| # Owner(s): ["module: mkldnn"] |
| import sys |
| import torch |
| import unittest |
| import itertools |
| import torch.nn as nn |
| from functools import wraps |
| from concurrent import futures |
| import torch.nn.functional as F |
| import torch.fx.experimental.optimization as optimization |
| from torch.testing._internal.jit_utils import JitTestCase |
| from torch.testing._internal.common_utils import run_tests, TEST_SCIPY, IS_WINDOWS, IS_MACOS |
| from torch.testing._internal.common_device_type import ( |
| instantiate_device_type_tests, |
| onlyCPU, |
| dtypes |
| ) |
| |
| # We use this wrapper to run UTs of TorchVision models because of a memory-leak |
| # issue with JIT tracing that causes traced model objects to persist in the |
| # memory. Ref: https://github.com/pytorch/pytorch/issues/35600 |
| # Memory requirement for running these UTs was thus increasing cumulatively, and |
| # invoked the Linux kernel OOM killer on linux.2xlarge PyTorch CI runners, which |
| # only have 16 GB RAM. Cumulatively, these UTs had been using more than 14 GB |
| # memory (as per psutils). So now we run each TorchVision model UTs in separate processes. |
| def separate_process(func): |
| @wraps(func) |
| def wrapper(*args, **kwargs): |
| with futures.ProcessPoolExecutor() as executor: |
| future = executor.submit(func, *args, **kwargs) |
| futures.wait([future]) |
| return wrapper |
| |
| def is_avx512_supported(): |
| if sys.platform != 'linux': |
| return False |
| with open("/proc/cpuinfo", encoding="ascii") as f: |
| lines = f.read() |
| return "avx512" in lines |
| |
| IS_AVX512_UNSUPPORTED = not is_avx512_supported() |
| |
| LLGA_FUSION_GROUP = 'prim::oneDNNFusionGroup' |
| LLGA_NOT_ENABLED = not torch.backends.mkldnn.is_available() or IS_WINDOWS or IS_MACOS |
| |
| def warmup_forward(f, *args, profiling_count=3): |
| for i in range(profiling_count): |
| results = f(*args) |
| |
| return results |
| |
| class JitLlgaTestCase(JitTestCase): |
| |
| def setUp(self): |
| # PyTorch has divergent op support for AMP in JIT & eager modes |
| # so we disable AMP for JIT & leverage eager-mode AMP. |
| # Ref: https://github.com/pytorch/pytorch/issues/75956 |
| self.original_autocast_mode = torch._C._jit_set_autocast_mode(False) |
| torch.jit.enable_onednn_fusion(True) |
| |
| def tearDown(self): |
| torch.jit.enable_onednn_fusion(False) |
| torch._C._jit_set_autocast_mode(self.original_autocast_mode) |
| |
| def checkTrace(self, m, x, dtype=torch.float32, *args, **kwargs): |
| if isinstance(m, torch.nn.Module): |
| m.eval() |
| with torch.no_grad(), torch._jit_internal._disable_emit_hooks(): |
| if dtype == torch.bfloat16: |
| # We rely upon eager-mode AMP support for BF16 |
| with torch.cpu.amp.autocast(cache_enabled=False, dtype=torch.bfloat16): |
| traced = torch.jit.trace(m, x) |
| if isinstance(m, torch.nn.Module): |
| traced = torch.jit.freeze(traced) |
| warmup_forward(traced, *x) |
| ref_o = m(*x) |
| fwd_graph = traced.graph_for(*x) |
| else: |
| traced = torch.jit.trace(m, x) |
| if isinstance(m, torch.nn.Module): |
| traced = torch.jit.freeze(traced) |
| warmup_forward(traced, *x) |
| ref_o = m(*x) |
| fwd_graph = traced.graph_for(*x) |
| |
| jit_o = traced(*x) |
| self.assertEqual(jit_o, ref_o) |
| return traced, fwd_graph |
| |
| |
| def assertFused(self, graph, fused_patterns): |
| for pat in fused_patterns: |
| self.assertGraphContainsExactly(graph, pat, 0) |
| |
| def findFusionGroups(self, graph): |
| result = [] |
| for n in graph.nodes(): |
| if n.kind() == LLGA_FUSION_GROUP: |
| result.append(n.g('Subgraph')) |
| continue |
| for block in n.blocks(): |
| result += self.findFusionGroups(block) |
| return result |
| |
| def checkPatterns(self, graph, patterns): |
| fusion_groups = self.findFusionGroups(graph) |
| assert len(fusion_groups) == len(patterns), "length of subgraphs not equal to length of given patterns" |
| |
| for i in range(len(fusion_groups)): |
| for pattern in patterns[i]: |
| self.assertGraphContains(fusion_groups[i], pattern) |
| |
| try: |
| import torchvision |
| HAS_TORCHVISION = True |
