blob: 1a35e6823a189e09a205043651e64c4cd2aa22c1 [file] [log] [blame]
# Owner(s): ["module: ProxyTensor"]
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch._dynamo
import unittest
import warnings
import operator
from collections.abc import Iterable
from torch.nn.utils import stateless
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import op_db, skip, xfail, skipOps
from torch._subclasses.fake_tensor import DynamicOutputShapeException, DataDependentOutputException, FakeTensorMode
from torch._subclasses.functional_tensor import FunctionalTensor, FunctionalTensorMode
from torch._decomp import decomposition_table
from torch.fx.experimental.symbolic_shapes import (
eval_guards, bind_symbols, fx_placeholder_vals, fx_placeholder_targets,
guard_int, GuardOnDataDependentSymNode
)
from torch.testing._internal.custom_op_db import custom_op_db
from torch.testing._internal.hop_db import hop_db
from torch.testing._internal.common_device_type import ops
import torch.testing._internal.optests as optests
from torch._C import _disabled_torch_function_impl
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
from torch.utils._pytree import tree_map
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
from torch import nn
import torch._functorch.config
import re
import functools
import itertools
aten = torch.ops.aten
HAS_CUDA = torch.cuda.is_available()
def strip_end(s, suffix):
if suffix and s.endswith(suffix):
return s[:-len(suffix)]
else:
return s
def show_guards(gm):
names = [strip_end(n, "_1") for n in fx_placeholder_targets(gm)]
return "\n".join(
gm.shape_env.produce_guards(fx_placeholder_vals(gm), names, _simplified=True, input_contexts=None)
)
def process_failures():
"""
Takes file containing failures like
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
and processes them into a list of opinfo xfails
"""
f = open('pytest_failures')
failures = f.readlines()
failures = [i.strip() for i in failures]
def process_failure_string(s, matcher):
out = re.search(matcher, s)
return out.groups()
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
def create_normalized_name(op):
if op.variant_test_name == '':
s = op.name
else:
s = f"{op.name}.{op.variant_test_name}"
return s.replace('.', '_')
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
print("symbolic_tensor_failures = {")
for failure, reason in failures:
print(f" xfail{remap_opinfo[failure]}, # {reason}")
print("}")
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except ImportError:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
def _create_new_input(x):
if not isinstance(x, torch.Tensor):
return x
if x.dtype != torch.float:
return x + 1
if x.is_leaf:
return torch.rand_like(x, requires_grad=x.requires_grad)
else:
return torch.rand_like(x)
"""
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
"""
class UnwrapTensor(torch.Tensor):
@staticmethod
def __new__(cls, tensor: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
dtype=tensor.dtype,
device=tensor.device,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
)
r._tensor = tensor
return r
def __repr__(self):
# TODO: consider all_gather the local tensors for better debugging
return f"UnwrapTensor({self._tensor})"
__torch_function__ = _disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
ret = e
if isinstance(e, UnwrapTensor):
ret = e._tensor.cos()
return ret
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
return func(*args, **kwargs)
class TestGenericProxyTensor(TestCase):
# WARNING: if any of your inputs are index tensors, DO NOT use this
# function
def _test(self, f, inps):
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
new_inps = tree_map(_create_new_input, inps)
r1 = fx_f(*new_inps)
r2 = f(*new_inps)
self.assertEqual(r1, r2)
def test_pre_dispatch_mode_stack(self):
def f(a):
b = torch.ones(4, 4)
return torch.matmul(a, b)
