.forward17, [['add', 'add_1', 'add_2']]),
])
def test_partitioner_independent_output(self, fn, expected_partition):
traced = symbolic_trace(fn)
supported_ops = MockOperatorSupport()
partitioner = CapabilityBasedPartitioner(traced,
supported_ops,
allows_single_node_partition=True)
partitions = partitioner.propose_partitions()
partitions_name = [[node.name for node in partition.nodes] for partition in partitions]
assert len(partitions_name) == len(expected_partition)
for i in range(len(partitions_name)):
assert set(partitions_name[i]) == set(expected_partition[i])
fused_graph = partitioner.fuse_partitions(partitions)
a, b, c, d, e, f = torch.rand(4), torch.rand(4), torch.rand(4), torch.rand(4), torch.rand(4), torch.rand(4)
expected = fn(a, b, c, d, e, f)
result = fused_graph(a, b, c, d, e, f)
torch.testing.assert_close(expected, result)
@parametrize("partition", [
[['add', 'add_1'], ['add_5', 'add_6']],
[['add', 'add_1', 'add_2']], # vertical fusion
[['add_2', 'add_3']], # horizontal fusion
[['add_3', 'add_4']],
[['add_6', 'add_5']], # arbitray node order
[['add_4', 'add_1', 'add_3', 'add_2']], # arbitray node order
[['add_5', 'add_6'], ['add_1', 'add_2', 'add_3', 'add_4']], # arbitray partition order
[['add_5', 'linear2']], # includes call_function + call_module node
[['add_6', 'relu']], # includes call_function + call_module node
[['param', 'add_2']], # includes get_attr + call_module nodes
[['param', 'add_1', 'linear']], # includes get_attr + call_function + call_module nodes
[["add", "linear", "add_1", "param", "add_2", "add_3", "add_4", "linear2", "add_5", "add_6", "relu"]], # full graph
])
def test_fuser_util(self, partition):
m = TestModule()
gm = symbolic_trace(m)
nodes_by_name = {node.name : node for node in gm.graph.nodes}
partitions = []
for node_names in partition:
partitions.append([nodes_by_name[name] for name in node_names])
fused_graph = fuse_by_partitions(gm, partitions)
a, b, c = torch.rand(4), torch.rand(4), torch.rand(4)
expected = m(a, b, c)
result = fused_graph(a, b, c)
torch.testing.assert_close(expected, result)
@parametrize("partition", [
[['add', 'add_1'], ['add_1', 'add_5', 'add_6']], # add_1 exists in multiple partitions
[['add', 'add_1', 'add_3']], # invalid partition: circular dependency
[['add_4', 'add_5']], # invalid partition: circular dependency
[['relu', 'add_5']], # invalid partition: circular dependency
])
def test_fuser_util_xfail(self, partition):
m = TestModule()
gm = symbolic_trace(m)
nodes_by_name = {node.name : node for node in gm.graph.nodes}
partitions = []
for node_names in partition:
partitions.append([nodes_by_name[name] for name in node_names])
with self.assertRaises(Exception):
fuse_by_partitions(gm, partitions)
def test_fuser_pass_deep_model(self):
m = TestDeepModule()
traced = symbolic_trace(m)
supported_ops = MockOperatorSupport()
partitioner = CapabilityBasedPartitioner(traced,
supported_ops,
allows_single_node_partition=True)
partitions = partitioner.propose_partitions()
@dataclass
class TestCase:
match_output: bool
match_placeholder: bool
num_matches: int
remove_overlapping_matches: bool = True
class SingleNodePattern:
@staticmethod
def forward(x):
val = torch.neg(x)
return torch.add(val, val)
@staticmethod
def pattern(a):
return torch.neg(a)
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 1),
TestCase(True, True, 0)
]
class SimplePattern:
@staticmethod
def forward(x, w1, w2):
m1 = torch.cat([w1, w2]).sum()
m2 = torch.cat([w2, w1]).sum()
m3 = torch.cat([m1, m2]).sum()
return x + torch.max(m1) + torch.max(m2) + m3
@staticmethod
def pattern(a, b):
return torch.cat([a, b]).sum()
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 3),
TestCase(True, False, 0),
TestCase(False, True, 2),
TestCase(True, True, 0)
]
class SimpleFullGraphMatching:
@staticmethod
def forward(x):
a = torch.neg(x)
return torch.add(a, a)
@staticmethod
def pattern(x):
a = torch.neg(x)
return torch.add(a, a)
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 1),
TestCase(True, True, 1)
]
