blob: dfc85352661fa3d657870a5e596a777fb253f1e7 [file] [log] [blame]
# mypy: ignore-errors
# Owner(s): ["module: numpy"]
import sys
from itertools import product
import numpy as np
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
dtypes,
instantiate_device_type_tests,
onlyCPU,
skipMeta,
)
from torch.testing._internal.common_dtype import all_types_and_complex_and
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase
# For testing handling NumPy objects and sending tensors to / accepting
# arrays from NumPy.
class TestNumPyInterop(TestCase):
# Note: the warning this tests for only appears once per program, so
# other instances of this warning should be addressed to avoid
# the tests depending on the order in which they're run.
@onlyCPU
def test_numpy_non_writeable(self, device):
arr = np.zeros(5)
arr.flags["WRITEABLE"] = False
self.assertWarns(UserWarning, lambda: torch.from_numpy(arr))
@onlyCPU
def test_numpy_unresizable(self, device) -> None:
x = np.zeros((2, 2))
y = torch.from_numpy(x)
with self.assertRaises(ValueError):
x.resize((5, 5))
z = torch.randn(5, 5)
w = z.numpy()
with self.assertRaises(RuntimeError):
z.resize_(10, 10)
with self.assertRaises(ValueError):
w.resize((10, 10))
@onlyCPU
def test_to_numpy(self, device) -> None:
def get_castable_tensor(shape, dtype):
if dtype.is_floating_point:
dtype_info = torch.finfo(dtype)
# can't directly use min and max, because for double, max - min
# is greater than double range and sampling always gives inf.
low = max(dtype_info.min, -1e10)
high = min(dtype_info.max, 1e10)
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
else:
# can't directly use min and max, because for int64_t, max - min
# is greater than int64_t range and triggers UB.
low = max(torch.iinfo(dtype).min, int(-1e10))
high = min(torch.iinfo(dtype).max, int(1e10))
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
return t.to(dtype)
dtypes = [
torch.uint8,
torch.int8,
torch.short,
torch.int,
torch.half,
torch.float,
torch.double,
torch.long,
]
for dtp in dtypes:
# 1D
sz = 10
x = get_castable_tensor(sz, dtp)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
# 1D > 0 storage offset
xm = get_castable_tensor(sz * 2, dtp)
x = xm.narrow(0, sz - 1, sz)
self.assertTrue(x.storage_offset() > 0)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
def check2d(x, y):
for i in range(sz1):
for j in range(sz2):
self.assertEqual(x[i][j], y[i][j])
# empty
x = torch.tensor([]).to(dtp)
y = x.numpy()
self.assertEqual(y.size, 0)
# contiguous 2D
sz1 = 3
sz2 = 5
x = get_castable_tensor((sz1, sz2), dtp)
y = x.numpy()
check2d(x, y)
self.assertTrue(y.flags["C_CONTIGUOUS"])
# with storage offset
xm = get_castable_tensor((sz1 * 2, sz2), dtp)
x = xm.narrow(0, sz1 - 1, sz1)
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
self.assertTrue(y.flags["C_CONTIGUOUS"])
# non-contiguous 2D
x = get_castable_tensor((sz2, sz1), dtp).t()
y = x.numpy()
check2d(x, y)
self.assertFalse(y.flags["C_CONTIGUOUS"])
# with storage offset
xm = get_castable_tensor((sz2 * 2, sz1), dtp)
x = xm.narrow(0, sz2 - 1, sz2).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
# non-contiguous 2D with holes
xm = get_castable_tensor((sz2 * 2, sz1 * 2), dtp)
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
if dtp != torch.half:
# check writeable
x = get_castable_tensor((3, 4), dtp)
y = x.numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
y = x.t().numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
def test_to_numpy_bool(self, device) -> None:
x = torch.tensor([True, False], dtype=torch.bool)
self.assertEqual(x.dtype, torch.bool)
y = x.numpy()
self.assertEqual(y.dtype, np.bool_)
for i in range(len(x)):
self.assertEqual(x[i], y[i])
x = torch.tensor([True], dtype=torch.bool)
self.assertEqual(x.dtype, torch.bool)
y = x.numpy()
self.assertEqual(y.dtype, np.bool_)
self.assertEqual(x[0], y[0])
@skipIfTorchDynamo("conj bit not implemented in TensorVariable yet")
def test_to_numpy_force_argument(self, device) -> None:
for force in [False, True]:
for requires_grad in [False, True]:
for sparse in [False, True]:
for conj in [False, True]:
data = [[1 + 2j, -2 + 3j], [-1 - 2j, 3 - 2j]]
x = torch.tensor(
data, requires_grad=requires_grad, device=device
)
y = x
if sparse:
if requires_grad:
continue
x = x.to_sparse()
if conj:
x = x.conj()
y = x.resolve_conj()
expect_error = (
requires_grad or sparse or conj or not device == "cpu"
)
error_msg = r"Use (t|T)ensor\..*(\.numpy\(\))?"