# We expect to see matmul in the trace - it should NOT be decomposed into mm.
# Also, torch.ones() doesn't show up in the trace.
# This is annoying but expected: ones() never dispatches to the Autograd dispatch key,
# so our mode never sees it - it goes directly to the BackendSelect key.
inp = torch.ones(4, 4)
# Test that make_fx(pre_dispatch=True) clears caches properly.
from torch._dispatch.python import enable_python_dispatcher
with enable_python_dispatcher():
out1 = f(inp)
fx_g = make_fx(f, pre_dispatch=True)(inp)
self.assertExpectedInline(fx_g.code.strip(), """\
def forward(self, a_1):
ones = torch.ops.aten.ones.default([4, 4], device = device(type='cpu'), pin_memory = False)
matmul = torch.ops.aten.matmul.default(a_1, ones); a_1 = ones = None
return matmul""")
def test_pre_dispatch_linear(self):
def f(a, b, c):
return torch.nn.functional.linear(a, b, c)
a = torch.ones(4, 4)
b = torch.ones(4, 4)
c = torch.ones(4)
fx_g = make_fx(f, pre_dispatch=True)(a, b, c)
out1 = f(a, b, c)
out2 = fx_g(a, b, c)
self.assertEqual(out1, out2)
def test_pre_dispatch_no_grad(self):
def f(a):
b = a.sin()
torch.set_grad_enabled(False)
c = b.cos()
torch.set_grad_enabled(True)
return b + c.sin()
a1 = torch.randn(4, requires_grad=True)
a2 = a1.clone().detach().requires_grad_(True)
a_tmp = a1.clone().detach().requires_grad_(True)
fx_g = make_fx(f, pre_dispatch=True)(a_tmp)
out1 = f(a1)
out2 = fx_g(a2)
self.assertEqual(out1, out2)
out1.sum().backward()
out2.sum().backward()
self.assertEqual(a1.grad, a2.grad)
def test_make_fx_simple(self):
def f(x):
return torch.sin(x)
self._test(f, (torch.randn(3),))
def test_scalar_device(self, device='cpu'):
def f(a, b):
return a + b
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
def test_isolated_graphmodule(self):
def is_any_sum(gm):
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
def is_any_digamma(gm):
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
def is_any_sigmoid(gm):
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
def inner(x):
return torch.sum(x)
def f(x):
gm = get_isolated_graphmodule(inner, (x,), {})
self.assertTrue(is_any_sum(gm))
return x + torch.randn(x.shape)
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
# by the outer make_fx call
traced = make_fx(f)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
# When factory functions are used, they should not be traced
# by the outer make_fx call
def inner_with_factory():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((10, 10), val).sum()
def f1(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2(x):
gm = get_isolated_graphmodule(f1, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify nested make_fx calls don't make factory functions to be leaked
# into the outer graph. Verify that `make_fx`` itself does not leak its execution.
def f2(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify that the `forward`` function of a graph module produced as a
# side effect of an interior `make_fx` is still traced
def f3(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
# `gm.forward`` is still traced
return torch.digamma(gm(x))
traced = make_fx(f3)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertTrue(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with non-ProxyTensor modes
from torch.testing._internal.logging_tensor import LoggingTensorMode
def f1_logging(x):
with LoggingTensorMode():
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging(x):
with LoggingTensorMode(), LoggingTensorMode():
gm = get_isolated_graphmodule(f1_logging, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with another tensor subclass
# This case currently doesn't work and should raise an error
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
from torch.testing._internal.logging_tensor import LoggingTensor
def f1_logging_tensor(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging_tensor(x):
x = LoggingTensor(x)
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging_tensor)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
self.assertTrue(is_any_digamma(traced))
# See https://github.com/pytorch/pytorch/issues/97541
def test_empty_like_doesnt_burn_in_defaults(self):
def f(x):
return torch.empty_like(x)
out = make_fx(f)(torch.randn(3))
self.assertExpectedInline(out.code.strip(), """\
def forward(self, x_1):
empty_like = torch.ops.aten.empty_like.default(x_1, pin_memory = False); x_1 = None
return empty_like""")
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
def f(x):
y = x.new_zeros(x.size())
y.copy_(x)
