blob: 45a86096ae225b6a395568ec220f371b3a2f6c8a [file] [log] [blame]
# Owner(s): ["module: mkldnn"]
import sys
import torch
import unittest
import itertools
import torch.nn as nn
from functools import wraps
from concurrent import futures
import torch.nn.functional as F
import torch.fx.experimental.optimization as optimization
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_utils import run_tests, TEST_SCIPY, IS_WINDOWS, IS_MACOS
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
dtypes
)
# We use this wrapper to run UTs of TorchVision models because of a memory-leak
# issue with JIT tracing that causes traced model objects to persist in the
# memory. Ref: https://github.com/pytorch/pytorch/issues/35600
# Memory requirement for running these UTs was thus increasing cumulatively, and
# invoked the Linux kernel OOM killer on linux.2xlarge PyTorch CI runners, which
# only have 16 GB RAM. Cumulatively, these UTs had been using more than 14 GB
# memory (as per psutils). So now we run each TorchVision model UTs in separate processes.
def separate_process(func):
@wraps(func)
def wrapper(*args, **kwargs):
with futures.ProcessPoolExecutor() as executor:
future = executor.submit(func, *args, **kwargs)
futures.wait([future])
return wrapper
def is_avx512_supported():
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return "avx512" in lines
IS_AVX512_UNSUPPORTED = not is_avx512_supported()
LLGA_FUSION_GROUP = 'prim::oneDNNFusionGroup'
LLGA_NOT_ENABLED = not torch.backends.mkldnn.is_available() or IS_WINDOWS or IS_MACOS
def warmup_forward(f, *args, profiling_count=3):
for i in range(profiling_count):
results = f(*args)
return results
class JitLlgaTestCase(JitTestCase):
def setUp(self):
# PyTorch has divergent op support for AMP in JIT & eager modes
# so we disable AMP for JIT & leverage eager-mode AMP.
# Ref: https://github.com/pytorch/pytorch/issues/75956
self.original_autocast_mode = torch._C._jit_set_autocast_mode(False)
torch.jit.enable_onednn_fusion(True)
def tearDown(self):
torch.jit.enable_onednn_fusion(False)
torch._C._jit_set_autocast_mode(self.original_autocast_mode)
def checkTrace(self, m, x, dtype=torch.float32, *args, **kwargs):
if isinstance(m, torch.nn.Module):
m.eval()
with torch.no_grad(), torch._jit_internal._disable_emit_hooks():
if dtype == torch.bfloat16:
# We rely upon eager-mode AMP support for BF16
with torch.cpu.amp.autocast(cache_enabled=False, dtype=torch.bfloat16):
traced = torch.jit.trace(m, x)
if isinstance(m, torch.nn.Module):
traced = torch.jit.freeze(traced)
warmup_forward(traced, *x)
ref_o = m(*x)
fwd_graph = traced.graph_for(*x)
else:
traced = torch.jit.trace(m, x)
if isinstance(m, torch.nn.Module):
traced = torch.jit.freeze(traced)
warmup_forward(traced, *x)
ref_o = m(*x)
fwd_graph = traced.graph_for(*x)
jit_o = traced(*x)
self.assertEqual(jit_o, ref_o)
return traced, fwd_graph
def assertFused(self, graph, fused_patterns):
for pat in fused_patterns:
self.assertGraphContainsExactly(graph, pat, 0)
def findFusionGroups(self, graph):
result = []
for n in graph.nodes():
if n.kind() == LLGA_FUSION_GROUP:
result.append(n.g('Subgraph'))
continue
for block in n.blocks():
result += self.findFusionGroups(block)
return result
def checkPatterns(self, graph, patterns):
fusion_groups = self.findFusionGroups(graph)
assert len(fusion_groups) == len(patterns), "length of subgraphs not equal to length of given patterns"
for i in range(len(fusion_groups)):
for pattern in patterns[i]:
self.assertGraphContains(fusion_groups[i], pattern)
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
except RuntimeError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, 'no torchvision')
def get_eltwise_fn(name):
if hasattr(torch, name):
return getattr(torch, name)
elif hasattr(F, name):
return getattr(F, name)
elif name == 'hardswish_':
return torch.nn.Hardswish(inplace=True)
else:
raise NameError(f'Eltwise function {name} not found')
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestOp(JitLlgaTestCase):
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d(self, dtype):
for [spatial, in_channels, out_channels, kernel, padding, stride, dilation, g, bias] in itertools.product(
[7, 8],
[8, 15],
[7, 16],
[3, 4],
[0, 2],
[1, 2],
[1, 2],
[1, 2],
[True, False]):
m = nn.Conv2d(in_channels=in_channels * g,
out_channels=out_channels * g,
kernel_size=kernel,
padding=padding,
stride=stride,
dilation=dilation,
groups=g,
bias=bias)
x = torch.rand(1, in_channels * g, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_bn2d(self, dtype):
m = nn.BatchNorm2d(32).eval()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created for softmax
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.eltwise = eltwise_fn
def forward(self, x):
return self.eltwise(x)
for eltwise in ['relu', 'gelu']:
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created.