| except ImportError: |
| HAS_TORCHVISION = False |
| except RuntimeError: |
| HAS_TORCHVISION = False |
| skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, 'no torchvision') |
| |
| def get_eltwise_fn(name): |
| if hasattr(torch, name): |
| return getattr(torch, name) |
| elif hasattr(F, name): |
| return getattr(F, name) |
| elif name == 'hardswish_': |
| return torch.nn.Hardswish(inplace=True) |
| else: |
| raise NameError(f'Eltwise function {name} not found') |
| |
| |
| @unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.") |
| @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") |
| class TestOp(JitLlgaTestCase): |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d(self, dtype): |
| for [spatial, in_channels, out_channels, kernel, padding, stride, dilation, g, bias] in itertools.product( |
| [7, 8], |
| [8, 15], |
| [7, 16], |
| [3, 4], |
| [0, 2], |
| [1, 2], |
| [1, 2], |
| [1, 2], |
| [True, False]): |
| |
| m = nn.Conv2d(in_channels=in_channels * g, |
| out_channels=out_channels * g, |
| kernel_size=kernel, |
| padding=padding, |
| stride=stride, |
| dilation=dilation, |
| groups=g, |
| bias=bias) |
| |
| x = torch.rand(1, in_channels * g, spatial, spatial) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_bn2d(self, dtype): |
| m = nn.BatchNorm2d(32).eval() |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype) |
| # single-op partition shouldn't be created for softmax |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_eltwise(self, dtype): |
| class M(nn.Module): |
| def __init__(self, eltwise_fn): |
| super().__init__() |
| self.eltwise = eltwise_fn |
| |
| def forward(self, x): |
| return self.eltwise(x) |
| |
| for eltwise in ['relu', 'gelu']: |
| eltwise_fn = get_eltwise_fn(eltwise) |
| m = M(eltwise_fn) |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype) |
| # single-op partition shouldn't be created. |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_max_pool2d(self, dtype): |
| for [spatial, kernel, padding, stride, dilation, ceil_mode] in itertools.product( |
| [15, 16, 17, 18, 19], |
| [4, 5], |
| [0, 1, 2], |
| [1, 2], # [1, 2, 4], TODO: fix issue in pad calculation |
| [1], # [1, 2], TODO: backend support for dilation |
| [True, False]): |
| |
| m = nn.MaxPool2d(kernel_size=kernel, |
| stride=stride, |
| padding=padding, |
| dilation=dilation, |
| ceil_mode=ceil_mode) |
| |
| x = torch.rand(1, 4, spatial, spatial) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_avg_pool2d(self, dtype): |
| for [spatial, kernel, padding, stride, ceil_mode, count_include_pad] in itertools.product( |
| [15, 16, 17, 18, 19], |
| [4, 5], |
| [0, 1, 2], |
| [1, 2, 4], |
| [False], # TODO: oneDNN Graph does not fully support ceil_mode=True |
| [True, False]): |
| |
| m = nn.AvgPool2d(kernel_size=kernel, |
| stride=stride, |
| padding=padding, |
| ceil_mode=ceil_mode, |
| count_include_pad=count_include_pad) |
| |
| x = torch.rand(1, 4, spatial, spatial) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_variable_kernel_avg_pool2d(self, dtype): |
| class M(nn.Module): |
| def forward(self, x): |
| x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0, count_include_pad=False) |
| return x |
| |
| x = torch.randn(1, 1000, 1, 1) |
| m = M() |
| _, graph = self.checkTrace(m, [x], dtype) |
| # kernel_size is not Constant, shouldn't have any LLGA_FUSION_GROUP |
| # TODO: with shape specialization, should have 1 LLGA_FUSION_GROUP |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_softmax(self, dtype): |
| for dim in [-4, -3, -2, -1, 0, 1, 2, 3]: |
| m = nn.Softmax(dim=dim) |
| x = torch.rand(8, 12, 12, 12) |
| _, graph = self.checkTrace(m, [x], dtype) |
| # single-op partition shouldn't be created for softmax |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_linear(self, dtype): |
| for bias in [True, False]: |
| x = torch.rand(32, 28) |
| m = torch.nn.Linear(in_features=28, out_features=64, bias=bias) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::linear']) |
| |
| |
| def _gen_binary_inputs(self, gen_permute=True): |
| for xshape, yshape in [ |
| [[1, 32, 28, 28], [1, 32, 28, 28]], |