class DiamondShapePatternTestCase:
@staticmethod
def forward(x):
a = torch.neg(x)
a = a.relu()
left = a.sigmoid()
right = a.relu()
out = left + right
return out
@staticmethod
def pattern(a):
a = a.relu()
left = a.sigmoid()
right = a.relu()
out = left + right
return out
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class NonFullyContainedMatches:
@staticmethod
def forward(x, w1, w2, b1, b2):
# fully contained matched subgraph
m1 = torch.cat([w1, w2])
m2 = torch.cat([x, b2])
t0 = torch.addmm(b1, m1, m2.t())
t0_sum = torch.sum(t0) # use of t0 is not leaking
# leaking matched subgraph, m3 is leaked
m3 = torch.cat([w1, w2])
m4 = torch.cat([x, b2])
t1 = torch.addmm(b1, m3, m4.t())
m3_sum = torch.sum(m3)
return t0_sum, m3_sum
@staticmethod
def pattern(x, w1, w2, b1, b2):
m1 = torch.cat([w1, w2])
m2 = torch.cat([x, b2])
return torch.addmm(b1, m1, m2.t())
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 1), # leaked used of placeholder is not leaking
]
class ChainRepeatedPattern:
@staticmethod
def forward(x):
x = torch.sigmoid(x)
x = torch.sigmoid(x)
x = torch.sigmoid(x)
return torch.sigmoid(x)
@staticmethod
def pattern(x):
return torch.sigmoid(torch.sigmoid(x))
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 3, remove_overlapping_matches=False),
TestCase(False, False, 2, remove_overlapping_matches=True),
TestCase(True, False, 1),
TestCase(False, True, 1),
TestCase(True, True, 0)
]
class QuantizationModel:
@staticmethod
def forward(x):
x += 3
x = x.dequantize()
x = torch.sigmoid(x)
x = x.to(torch.float16)
return x
@staticmethod
def pattern(x):
x = x.dequantize()
x = torch.sigmoid(x)
x = x.to(torch.float16)
return x
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class MultipleOutputsWithDependency:
@staticmethod
def forward(x):
y = x.relu()
z = y.sigmoid()
return z, y
@staticmethod
def pattern(a):
b = a.relu()
c = b.sigmoid()
return b, c # outputs have data dependency
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 1),
TestCase(True, True, 0)
]
class MultipleOutputsWithoutDependency:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
z = x.sum()
y = x.sigmoid()
out = y.sigmoid() + z.sum()
return out
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
c = a.sum()
return b, c
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 0),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class MultipleOutputsMultipleOverlappingMatches:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
z = x.sum()
z1 = x.sum()
y = x.sigmoid()
y1 = x.sigmoid()
return z + z1 + y + y1
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
c = a.sum()
return a, b, c
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 4, remove_overlapping_matches=False),
TestCase(False, False, 1, remove_overlapping_matches=True),
]
class MultipleOutputsMultipleNonOverlappingMatches:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
z = x.sum()
y = x.sigmoid()
x = x.relu()
z1 = x.sum()
y1 = x.sigmoid()
return z + z1 + y + y1
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
c = a.sum()
return b, c
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
]
class MultipleOutputsIdenticalAnchor:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
x = x.relu()
y = x.sigmoid()
y1 = x.sigmoid()
return y, y1
@staticmethod
def pattern(a):
a = a.relu()
b = a.sigmoid()
b1 = a.sigmoid()
return b, b1
test_cases = [
# match_output, match_placeholder, num_matches
# (False, False, 2), # FIXME: currently still matches to 2, should fix to 1
TestCase(True, False, 1),
TestCase(False, True, 0),
]
class MultipleOutputsHorizontalPattern:
@staticmethod
def forward(x):
x = x + 1
# target subgraph to match
y1 = x.relu()
y2 = x.sigmoid()
return y1, y2
@staticmethod
def pattern(a):
b1 = a.relu()
b2 = a.sigmoid()
return b1, b2
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
TestCase(True, False, 1),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
class MultiOutputWithWithInvalidMatches:
@staticmethod
def forward(x):
res0 = torch.nn.functional.linear(x, torch.rand(3, 3))