if not force and expect_error:
self.assertRaisesRegex(
(RuntimeError, TypeError), error_msg, lambda: x.numpy()
)
self.assertRaisesRegex(
(RuntimeError, TypeError),
error_msg,
lambda: x.numpy(force=False),
)
elif force and sparse:
self.assertRaisesRegex(
TypeError, error_msg, lambda: x.numpy(force=True)
)
else:
self.assertEqual(x.numpy(force=force), y)
def test_from_numpy(self, device) -> None:
dtypes = [
np.double,
np.float64,
np.float16,
np.complex64,
np.complex128,
np.int64,
np.int32,
np.int16,
np.int8,
np.uint8,
np.longlong,
np.bool_,
]
complex_dtypes = [
np.complex64,
np.complex128,
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
tensor_from_array = torch.from_numpy(array)
# TODO: change to tensor equality check once HalfTensor
# implements `==`
for i in range(len(array)):
self.assertEqual(tensor_from_array[i], array[i])
# ufunc 'remainder' not supported for complex dtypes
if dtype not in complex_dtypes:
# This is a special test case for Windows
# https://github.com/pytorch/pytorch/issues/22615
array2 = array % 2
tensor_from_array2 = torch.from_numpy(array2)
for i in range(len(array2)):
self.assertEqual(tensor_from_array2[i], array2[i])
# Test unsupported type
array = np.array(["foo", "bar"], dtype=np.dtype(np.str_))
with self.assertRaises(TypeError):
tensor_from_array = torch.from_numpy(array)
# check storage offset
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[1]
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1]
self.assertEqual(torch.from_numpy(x), expected)
# check noncontiguous
x = np.linspace(1, 25, 25)
x.shape = (5, 5)
expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t()
self.assertEqual(torch.from_numpy(x.T), expected)
# check noncontiguous with holes
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[:, 1]
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1]
self.assertEqual(torch.from_numpy(x), expected)
# check zero dimensional
x = np.zeros((0, 2))
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
x = np.zeros((2, 0))
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
# check ill-sized strides raise exception
x = np.array([3.0, 5.0, 8.0])
x.strides = (3,)
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
@skipIfTorchDynamo("No need to test invalid dtypes that should fail by design.")
def test_from_numpy_no_leak_on_invalid_dtype(self):
# This used to leak memory as the `from_numpy` call raised an exception and didn't decref the temporary
# object. See https://github.com/pytorch/pytorch/issues/121138
x = np.array("value".encode("ascii"))
for _ in range(1000):
try:
torch.from_numpy(x)
except TypeError:
pass
self.assertTrue(sys.getrefcount(x) == 2)
@skipMeta
def test_from_list_of_ndarray_warning(self, device):
warning_msg = (
r"Creating a tensor from a list of numpy.ndarrays is extremely slow"
)
with self.assertWarnsOnceRegex(UserWarning, warning_msg):
torch.tensor([np.array([0]), np.array([1])], device=device)
def test_ctor_with_invalid_numpy_array_sequence(self, device):
# Invalid list of numpy array
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor(
[np.random.random(size=(3, 3)), np.random.random(size=(3, 0))],
device=device,
)
# Invalid list of list of numpy array
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor(
[[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]],
device=device,
)
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor(
[
[np.random.random(size=(3, 3)), np.random.random(size=(3, 3))],
[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))],
],
device=device,
)
# expected shape is `[1, 2, 3]`, hence we try to iterate over 0-D array
# leading to type error : not a sequence.
with self.assertRaisesRegex(TypeError, "not a sequence"):
torch.tensor(
[[np.random.random(size=(3)), np.random.random()]], device=device
)