| [[1, 32, 28, 28], [1, 1, 28, 28]], |
| [[1, 32, 28, 28], [28]], |
| [[1, 32, 28, 28], [1]], |
| |
| ]: |
| yield torch.rand(xshape), torch.rand(yshape) |
| if gen_permute and xshape != yshape: |
| yield torch.rand(yshape), torch.rand(xshape) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_add(self, dtype): |
| def forward_add(x, y): |
| return torch.add(x, y, alpha=2) |
| |
| for x, y in self._gen_binary_inputs(): |
| _, graph = self.checkTrace(forward_add, [x, y], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_add_scalar(self, dtype): |
| def add_scalar(x): |
| return 42 + x + 3.14 |
| |
| x = torch.rand(32, 32) |
| _, graph = self.checkTrace(add_scalar, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_addmm(self, dtype): |
| # Just a sidenote - comparison of eager-mode & oneDNN Graph JIT outputs of |
| # addmm (which entails matmul-bias-add fusion) might require higher tolerance |
| # bounds for BF16. This is subject to change in the near future. |
| def addmm(x, y, z): |
| # alpha and beta are 1, by default |
| return torch.addmm(z, x, y) |
| |
| x = torch.rand(64, 32) |
| y = torch.rand(32, 32) |
| z = torch.rand(64, 32) |
| _, graph = self.checkTrace(addmm, [x, y, z], dtype) |
| # single-op partition should be created for matmul with bias. |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_mul(self, dtype): |
| def forward_mul(x, y): |
| return torch.mul(x, y) * 3 |
| |
| for x, y in self._gen_binary_inputs(): |
| _, graph = self.checkTrace(forward_mul, [x, y], dtype) |
| # single-op partitions shouldn't be created |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_identity_binary(self, dtype): |
| def forward(x): |
| return x * 1 + 0.0 |
| |
| x = torch.rand(32) |
| _, graph = self.checkTrace(forward, [x], dtype) |
| self.assertFused(graph, ['aten::add', 'aten::mul']) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_layer_norm(self, dtype): |
| # TODO: support more normalized_shape |
| m = torch.nn.LayerNorm(10) |
| x = torch.randn(2, 5, 10, 10) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_cat(self, dtype): |
| def cat_along_dim(d): |
| def forward_cat(*inputs): |
| return torch.cat(inputs, d) |
| return forward_cat |
| |
| for xshape in [ |
| [8, 8, 8, 8], |
| [64, 8, 32], |
| [2048, 64], |
| ]: |
| for d in range(len(xshape)): |
| x = torch.rand(xshape) |
| _, graph = self.checkTrace(cat_along_dim(d), [x, x, x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_typecheck(self, dtype): |
| x = torch.rand(32, 28, dtype=dtype) |
| m = torch.nn.Linear(in_features=28, out_features=64, bias=True, dtype=dtype) |
| traced, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::linear']) |
| # change the shape of the input, we should enter fallback graph |
| x = torch.rand(5, 28, dtype=dtype) |
| self.assertEqual(m(x), traced(x)) |
| |
| |
| @unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.") |
| @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") |
| class TestFusionPattern(JitLlgaTestCase): |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d_eltwise(self, dtype): |
| class M(nn.Module): |
| def __init__(self, eltwise_fn): |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=False) |
| self.eltwise = eltwise_fn |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.eltwise(x) |
| x = self.conv2(x) |
| x = self.eltwise(x) |
| return x |
| |
| for eltwise in ['relu', 'leaky_relu', 'sigmoid', 'square', |
| 'abs', 'exp', 'hardswish', 'tanh', 'hardtanh']: |
| for inplace in [True, False]: |
| eltwise_fn_name = eltwise + '_' if inplace else eltwise |
| eltwise_fn = get_eltwise_fn(eltwise_fn_name) |
| |
| m = M(eltwise_fn) |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype=dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2) |
| # test if relu_ is replace with relu by mutation removal pass |
| self.assertFused(graph, ['aten::' + eltwise_fn_name]) |
| # test if relu is fused into the fusion group |
| self.assertFused(graph, ['aten::' + eltwise]) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d_silu(self, dtype): |
| class M(nn.Module): |