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_max_pool2d(self, dtype):
for [spatial, kernel, padding, stride, dilation, ceil_mode] in itertools.product(
[15, 16, 17, 18, 19],
[4, 5],
[0, 1, 2],
[1, 2], # [1, 2, 4], TODO: fix issue in pad calculation
[1], # [1, 2], TODO: backend support for dilation
[True, False]):
m = nn.MaxPool2d(kernel_size=kernel,
stride=stride,
padding=padding,
dilation=dilation,
ceil_mode=ceil_mode)
x = torch.rand(1, 4, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_avg_pool2d(self, dtype):
for [spatial, kernel, padding, stride, ceil_mode, count_include_pad] in itertools.product(
[15, 16, 17, 18, 19],
[4, 5],
[0, 1, 2],
[1, 2, 4],
[False], # TODO: oneDNN Graph does not fully support ceil_mode=True
[True, False]):
m = nn.AvgPool2d(kernel_size=kernel,
stride=stride,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad)
x = torch.rand(1, 4, spatial, spatial)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_variable_kernel_avg_pool2d(self, dtype):
class M(nn.Module):
def forward(self, x):
x = F.avg_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=0, count_include_pad=False)
return x
x = torch.randn(1, 1000, 1, 1)
m = M()
_, graph = self.checkTrace(m, [x], dtype)
# kernel_size is not Constant, shouldn't have any LLGA_FUSION_GROUP
# TODO: with shape specialization, should have 1 LLGA_FUSION_GROUP
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_softmax(self, dtype):
for dim in [-4, -3, -2, -1, 0, 1, 2, 3]:
m = nn.Softmax(dim=dim)
x = torch.rand(8, 12, 12, 12)
_, graph = self.checkTrace(m, [x], dtype)
# single-op partition shouldn't be created for softmax
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_linear(self, dtype):
for bias in [True, False]:
x = torch.rand(32, 28)
m = torch.nn.Linear(in_features=28, out_features=64, bias=bias)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::linear'])
def _gen_binary_inputs(self, gen_permute=True):
for xshape, yshape in [
[[1, 32, 28, 28], [1, 32, 28, 28]],
[[1, 32, 28, 28], [1, 1, 28, 28]],
[[1, 32, 28, 28], [28]],
[[1, 32, 28, 28], [1]],
]:
yield torch.rand(xshape), torch.rand(yshape)
if gen_permute and xshape != yshape:
yield torch.rand(yshape), torch.rand(xshape)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_add(self, dtype):
def forward_add(x, y):
return torch.add(x, y, alpha=2)
for x, y in self._gen_binary_inputs():
_, graph = self.checkTrace(forward_add, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_add_scalar(self, dtype):
def add_scalar(x):
return 42 + x + 3.14
x = torch.rand(32, 32)
_, graph = self.checkTrace(add_scalar, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_addmm(self, dtype):
# Just a sidenote - comparison of eager-mode & oneDNN Graph JIT outputs of
# addmm (which entails matmul-bias-add fusion) might require higher tolerance
# bounds for BF16. This is subject to change in the near future.
def addmm(x, y, z):
# alpha and beta are 1, by default
return torch.addmm(z, x, y)
x = torch.rand(64, 32)
y = torch.rand(32, 32)
z = torch.rand(64, 32)
_, graph = self.checkTrace(addmm, [x, y, z], dtype)
