blob: f1d3ee0d71459ae47c745196ab33b42853220cd9 [file] [log] [blame]
# Owner(s): ["module: functionalization"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.fx.passes.reinplace import reinplace
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch._dynamo.source import ConstantSource
from torch.fx.experimental.sym_node import SymNode
try:
from functorch.experimental import functionalize
HAS_FUNCTIONALIZATION = True
except Exception as e:
HAS_FUNCTIONALIZATION = False
class TestReinplacePass(TestCase):
def test_reinplace_basic(self):
# Basic test: the out-of-place add() call should be converted
# into add_()
def f(x):
a = x.clone()
b = a.add(1)
return b
inpt = torch.ones(2)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, x_1):
clone = torch.ops.aten.clone.default(x_1); x_1 = None
add = torch.ops.aten.add_.Tensor(clone, 1); add = None
return clone
""")
def test_reinplace_with_view(self):
def f(x):
a = x.clone()
a_view = a.view(-1)
# We shouldn't re-inplace the first add(), because an alias of a is re-used later in the program
b = a.add(1)
# Second add() is fine to re-inplace
c = a_view.add(1)
return c
inpt = torch.ones(2)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, x_1):
clone = torch.ops.aten.clone.default(x_1); x_1 = None
view = torch.ops.aten.view.default(clone, [-1])
add = torch.ops.aten.add.Tensor(clone, 1); clone = add = None
add_1 = torch.ops.aten.add_.Tensor(view, 1); add_1 = None
return view
""")
def test_reinplace_different_metadata(self):
def f(a_):
a = a_.clone()
b = a + 1
# Naively, we shouldn't try to inplace the .ge() call,
# because that would require resizing "b" (from a float to a bool tensor).
c = torch.ge(b, a)
return c
inpt = torch.ones(4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
# The .ge() should not be reinplaced.
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
add = torch.ops.aten.add.Tensor(clone, 1)
ge = torch.ops.aten.ge.Tensor(add, clone); add = clone = None
return ge
""")
def test_reinplace_overlapping_memory(self):
def f(a_):
a = a_.clone()
b = a.expand(4, 4)
# Can't reinplace because b has overlapping memory.
c = b.add(1)
return c
inpt = torch.ones(1)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
expand = torch.ops.aten.expand.default(clone, [4, 4]); clone = None
add = torch.ops.aten.add.Tensor(expand, 1); expand = None
return add
""")
# This test won't actually run in CI, because it requires functionalize() from functorch.
# I'm planning on testing more comprehensively with torchbench models,
# but we can make this testing better once functorch moves into pytorch/pytorch.
def test_reinplace_scatter_op(self):
def f(a_):
# for now, don't test mutations to inputs
a = a_.clone()
e = a.view(-1)
b = a.view(-1)
c = b[0]
d = c.view(-1)
d.add_(1)
return a + e
if not HAS_FUNCTIONALIZATION:
return
inpt = torch.ones(4)
f2 = reinplace(make_fx(functionalize(f))(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