| def __init__(self, inplace): |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.eltwise = nn.SiLU(inplace=inplace) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.eltwise(x) |
| x = self.conv2(x) |
| return x |
| for inplace in [False, True]: |
| for memory_format in [torch.contiguous_format, torch.channels_last]: |
| m = M(inplace) |
| x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format) |
| |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2) |
| # oneDNN graph does not have silu OP. The bridge will convert silu to sigmoid - mul |
| # Inplace op will become outplace op on the JIT graph |
| patterns = [ |
| ["aten::_convolution", 'aten::sigmoid', 'aten::mul'], |
| ["aten::_convolution"] |
| ] |
| silu_op = 'aten::silu_' if inplace else 'aten::silu' |
| self.assertFused(graph, ['aten::_convolution', silu_op]) |
| self.checkPatterns(graph, patterns) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_ensure_tensor_is_rewrapped(self, dtype): |
| class M(nn.Module): |
| def __init__(self, eltwise_fn): |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.eltwise = eltwise_fn |
| self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7)) |
| |
| def forward(self, x, y): |
| x = self.conv1(x) |
| x = self.eltwise(x) |
| x = self.conv2(x) |
| x = self.eltwise(x) |
| y = self.conv3(y) |
| y = self.eltwise(y) |
| y = self.conv4(y) |
| y = self.eltwise(y) |
| |
| x = torch.add(x, y) |
| x = self.adaptive_avg_pool_2d(x) |
| return x |
| |
| eltwise_fn_name = 'relu' |
| eltwise_fn = get_eltwise_fn(eltwise_fn_name) |
| m = M(eltwise_fn) |
| m = m.to(memory_format=torch.channels_last) |
| x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last) |
| y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last) |
| # Simply test if the output is accurate |
| # The output of the second partition is input to adaptive_avg_pool2d, which is |
| # unsupported by LLGA. In resnext101 32x16d, we encountered an accuracy issue. |
| _, graph = self.checkTrace(m, [x, y], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 4) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d_clamp(self, dtype): |
| class M(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv5 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = torch.clamp(x, min=float('-inf')) |
| x = self.conv2(x) |
| x = torch.clamp(x, min=-5) |
| x = self.conv3(x) |
| x = torch.clamp(x, min=0, max=float('inf')) |
| x = self.conv4(x) |
| x = torch.clamp(x, min=1, max=5) |
| x = self.conv5(x) |
| x = torch.clamp(x, max=2) |
| return x |
| |
| for inplace in [False, True]: |
| for memory_format in [torch.contiguous_format, torch.channels_last]: |
| x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format) |
| m = M() |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 5) |
| self.assertFused(graph, ['aten::_convolution', "aten::clamp"]) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d_bn(self, dtype): |
| class M(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.bn1 = nn.BatchNorm2d(32) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.bn1(x) |
| return x |
| |
| m = M().eval() |
| if dtype == torch.bfloat16: |
| m = optimization.fuse(m) |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm']) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d_bn_relu(self, dtype): |
| class M(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.bn1 = nn.BatchNorm2d(32) |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| x = self.bn1(x) |
| x = F.relu(x) |
| return x |
| |
| m = M().eval() |
| if dtype == torch.bfloat16: |
| m = optimization.fuse(m) |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm', |
| 'aten::relu']) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_bn2d_eltwise(self, dtype): |
| class M(nn.Module): |
| def __init__(self, eltwise_fn): |
| super().__init__() |
| self.eltwise = eltwise_fn |
| self.bn = nn.BatchNorm2d(32) |
| |
| def forward(self, x): |
| x = self.bn(x) |
| x = self.eltwise(x) |
| return x |
| |
| for eltwise in ['relu']: |
| eltwise_fn = get_eltwise_fn(eltwise) |