return y
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
# returns a ProxyTensor.
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
self.assertExpectedInline(out.code, """\
def forward(self, x_1):
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
copy_ = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
return copy_
""")
def test_make_fx_reentrant_dispatch(self):
def f(x):
return torch.ops.aten.norm.Scalar(x, 2.0)
def norm_decomp(x, p=2.0):
if p != 2.0:
raise RuntimeError("can't handle with p != 2")
return torch.sqrt(torch.sum(torch.square(x)))
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
for n in traced.graph.nodes:
self.assertTrue("square" not in str(n.target))
self.assertTrue("norm" not in str(n.target))
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_backward_trace(self):
mod = torchvision.models.resnet18()
# An old version of this test called the module directly. This works
# for tracing_mode == "real", but for fake tensors, we also have to
# ensure that the parameters and buffers get wrapped in fake tensors
# because free fake tensors are not supported. Fortunately functional_call
# does precisely this for us.
def f(x, params, buffers):
for p in params.values():
p.grad = None
loss = torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
# I could have done this with the functional API, but there is
# plenty of exercising this; I want to show mutating API still
# works
loss.backward()
return [p.grad for p in params.values()]
inp = torch.randn(3, 3, 250, 250)
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
def test_varargs(self):
def f(*args):
return sum(args)
self._test(f, [torch.randn(2), torch.randn(2)])
def test_proxy_tensor(self):
def f_grad(x):
val = x.cos().cos().sum()
return torch.autograd.grad(val, x)
def f_backward(x):
val = x.cos().cos().sum()
val.backward()
return x.grad
for f in [f_grad, f_backward]:
self._test(f, [torch.randn(3, requires_grad=True)])
def test_pickle_issue89626(self):
import pickle
x = torch.randn(2)
make_fx(lambda x: x * 2, tracing_mode=self.tracing_mode)(x)
pickle.dumps(x)
def test_inplace_metadata(self):
def f(x):
x = x.clone()
x.unsqueeze_(-1)
assert x.shape[-1] == 1
return x
self._test(f, [torch.randn(5)])
def test_mode_tracing_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# default behavior should trace factory functions
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_pre_dispatch_functionalization(self):
def f(x):
a = FunctionalTensorMode(pre_dispatch=True)
with a:
x_unwrapped = FunctionalTensor.to_functional(x)
y = torch.matmul(x_unwrapped, x_unwrapped)
y = y + x_unwrapped
y.mul_(5)
y_unwrapped = torch._from_functional_tensor(y.elem)
return y_unwrapped
from torch._dispatch.python import enable_python_dispatcher
with enable_python_dispatcher():
inp = torch.randn(4, 4)
gm = make_fx(f, pre_dispatch=True)(inp)
# TODO actually not decompose
self.assertExpectedInline(gm.code.strip(), """\
def forward(self, x_1):
matmul = torch.ops.aten.matmul.default(x_1, x_1)
add = torch.ops.aten.add.Tensor(matmul, x_1); matmul = x_1 = None
mul = torch.ops.aten.mul.Tensor(add, 5); add = None
return mul""")
def test_pre_dispatch_functionalization_view_op(self):
def f(x):
a = FunctionalTensorMode(pre_dispatch=True)
with a:
x_unwrapped = FunctionalTensor.to_functional(x)
y = torch.matmul(x_unwrapped, x_unwrapped)
x_unwrapped = x_unwrapped.transpose(1, 0)
y = y + x_unwrapped
y = y.view(2, 8)
y_unwrapped = torch._from_functional_tensor(y.elem)
return y_unwrapped
from torch._dispatch.python import enable_python_dispatcher
with enable_python_dispatcher():
inp = torch.randn(4, 4)
gm = make_fx(f, pre_dispatch=True)(inp)
# TODO actually not decompose
self.assertExpectedInline(gm.code.strip(), """\
def forward(self, x_1):
matmul = torch.ops.aten.matmul.default(x_1, x_1)
transpose = torch.ops.aten.transpose.int(x_1, 1, 0); x_1 = None
add = torch.ops.aten.add.Tensor(matmul, transpose); matmul = transpose = None
view = torch.ops.aten.view.default(add, [2, 8]); add = None
return view""")
def test_val_metadata_mutation(self):
def f(x):
y = x.clone()
y.unsqueeze_(0)
return y
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3, requires_grad=True))
self.assertEqual([
tuple(node.meta['val'].shape)