# NOTE: one slight pessimization here is the fact that
# there are a bunch of redundant views in the graph.
# Technically, half of these views are duplicates that we could de-dup.
# This shouldn't really hurt performance though, since creating an extra view
# is effectively just moving some metadata around (and allocating a new TensorImpl).
# We can/should update the pass in the future to clean this up.
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
view = torch.ops.aten.view.default(clone, [-1]); view = None
view_1 = torch.ops.aten.view.default(clone, [-1])
select = torch.ops.aten.select.int(view_1, 0, 0); view_1 = None
view_2 = torch.ops.aten.view.default(select, [-1]); select = None
add = torch.ops.aten.add_.Tensor(view_2, 1); add = None
view_3 = torch.ops.aten.view.default(clone, [-1]); clone = None
select_1 = torch.ops.aten.select.int(view_3, 0, 0); select_1 = None
view_4 = torch.ops.aten.view.default(view_2, []); view_2 = view_4 = None
view_5 = torch.ops.aten.view.default(view_3, [4]); view_3 = None
view_6 = torch.ops.aten.view.default(view_5, [-1])
select_2 = torch.ops.aten.select.int(view_6, 0, 0); view_6 = None
view_7 = torch.ops.aten.view.default(select_2, [-1]); select_2 = view_7 = None
view_8 = torch.ops.aten.view.default(view_5, [-1])
add_1 = torch.ops.aten.add_.Tensor(view_5, view_8); view_8 = add_1 = None
return view_5
""")
def test_reinplace_scatter_twice(self):
def f(a_):
# for now, don't test mutations to inputs
a = a_.clone()
b = a[:, 1]
c = b[1]
c.add_(1)
return a
if not HAS_FUNCTIONALIZATION:
return
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(functionalize(f))(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
slice_1 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select = torch.ops.aten.select.int(slice_1, 1, 1); slice_1 = None
select_1 = torch.ops.aten.select.int(select, 0, 1); select = None
add = torch.ops.aten.add_.Tensor(select_1, 1); select_1 = add = None
slice_2 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select_2 = torch.ops.aten.select.int(slice_2, 1, 1); slice_2 = select_2 = None
slice_3 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select_3 = torch.ops.aten.select.int(slice_3, 1, 1); slice_3 = None
select_4 = torch.ops.aten.select.int(select_3, 0, 1); select_3 = select_4 = None
return clone
""")
def test_reinplace_scatter_twice_with_different_view_op_valid(self):
def f(a_):
a = a_.clone()
b = a[:, 1]
c = b[1]
c_updated = c.add(1)
good_mirror_of_b = a.as_strided((4,), (4,), 1)
# good_mirror_of_b points to the same region of memory as b.
# and this scatter op below tries to scatter c_updated into the same region
# that c currently takes up.
# reinplacing logic checks this by confirming that:
# c_updated
# good_mirror_of_b.select(0, 1)
# have the same size/stride/storage_offset.
b_updated = torch.select_scatter(good_mirror_of_b, c_updated, 0, 1)
return b_updated
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
slice_1 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select = torch.ops.aten.select.int(slice_1, 1, 1); slice_1 = None
select_1 = torch.ops.aten.select.int(select, 0, 1); select = None
add = torch.ops.aten.add_.Tensor(select_1, 1); select_1 = add = None
as_strided = torch.ops.aten.as_strided.default(clone, [4], [4], 1); clone = None
return as_strided
""")
# Test example where we have a scatter op, where the base tensor
# has the same size/stride/storage offset (even though it is a different view),
# making it valid to re-inplace
def test_reinplace_scatter_twice_with_different_view_op_invalid(self):
def f(a_):
a = a_.clone()
b = a[:, 1]
c = b[1]
c_updated = c.add(1)
good_mirror_of_b = a.as_strided((4,), (4,), 1)
# The first arg to select_scatter is an equivalent view to b.
# However, the select_scatter call below tries to put c_updated
# into a different slice of "b" than what "c" currently occupies.
#
b_updated = torch.select_scatter(good_mirror_of_b, c_updated, 0, 0)
return b_updated
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
slice_1 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select = torch.ops.aten.select.int(slice_1, 1, 1); slice_1 = None
select_1 = torch.ops.aten.select.int(select, 0, 1); select = None
add = torch.ops.aten.add.Tensor(select_1, 1); select_1 = None
as_strided = torch.ops.aten.as_strided.default(clone, [4], [4], 1); clone = None
select_int = torch.ops.aten.select.int(as_strided, 0, 0)
copy__default = torch.ops.aten.copy_.default(select_int, add); select_int = add = copy__default = None
return as_strided
""") # noqa: B950
def test_reinplace_scatter_twice_with_different_view_op_invalid2(self):
def f(a_):
a = a_.clone()
b = a[:, 1]
c = b[1]
c_updated = c.add(1)
bad_mirror_of_b = a.as_strided((4,), (4,), 0)