res1 = torch.sigmoid(res0)
res2 = res0 * res1
res3 = torch.sum(res2, dim=1)
return res3
@staticmethod
def pattern(a, b, c):
lin_res = torch.nn.functional.linear(a, b)
mul_res = lin_res * c
return lin_res, mul_res
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 0),
TestCase(True, False, 0),
TestCase(False, True, 0),
]
class QuantizationFp8Pattern:
@classmethod
def setup(cls):
cls.quantization = torch.library.Library("fp8_quantization", "DEF") # noqa: TOR901
cls.quantization.define("quantize_per_tensor_affine_fp8(Tensor self, int dtype, float scale) -> Tensor")
cls.quantization.define("dequantize_per_tensor_affine_fp8(Tensor self, int dtype, float scale) -> Tensor")
@classmethod
def tearDown(cls):
del cls.quantization
@staticmethod
def forward(self, arg0_1, arg1_1):
qt = torch.ops.fp8_quantization
_scale_0 = self._scale_0
quantize_per_tensor_affine_fp8 = qt.quantize_per_tensor_affine_fp8(arg0_1, 0, _scale_0)
dequantize_per_tensor_affine_fp8 = qt.dequantize_per_tensor_affine_fp8(quantize_per_tensor_affine_fp8, 0, _scale_0)
_scale_1 = self._scale_0
quantize_per_tensor_affine_fp8_1 = qt.quantize_per_tensor_affine_fp8(arg1_1, 0, _scale_1)
dequantize_per_tensor_affine_fp8_1 = qt.dequantize_per_tensor_affine_fp8(quantize_per_tensor_affine_fp8_1, 0, _scale_1)
add = torch.ops.aten.add.Tensor(dequantize_per_tensor_affine_fp8, dequantize_per_tensor_affine_fp8_1)
_scale_2 = self._scale_0
quantize_per_tensor_affine_fp8_2 = qt.quantize_per_tensor_affine_fp8(add, 0, _scale_2)
dequantize_per_tensor_affine_fp8_2 = qt.dequantize_per_tensor_affine_fp8(quantize_per_tensor_affine_fp8_2, 0, _scale_2)
return dequantize_per_tensor_affine_fp8_2
@staticmethod
def pattern(a, a_dtype, a_scale, b, b_dtype, b_scale, out_scale):
qt = torch.ops.fp8_quantization
a = qt.dequantize_per_tensor_affine_fp8(a, a_dtype, a_scale)
b = qt.dequantize_per_tensor_affine_fp8(b, b_dtype, b_scale)
output = torch.ops.aten.add.Tensor(a, b)
qt.dequantize_per_tensor_affine_fp8
output = qt.quantize_per_tensor_affine_fp8(output, a_dtype, out_scale)
return output
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 1),
]
class NoAnchorFound:
# This test case is for pattern where no matching anchor is found in the target graph
# `anchor` is the starting point of the pattern matching, it's usually the boundary returning nodes
@staticmethod
def forward(x):
x = x + 1
return x
@staticmethod
def pattern(a):
b1 = a.relu()
return b1
test_cases = [
# match_output, match_placeholder, num_matches
TestCase(False, False, 0),
TestCase(True, False, 0),
TestCase(False, True, 0),
TestCase(True, True, 0)
]
@instantiate_parametrized_tests
class TestFXMatcherUtils(JitTestCase):
@parametrize("test_model", [
SingleNodePattern,
SimplePattern,
SimpleFullGraphMatching,
DiamondShapePatternTestCase,
NonFullyContainedMatches,
ChainRepeatedPattern,
QuantizationModel,
MultipleOutputsWithDependency,
MultipleOutputsWithoutDependency,
MultipleOutputsMultipleOverlappingMatches,
MultipleOutputsMultipleNonOverlappingMatches,
MultipleOutputsIdenticalAnchor,
MultipleOutputsHorizontalPattern,
MultiOutputWithWithInvalidMatches,
QuantizationFp8Pattern,
NoAnchorFound,
])
def test_subgraph_matcher(self, test_model):
setup = getattr(test_model, "setup", None)
if callable(setup):
setup()
traced = symbolic_trace(test_model.forward)
pattern_traced = symbolic_trace(test_model.pattern)
for test_case in test_model.test_cases:
matcher = SubgraphMatcher(pattern_traced.graph,
match_output=test_case.match_output,
match_placeholder=test_case.match_placeholder,
remove_overlapping_matches=test_case.remove_overlapping_matches)
matches = matcher.match(traced.graph)
assert len(matches) == test_case.num_matches
for match in matches:
for node in pattern_traced.graph.nodes:
if not test_case.match_placeholder and node.op == "placeholder":
continue
if not test_case.match_output and node.op == "output":
continue
assert node in match.nodes_map
tearDown = getattr(test_model, "tearDown", None)
if callable(setup):
tearDown()
if __name__ == "__main__":
run_tests()