# single-op partition should be created for matmul with bias.
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_mul(self, dtype):
def forward_mul(x, y):
return torch.mul(x, y) * 3
for x, y in self._gen_binary_inputs():
_, graph = self.checkTrace(forward_mul, [x, y], dtype)
# single-op partitions shouldn't be created
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_identity_binary(self, dtype):
def forward(x):
return x * 1 + 0.0
x = torch.rand(32)
_, graph = self.checkTrace(forward, [x], dtype)
self.assertFused(graph, ['aten::add', 'aten::mul'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_layer_norm(self, dtype):
# TODO: support more normalized_shape
m = torch.nn.LayerNorm(10)
x = torch.randn(2, 5, 10, 10)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_cat(self, dtype):
def cat_along_dim(d):
def forward_cat(*inputs):
return torch.cat(inputs, d)
return forward_cat
for xshape in [
[8, 8, 8, 8],
[64, 8, 32],
[2048, 64],
]:
for d in range(len(xshape)):
x = torch.rand(xshape)
_, graph = self.checkTrace(cat_along_dim(d), [x, x, x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_typecheck(self, dtype):
x = torch.rand(32, 28, dtype=dtype)
m = torch.nn.Linear(in_features=28, out_features=64, bias=True, dtype=dtype)
traced, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::linear'])
# change the shape of the input, we should enter fallback graph
x = torch.rand(5, 28, dtype=dtype)
self.assertEqual(m(x), traced(x))
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestFusionPattern(JitLlgaTestCase):
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=False)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
return x
for eltwise in ['relu', 'leaky_relu', 'sigmoid', 'square',
'abs', 'exp', 'hardswish', 'tanh', 'hardtanh']:
for inplace in [True, False]:
eltwise_fn_name = eltwise + '_' if inplace else eltwise
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype=dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2)
# test if relu_ is replace with relu by mutation removal pass
self.assertFused(graph, ['aten::' + eltwise_fn_name])
# test if relu is fused into the fusion group
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_silu(self, dtype):
class M(nn.Module):
def __init__(self, inplace):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = nn.SiLU(inplace=inplace)
def forward(self, x):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
return x
for inplace in [False, True]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
m = M(inplace)
x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 2)
# oneDNN graph does not have silu OP. The bridge will convert silu to sigmoid - mul
# Inplace op will become outplace op on the JIT graph
patterns = [
["aten::_convolution", 'aten::sigmoid', 'aten::mul'],
["aten::_convolution"]
]
silu_op = 'aten::silu_' if inplace else 'aten::silu'
self.assertFused(graph, ['aten::_convolution', silu_op])
self.checkPatterns(graph, patterns)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_ensure_tensor_is_rewrapped(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = eltwise_fn
self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7))
def forward(self, x, y):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
y = self.conv3(y)
y = self.eltwise(y)
y = self.conv4(y)
y = self.eltwise(y)
x = torch.add(x, y)
x = self.adaptive_avg_pool_2d(x)
return x
eltwise_fn_name = 'relu'
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
m = m.to(memory_format=torch.channels_last)