# The first arg to select_scatter points to a different than c's base.
# This makes it invalid to re-inplace.
b_updated = torch.select_scatter(bad_mirror_of_b, c_updated, 0, 1)
return b_updated
inpt = torch.ones(4, 4)
f2 = reinplace(make_fx(f)(inpt), inpt)
expected_out = f(inpt)
actual_out = f2(inpt)
# self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self, a__1):
clone = torch.ops.aten.clone.default(a__1); a__1 = None
slice_1 = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
select = torch.ops.aten.select.int(slice_1, 1, 1); slice_1 = None
select_1 = torch.ops.aten.select.int(select, 0, 1); select = None
add = torch.ops.aten.add.Tensor(select_1, 1); select_1 = None
as_strided = torch.ops.aten.as_strided.default(clone, [4], [4], 0); clone = None
select_int = torch.ops.aten.select.int(as_strided, 0, 1)
copy__default = torch.ops.aten.copy_.default(select_int, add); select_int = add = copy__default = None
return as_strided
""") # noqa: B950
def test_out_node_updated(self):
def f():
x = torch.zeros(2, 2)
y = x.diagonal()
y_updated = y.add(1)
z = torch.diagonal_scatter(x, y_updated)
# reinplace needs to know to replace output [z] with [x]
return [z]
if not HAS_FUNCTIONALIZATION:
return
f2 = reinplace(make_fx(functionalize(f))())
expected_out = f()
actual_out = f2()
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self):
zeros = torch.ops.aten.zeros.default([2, 2], device = device(type='cpu'), pin_memory = False)
diagonal = torch.ops.aten.diagonal.default(zeros)
add = torch.ops.aten.add_.Tensor(diagonal, 1); diagonal = add = None
return [zeros]
""")
def test_reinplace_index_mutation(self):
def f():
a = torch.zeros(4, 4, 4)
a[:, 2:] = torch.ones(4, 2, 4)
return a
if not HAS_FUNCTIONALIZATION:
return
f2 = reinplace(make_fx(functionalize(f))())
expected_out = f()
actual_out = f2()
self.assertEqual(actual_out, expected_out)
self.assertExpectedInline(f2.code, """\
def forward(self):
zeros = torch.ops.aten.zeros.default([4, 4, 4], device = device(type='cpu'), pin_memory = False)
ones = torch.ops.aten.ones.default([4, 2, 4], device = device(type='cpu'), pin_memory = False)
slice_1 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807)
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 2, 9223372036854775807); slice_1 = None
copy = torch.ops.aten.copy_.default(slice_2, ones); slice_2 = ones = copy = None
slice_3 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807); slice_3 = None
slice_4 = torch.ops.aten.slice.Tensor(zeros, 0, 0, 9223372036854775807)
slice_5 = torch.ops.aten.slice.Tensor(slice_4, 1, 2, 9223372036854775807); slice_4 = slice_5 = None
return zeros
""")
def test_reinplace_sym_input(self):
# Symbolic input test: the out-of-place add() call should be converted
# into add_(), and symbolic input won't cause any error.
def f(x, index):
a = torch.select(x, 0, index)
clone = a.clone()
b = clone.add(1)
return b
x = torch.randn((4, 8, 16, 16), requires_grad=False)
index = 2
shape_env = ShapeEnv()
symbol = shape_env.create_symbol(index, source=ConstantSource(
f"__testing_only{len(shape_env.var_to_val)}"))
sym_index = torch.SymInt(SymNode(symbol, shape_env, int, hint=index))
inpt = [x, sym_index]
f2 = reinplace(make_fx(f)(*inpt), *inpt)
real_inpt = [x, index]
expected_out = f(*real_inpt)
actual_out = f2(*real_inpt)
self.assertEqual(actual_out, expected_out)
print(f2.code)
self.assertExpectedInline(f2.code, """\
def forward(self, x_1, index_1):
select = torch.ops.aten.select.int(x_1, 0, index_1); x_1 = index_1 = None
clone = torch.ops.aten.clone.default(select); select = None
add = torch.ops.aten.add_.Tensor(clone, 1); add = None
return clone
""")
if __name__ == '__main__':
run_tests()