# list of list or numpy array.
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor([[1, 2, 3], np.random.random(size=(2,))], device=device)
@onlyCPU
def test_ctor_with_numpy_scalar_ctor(self, device) -> None:
dtypes = [
np.double,
np.float64,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
np.bool_,
]
for dtype in dtypes:
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
@onlyCPU
def test_numpy_index(self, device):
i = np.array([0, 1, 2], dtype=np.int32)
x = torch.randn(5, 5)
for idx in i:
self.assertFalse(isinstance(idx, int))
self.assertEqual(x[idx], x[int(idx)])
@onlyCPU
def test_numpy_index_multi(self, device):
for dim_sz in [2, 8, 16, 32]:
i = np.zeros((dim_sz, dim_sz, dim_sz), dtype=np.int32)
i[: dim_sz // 2, :, :] = 1
x = torch.randn(dim_sz, dim_sz, dim_sz)
self.assertTrue(x[i == 1].numel() == np.sum(i))
@onlyCPU
def test_numpy_array_interface(self, device):
types = [
torch.DoubleTensor,
torch.FloatTensor,
torch.HalfTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.ByteTensor,
]
dtypes = [
np.float64,
np.float32,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
]
for tp, dtype in zip(types, dtypes):
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
if np.dtype(dtype).kind == "u": # type: ignore[misc]
# .type expects a XxxTensor, which have no type hints on
# purpose, so ignore during mypy type checking
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
array = np.array([1, 2, 3, 4], dtype=dtype)
else:
x = torch.tensor([1, -2, 3, -4]).type(tp) # type: ignore[call-overload]
array = np.array([1, -2, 3, -4], dtype=dtype)
# Test __array__ w/o dtype argument
asarray = np.asarray(x)
self.assertIsInstance(asarray, np.ndarray)
self.assertEqual(asarray.dtype, dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test __array_wrap__, same dtype
abs_x = np.abs(x)
abs_array = np.abs(array)
self.assertIsInstance(abs_x, tp)
for i in range(len(x)):
self.assertEqual(abs_x[i], abs_array[i])
# Test __array__ with dtype argument
for dtype in dtypes:
x = torch.IntTensor([1, -2, 3, -4])
asarray = np.asarray(x, dtype=dtype)
self.assertEqual(asarray.dtype, dtype)
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
if np.dtype(dtype).kind == "u": # type: ignore[misc]
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], wrapped_x[i])
else:
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test some math functions with float types
float_types = [torch.DoubleTensor, torch.FloatTensor]
float_dtypes = [np.float64, np.float32]
for tp, dtype in zip(float_types, float_dtypes):
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
array = np.array([1, 2, 3, 4], dtype=dtype)
for func in ["sin", "sqrt", "ceil"]:
ufunc = getattr(np, func)
res_x = ufunc(x)
res_array = ufunc(array)
self.assertIsInstance(res_x, tp)
for i in range(len(x)):
self.assertEqual(res_x[i], res_array[i])
# Test functions with boolean return value
for tp, dtype in zip(types, dtypes):
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
array = np.array([1, 2, 3, 4], dtype=dtype)
geq2_x = np.greater_equal(x, 2)
geq2_array = np.greater_equal(array, 2).astype("uint8")
self.assertIsInstance(geq2_x, torch.ByteTensor)
for i in range(len(x)):
self.assertEqual(geq2_x[i], geq2_array[i])
@onlyCPU
def test_multiplication_numpy_scalar(self, device) -> None:
for np_dtype in [
np.float32,
np.float64,
np.int32,
np.int64,
np.int16,
np.uint8,
]:
for t_dtype in [torch.float, torch.double]:
# mypy raises an error when np.floatXY(2.0) is called
# even though this is valid code
np_sc = np_dtype(2.0) # type: ignore[abstract, arg-type]
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
r1 = t * np_sc
self.assertIsInstance(r1, torch.Tensor)
self.assertTrue(r1.dtype == t_dtype)
self.assertTrue(r1.requires_grad)
r2 = np_sc * t
self.assertIsInstance(r2, torch.Tensor)
self.assertTrue(r2.dtype == t_dtype)
self.assertTrue(r2.requires_grad)
@onlyCPU
@skipIfTorchDynamo()
def test_parse_numpy_int_overflow(self, device):
# assertRaises uses a try-except which dynamo has issues with
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
self.assertRaisesRegex(
RuntimeError,
"(Overflow|an integer is required)",
lambda: torch.mean(torch.randn(1, 1), np.uint64(-1)),
) # type: ignore[call-overload]
@onlyCPU
def test_parse_numpy_int(self, device):
# https://github.com/pytorch/pytorch/issues/29252
for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]:
scalar = 3
np_arr = np.array([scalar], dtype=nptype)
np_val = np_arr[0]
# np integral type can be treated as a python int in native functions with
# int parameters:
self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val))
self.assertEqual(
torch.ones([2, 2, 2, 2]).mean(scalar),
torch.ones([2, 2, 2, 2]).mean(np_val),
)
# numpy integral type parses like a python int in custom python bindings:
self.assertEqual(torch.Storage(np_val).size(), scalar) # type: ignore[attr-defined]
tensor = torch.tensor([2], dtype=torch.int)
tensor[0] = np_val
self.assertEqual(tensor[0], np_val)
# Original reported issue, np integral type parses to the correct
# PyTorch integral type when passed for a `Scalar` parameter in
# arithmetic operations:
t = torch.from_numpy(np_arr)
self.assertEqual((t + np_val).dtype, t.dtype)
self.assertEqual((np_val + t).dtype, t.dtype)
def test_has_storage_numpy(self, device):
for dtype in [np.float32, np.float64, np.int64, np.int32, np.int16, np.uint8]:
arr = np.array([1], dtype=dtype)
self.assertIsNotNone(
torch.tensor(arr, device=device, dtype=torch.float32).storage()
)
self.assertIsNotNone(
torch.tensor(arr, device=device, dtype=torch.double).storage()
)
self.assertIsNotNone(
torch.tensor(arr, device=device, dtype=torch.int).storage()
)
self.assertIsNotNone(
torch.tensor(arr, device=device, dtype=torch.long).storage()
)
self.assertIsNotNone(
torch.tensor(arr, device=device, dtype=torch.uint8).storage()
)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_numpy_scalar_cmp(self, device, dtype):
if dtype.is_complex:
tensors = (
torch.tensor(complex(1, 3), dtype=dtype, device=device),
torch.tensor([complex(1, 3), 0, 2j], dtype=dtype, device=device),
torch.tensor(
[[complex(3, 1), 0], [-1j, 5]], dtype=dtype, device=device
),
)
else:
tensors = (
torch.tensor(3, dtype=dtype, device=device),
torch.tensor([1, 0, -3], dtype=dtype, device=device),
torch.tensor([[3, 0, -1], [3, 5, 4]], dtype=dtype, device=device),
)
for tensor in tensors:
if dtype == torch.bfloat16:
with self.assertRaises(TypeError):
np_array = tensor.cpu().numpy()
continue
np_array = tensor.cpu().numpy()
for t, a in product(
(tensor.flatten()[0], tensor.flatten()[0].item()),
(np_array.flatten()[0], np_array.flatten()[0].item()),
):
self.assertEqual(t, a)
if (
dtype == torch.complex64
and torch.is_tensor(t)
and type(a) == np.complex64
):
# TODO: Imaginary part is dropped in this case. Need fix.
# https://github.com/pytorch/pytorch/issues/43579
self.assertFalse(t == a)
else:
self.assertTrue(t == a)
@onlyCPU
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test___eq__(self, device, dtype):
a = make_tensor((5, 7), dtype=dtype, device=device, low=-9, high=9)
b = a.clone().detach()
b_np = b.numpy()
# Check all elements equal
res_check = torch.ones_like(a, dtype=torch.bool)
self.assertEqual(a == b_np, res_check)
self.assertEqual(b_np == a, res_check)
# Check one element unequal
if dtype == torch.bool:
b[1][3] = not b[1][3]
else:
b[1][3] += 1
res_check[1][3] = False
self.assertEqual(a == b_np, res_check)
self.assertEqual(b_np == a, res_check)
# Check random elements unequal
rand = torch.randint(0, 2, a.shape, dtype=torch.bool)
res_check = rand.logical_not()
b.copy_(a)
if dtype == torch.bool:
b[rand] = b[rand].logical_not()
else:
b[rand] += 1
self.assertEqual(a == b_np, res_check)
self.assertEqual(b_np == a, res_check)
# Check all elements unequal
if dtype == torch.bool:
b.copy_(a.logical_not())
else:
b.copy_(a + 1)
res_check.fill_(False)
self.assertEqual(a == b_np, res_check)
self.assertEqual(b_np == a, res_check)
@onlyCPU
def test_empty_tensors_interop(self, device):
x = torch.rand((), dtype=torch.float16)
y = torch.tensor(np.random.rand(0), dtype=torch.float16)
# Same can be achieved by running
# y = torch.empty_strided((0,), (0,), dtype=torch.float16)
# Regression test for https://github.com/pytorch/pytorch/issues/115068
self.assertEqual(torch.true_divide(x, y).shape, y.shape)
# Regression test for https://github.com/pytorch/pytorch/issues/115066
self.assertEqual(torch.mul(x, y).shape, y.shape)
# Regression test for https://github.com/pytorch/pytorch/issues/113037
self.assertEqual(torch.div(x, y, rounding_mode="floor").shape, y.shape)
instantiate_device_type_tests(TestNumPyInterop, globals())
if __name__ == "__main__":
run_tests()