x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
# Simply test if the output is accurate
# The output of the second partition is input to adaptive_avg_pool2d, which is
# unsupported by LLGA. In resnext101 32x16d, we encountered an accuracy issue.
_, graph = self.checkTrace(m, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 4)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_clamp(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv4 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv5 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
def forward(self, x):
x = self.conv1(x)
x = torch.clamp(x, min=float('-inf'))
x = self.conv2(x)
x = torch.clamp(x, min=-5)
x = self.conv3(x)
x = torch.clamp(x, min=0, max=float('inf'))
x = self.conv4(x)
x = torch.clamp(x, min=1, max=5)
x = self.conv5(x)
x = torch.clamp(x, max=2)
return x
for inplace in [False, True]:
for memory_format in [torch.contiguous_format, torch.channels_last]:
x = torch.rand(1, 32, 28, 28).to(memory_format=memory_format)
m = M()
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 5)
self.assertFused(graph, ['aten::_convolution', "aten::clamp"])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_bn(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(32)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
return x
m = M().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_bn_relu(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.bn1 = nn.BatchNorm2d(32)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = F.relu(x)
return x
m = M().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm',
'aten::relu'])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_bn2d_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.eltwise = eltwise_fn
self.bn = nn.BatchNorm2d(32)
def forward(self, x):
x = self.bn(x)
x = self.eltwise(x)
return x
for eltwise in ['relu']:
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn).eval()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_linear_eltwise(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn, bias):
super().__init__()
self.linear = nn.Linear(28, 64, bias)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.linear(x)
x = self.eltwise(x)
return x
for [has_bias, eltwise] in itertools.product(
[True, False],
['relu', 'gelu', 'sigmoid', 'hardtanh', 'relu6', 'elu']):
eltwise_fn = get_eltwise_fn(eltwise)
m = M(eltwise_fn, has_bias)
x = torch.rand(32, 28, requires_grad=False)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::' + eltwise])
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_conv2d_sum(self, dtype):
class M(nn.Module):
def __init__(self, bias=False):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn2 = nn.BatchNorm2d(32)
self.relu = nn.ReLU()
self.conv3 = nn.Conv2d(32, 32, 3, padding=1, bias=bias)
self.bn3 = nn.BatchNorm2d(32)
def forward(self, x, y):
x = self.conv1(x)
x = self.bn1(x)
y = self.conv2(y)
y = self.bn2(y)
z = self.relu(x + y)
z = self.conv3(z)
z = self.bn3(z)
return z
for bias in [True, False]:
m = M(bias).eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 32, 16, 16, requires_grad=False)
y = torch.rand(1, 32, 16, 16, requires_grad=False)
_, graph = self.checkTrace(m, [x, y], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 3)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_wildcard(self, dtype):
class M(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = nn.ReLU()
def forward(self, x):
x = self.conv1(x)
y = self.eltwise(x)
return [x, y]
# The pattern is as the following:
# conv
# | \
# eltwise \
# | \
# ListConstruct
#
# The output of conv is used by a wildcard op: ListConstruct.
# Thus conv-eltwise cannot be selected into the same Partition.
m = M()
x = torch.rand(1, 32, 28, 28)
_, graph = self.checkTrace(m, [x], dtype)
# conv can exist in a single-op oneDNN Graph partition but not relu
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 1)
self.assertFused(graph, ['aten::_convolution'])
@onlyCPU
@dtypes(torch.int32)
def test_wildcard_unsupported_dtype(self, dtype):
class M(nn.Module):
def forward(self, x):
y = x // 2
return y
# In shufflenet_v2_x1_0, channels_per_groups is computed as:
# channels_per_group = num_channels // groups
# JIT IR converts groups to Long dtype, which is unsupported
# by oneDNN Graph, viz. Long(requires_grad=0, device=cpu) = prim::Constant[value={2}]()
# This test just ensures that the bridge code can handle
# unsupported dtypes for inputs to ops unsupported
# by oneDNN Graph. In this particular UT, aten::floor_divide
# would be added as a wildcard in graph-construction stage.
m = M()
x = torch.tensor([32], dtype=dtype)
_, graph = self.checkTrace(m, [x], dtype)
self.assertGraphContainsExactly(graph, LLGA_FUSION_GROUP, 0)
@onlyCPU
@dtypes(torch.float32, torch.bfloat16)
def test_rewrap_tensor_input_to_pytorch(self, dtype):
class M(nn.Module):
def __init__(self, eltwise_fn):
super().__init__()
self.conv1 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, 3, padding=1, bias=True)
self.eltwise = eltwise_fn
self.adaptive_avg_pool_2d = nn.AdaptiveAvgPool2d((5, 7))
def forward(self, x, y):
x = self.conv1(x)
x = self.eltwise(x)
x = self.conv2(x)
x = self.eltwise(x)
x = torch.add(x, y)
x = self.adaptive_avg_pool_2d(x)
return x
eltwise_fn_name = 'relu'
eltwise_fn = get_eltwise_fn(eltwise_fn_name)
m = M(eltwise_fn)
m = m.to(memory_format=torch.channels_last)
x = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
y = torch.rand(1, 32, 28, 28).to(memory_format=torch.channels_last)