| m = M(eltwise_fn).eval() |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::' + eltwise]) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_linear_eltwise(self, dtype): |
| class M(nn.Module): |
| def __init__(self, eltwise_fn, bias): |
| super().__init__() |
| self.linear = nn.Linear(28, 64, bias) |
| self.eltwise = eltwise_fn |
| |
| def forward(self, x): |
| x = self.linear(x) |
| x = self.eltwise(x) |
| return x |
| |
| for [has_bias, eltwise] in itertools.product( |
| [True, False], |
| ['relu', 'gelu', 'sigmoid', 'hardtanh', 'relu6', 'elu']): |
| |
| eltwise_fn = get_eltwise_fn(eltwise) |
| m = M(eltwise_fn, has_bias) |
| x = torch.rand(32, 28, requires_grad=False) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::' + eltwise]) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_conv2d_sum(self, dtype): |
| class M(nn.Module): |
| def __init__(self, bias=False): |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=bias) |
| self.bn1 = nn.BatchNorm2d(32) |
| self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=bias) |
| self.bn2 = nn.BatchNorm2d(32) |
| self.relu = nn.ReLU() |
| self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=bias) |
| self.bn3 = nn.BatchNorm2d(32) |
| |
| def forward(self, x, y): |
| x = self.conv1(x) |
| x = self.bn1(x) |
| y = self.conv2(y) |
| y = self.bn2(y) |
| z = self.relu(x + y) |
| z = self.conv3(z) |
| z = self.bn3(z) |
| return z |
| |
| for bias in [True, False]: |
| m = M(bias).eval() |
| if dtype == torch.bfloat16: |
| m = optimization.fuse(m) |
| x = torch.rand(1, 32, 16, 16, requires_grad=False) |
| y = torch.rand(1, 32, 16, 16, requires_grad=False) |
| _, graph = self.checkTrace(m, [x, y], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 3) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_wildcard(self, dtype): |
| class M(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.eltwise = nn.ReLU() |
| |
| def forward(self, x): |
| x = self.conv1(x) |
| y = self.eltwise(x) |
| return [x, y] |
| |
| # The pattern is as the following: |
| # conv |
| # | \ |
| # eltwise \ |
| # | \ |
| # ListConstruct |
| # |
| # The output of conv is used by a wildcard op: ListConstruct. |
| # Thus conv-eltwise cannot be selected into the same Partition. |
| m = M() |
| x = torch.rand(1, 32, 28, 28) |
| _, graph = self.checkTrace(m, [x], dtype) |
| # conv can exist in a single-op oneDNN Graph partition but not relu |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1) |
| self.assertFused(graph, ['aten::_convolution']) |
| |
| @onlyCPU |
| @dtypes(torch.int32) |
| def test_wildcard_unsupported_dtype(self, dtype): |
| class M(nn.Module): |
| def forward(self, x): |
| y = x // 2 |
| return y |
| |
| # In shufflenet_v2_x1_0, channels_per_groups is computed as: |
| # channels_per_group = num_channels // groups |
| # JIT IR converts groups to Long dtype, which is unsupported |
| # by oneDNN Graph, viz. Long(requires_grad=0, device=cpu) = prim::Constant[value={2}]() |
| # This test just ensures that the bridge code can handle |
| # unsupported dtypes for inputs to ops unsupported |
| # by oneDNN Graph. In this particular UT, aten::floor_divide |
| # would be added as a wildcard in graph-construction stage. |
| m = M() |
| x = torch.tensor([32], dtype=dtype) |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0) |
| |
| @onlyCPU |
| @dtypes(torch.float32, torch.bfloat16) |
| def test_rewrap_tensor_input_to_pytorch(self, dtype): |
| class M(nn.Module): |
| def __init__(self, eltwise_fn): |
| super().__init__() |
| self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True) |
| self.eltwise = eltwise_fn |
| self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7)) |
| |
| def forward(self, x, y): |
| x = self.conv1(x) |
| x = self.eltwise(x) |
| x = self.conv2(x) |
| x = self.eltwise(x) |
| x = torch.add(x, y) |
| x = self.adaptive_avg_pool_2d(x) |
| return x |
| |
| eltwise_fn_name = 'relu' |
| eltwise_fn = get_eltwise_fn(eltwise_fn_name) |
| m = M(eltwise_fn) |
| m = m.to(memory_format=torch.channels_last) |
| x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last) |
| y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last) |