# Simply test if the output is accurate
# The output of the second partition is input to adaptive_avg_pool2d, which is
# unsupported by LLGA, so it must be handled by PyTorch, which should receive
# correct strides info of the channels-last tensor.
graph, _ = self.checkTrace(m, [x, y], dtype)
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestEnableDisableLlgaFuser(JitTestCase):
def setUp(self):
super().setUp()
self.is_enabled = torch._C._jit_set_llga_enabled(False)
def tearDown(self):
torch._C._jit_set_llga_enabled(self.is_enabled)
super().tearDown()
def test_context_manager(self):
x = torch.randn(4, 8)
y = torch.randn(4, 8)
with torch.jit.fuser('fuser3'):
with torch.jit.fuser('fuser3'):
def t1(x, y):
o = x + y
o = o + 2.0
return o
t_jit = torch.jit.script(t1)
t_jit(x, y)
t_jit(x, y)
self.assertGraphContains(t_jit.graph_for(x, y), LLGA_FUSION_GROUP)
def t2(x, y):
o = x + y
o = o + 3.0
return o
t_jit_2 = torch.jit.script(t2)
t_jit_2(x, y)
t_jit_2(x, y)
self.assertGraphContains(t_jit_2.graph_for(x, y), LLGA_FUSION_GROUP)
def t3(x, y):
o = x + y
o = o + 4.0
return o
t_jit_3 = torch.jit.script(t3)
t_jit_3(x, y)
t_jit_3(x, y)
self.assertGraphContainsExactly(t_jit_3.graph_for(x, y), LLGA_FUSION_GROUP, 0)
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
@unittest.skip("Enable when integration with dynamo aot_autograd is more stable")
class TestDynamoAOT(JitTestCase):
def test_dynamo_aot_ts_onednn(self):
class Seq(nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = nn.Sequential(
nn.Linear(10, 10),
nn.ReLU(),
nn.Linear(10, 10),
nn.ReLU(),
)
def forward(self, x):
return self.layers(x)
mod = Seq()
import torch._dynamo
aot_mod = torch._dynamo.optimize("aot_ts", nopython=True)(mod)
for _ in range(10):
with torch.jit.fuser("fuser3"):
loss = aot_mod(torch.rand([10, 10])).sum()
loss.backward()
torch._dynamo.reset()
@unittest.skipIf(IS_AVX512_UNSUPPORTED, "This test fails for BF16 on machines without AVX512.")
@unittest.skipIf(LLGA_NOT_ENABLED, "MKL-DNN build is disabled")
class TestModel(JitLlgaTestCase):
@skipIfNoTorchVision
def _test_vision(self, model_name, dtype):
m = getattr(torchvision.models, model_name)().eval()
if dtype == torch.bfloat16:
m = optimization.fuse(m)
x = torch.rand(1, 3, 224, 224) / 10
_, graph = self.checkTrace(m, [x], dtype)
self.assertFused(graph, ['aten::_convolution', 'aten::batch_norm',
'aten::relu', 'aten::linear',
'aten::avg_pool2d', 'aten::max_pool2d'])
for model_name, enabled in [
['resnet50', True],
['resnext50_32x4d', True],
['resnext101_32x8d', True],
['densenet121', True],
['densenet161', True],
['densenet169', True],
['densenet201', True],
['efficientnet_b0', True],
['efficientnet_b1', True],
['efficientnet_b2', True],
['efficientnet_b3', True],
['efficientnet_b4', True],
['efficientnet_b5', True],
['efficientnet_b6', True],
['efficientnet_b7', True],
['regnet_y_400mf', True],
['googlenet', TEST_SCIPY],
['mobilenet_v2', True],
['mobilenet_v3_large', True],
['mnasnet1_0', True],
['squeezenet1_0', True],
['vgg16', True],
['alexnet', True],
['shufflenet_v2_x1_0', True],
['wide_resnet50_2', True],
]:
def _wrapper(mname, dtype):
@unittest.skipIf(not enabled, 'Disabled')
@separate_process
def test(self, dtype=dtype):
return self._test_vision(mname, dtype)
return test
for dtype in [torch.bfloat16, torch.float32]:
setattr(TestModel, 'test_vision_{}_{}'.format(model_name, str(dtype).split("torch.")[1]), _wrapper(model_name, dtype))
instantiate_device_type_tests(TestFusionPattern, globals())
instantiate_device_type_tests(TestOp, globals())
if __name__ == '__main__':
run_tests()