| # Simply test if the output is accurate |
| # The output of the second partition is input to adaptive_avg_pool2d, which is |
| # unsupported by LLGA, so it must be handled by PyTorch, which should receive |
| # correct strides info of the channels-last tensor. |
| graph, _ = self.checkTrace(m, [x, y], dtype) |
| |
| @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") |
| class TestEnableDisableLlgaFuser(JitTestCase): |
| def setUp(self): |
| super().setUp() |
| self.is_enabled = torch._C._jit_set_llga_enabled(False) |
| |
| def tearDown(self): |
| torch._C._jit_set_llga_enabled(self.is_enabled) |
| super().tearDown() |
| |
| def test_context_manager(self): |
| x = torch.randn(4, 8) |
| y = torch.randn(4, 8) |
| with torch.jit.fuser('fuser3'): |
| with torch.jit.fuser('fuser3'): |
| |
| def t1(x, y): |
| o = x + y |
| o = o + 2.0 |
| return o |
| t_jit = torch.jit.script(t1) |
| t_jit(x, y) |
| t_jit(x, y) |
| self.assertGraphContains(t_jit.graph_for(x, y), LLGA_FUSION_GROUP) |
| |
| def t2(x, y): |
| o = x + y |
| o = o + 3.0 |
| return o |
| t_jit_2 = torch.jit.script(t2) |
| t_jit_2(x, y) |
| t_jit_2(x, y) |
| self.assertGraphContains(t_jit_2.graph_for(x, y), LLGA_FUSION_GROUP) |
| |
| def t3(x, y): |
| o = x + y |
| o = o + 4.0 |
| return o |
| t_jit_3 = torch.jit.script(t3) |
| t_jit_3(x, y) |
| t_jit_3(x, y) |
| self.assertGraphContainsExactly(t_jit_3.graph_for(x, y), LLGA_FUSION_GROUP, 0) |
| |
| |
| @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") |
| @unittest.skip("Enable when integration with dynamo aot_autograd is more stable") |
| class TestDynamoAOT(JitTestCase): |
| def test_dynamo_aot_ts_onednn(self): |
| class Seq(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.layers = nn.Sequential( |
| nn.Linear(10, 10), |
| nn.ReLU(), |
| nn.Linear(10, 10), |
| nn.ReLU(), |
| ) |
| |
| def forward(self, x): |
| return self.layers(x) |
| |
| mod = Seq() |
| |
| import torch._dynamo |
| aot_mod = torch._dynamo.optimize("aot_ts", nopython=True)(mod) |
| |
| for _ in range(10): |
| with torch.jit.fuser("fuser3"): |
| loss = aot_mod(torch.rand([10, 10])).sum() |
| loss.backward() |
| |
| torch._dynamo.reset() |
| |
| |
| @unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.") |
| @unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled") |
| class TestModel(JitLlgaTestCase): |
| @skipIfNoTorchVision |
| def _test_vision(self, model_name, dtype): |
| m = getattr(torchvision.models, model_name)().eval() |
| if dtype == torch.bfloat16: |
| m = optimization.fuse(m) |
| x = torch.rand(1, 3, 224, 224) / 10 |
| _, graph = self.checkTrace(m, [x], dtype) |
| self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm', |
| 'aten::relu', 'aten::linear', |
| 'aten::avg_pool2d', 'aten::max_pool2d']) |
| |
| for model_name, enabled in [ |
| ['resnet50', True], |
| ['resnext50_32x4d', True], |
| ['resnext101_32x8d', True], |
| ['densenet121', True], |
| ['densenet161', True], |
| ['densenet169', True], |
| ['densenet201', True], |
| ['efficientnet_b0', True], |
| ['efficientnet_b1', True], |
| ['efficientnet_b2', True], |
| ['efficientnet_b3', True], |
| ['efficientnet_b4', True], |
| ['efficientnet_b5', True], |
| ['efficientnet_b6', True], |
| ['efficientnet_b7', True], |
| ['regnet_y_400mf', True], |
| ['googlenet', TEST_SCIPY], |
| ['mobilenet_v2', True], |
| ['mobilenet_v3_large', True], |
| ['mnasnet1_0', True], |
| ['squeezenet1_0', True], |
| ['vgg16', True], |
| ['alexnet', True], |
| ['shufflenet_v2_x1_0', True], |
| ['wide_resnet50_2', True], |
| ]: |
| def _wrapper(mname, dtype): |
| @unittest.skipIf(not enabled, 'Disabled') |
| @separate_process |
| def test(self, dtype=dtype): |
| return self._test_vision(mname, dtype) |
| return test |
| |
| for dtype in [torch.bfloat16, torch.float32]: |
| setattr(TestModel, 'test_vision_{}_{}'.format(model_name, str(dtype).split("torch.")[1]), _wrapper(model_name, dtype)) |
| |
| |
| instantiate_device_type_tests(TestFusionPattern, globals()) |
| instantiate_device_type_tests(TestOp, globals()) |
| |
| if __name__ == '__main__': |
| run_tests() |