for node in traced.graph.nodes
if 'val' in node.meta
], [(3,), (3,), (1, 3)])
def test_make_fx_overloads(self):
def f(x):
return x.cos() + torch.randn(x.shape)
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(all(isinstance(node.target, torch._ops.OpOverload)
for node in traced.graph.nodes if node.op == 'call_function'))
def test_tensor_constants(self):
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
self._test(f, [])
def test_allclose(self):
def f(a, b):
return torch.allclose(a, b)
def test_f():
make_fx(f, tracing_mode=self.tracing_mode)(
torch.zeros(3), torch.zeros(3)
)
if self.tracing_mode != "real":
self.assertRaises(DataDependentOutputException, test_f)
else:
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
def test_constant_proxy_tensor_mut(self):
def f():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((100, 100), val)
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
def test_constant_unbind(self):
def f():
val = torch.tensor([2])
r, = torch.unbind(val, 0)
return r.item()
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
def test_constant_blowup(self):
def f():
val = torch.tensor([2])
blowup = val.repeat(1000)
return bool(blowup.sum().item() == 2)
def test_f():
make_fx(f, tracing_mode=self.tracing_mode)()
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
def test_constant_random(self):
def f():
val = torch.tensor([2.0])
val.normal_()
return bool(val.item() == 2.1)
def test_f():
make_fx(f, tracing_mode=self.tracing_mode)()
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
def test_decomposition_interpreter(self):
def fn(x):
return torch.nn.functional.silu(x)
x = torch.rand((4, 4))
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
found_silu = False
for n in fx_module.graph.nodes:
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
found_silu = True
self.assertTrue(found_silu)
new_graph = torch.fx.Graph()
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
DecompositionInterpreter(
fx_module,
new_graph=new_graph,
decomposition_table=silu_decomp_table,
).run(x)
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
for n in decomposed_module.graph.nodes:
self.assertTrue(n.target != torch.ops.aten.silu)
self.assertTrue(n.target != torch.ops.aten.silu.default)
self.assertEqual(fx_module(x), decomposed_module(x))
def test_make_fx_model_fwd_bwd(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(x, params):
out = torch.func.functional_call(model, params, x).sum()
out.backward()
return list(params.values())
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
# fx may change the order of parameters in list, so using set() to compare
self.assertTrue(
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
)
self.assertTrue(
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
)
def test_make_fx_model_double_param(self):
class Emformer(torch.nn.Module):
def __init__(
self,
input_dim: int = 256,
) -> None:
super().__init__()
self.layer_norm = torch.nn.LayerNorm(input_dim)
def forward(mod_self, x): # noqa: B902
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
y = mod_self.layer_norm(x)
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
z = mod_self.layer_norm(y)
return z
gm = make_fx(Emformer())(torch.randn(16, 1, 256))
ops = {n.target for n in gm.graph.nodes if n.op == 'call_function'}
self.assertEqual(len(ops), 2)
def test_make_fx_model_fwd_bwd_wgtupdate(self):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(args, params, buffers):
for p in params.values():
p.grad = None
if not isinstance(args, Iterable):
args = [args]
params_and_buffers = {**params, **buffers}
out = torch.func.functional_call(model, params_and_buffers, args)
out.sum().backward()
return [p - 1e-4 * p.grad for p in params.values()]
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
buffers = dict(model.named_buffers())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
# fx may change the order of parameters in list, so using set() to compare
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
)
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
)
def test_trace_subclasses(self):
def f1(x):
x = UnwrapTensor(x)
y = x * 2
return y
def f2(x):
wrapped = UnwrapTensor(x)
y = x * wrapped
return y
inp = [torch.randn(5)]
self._test(f1, inp)
self._test(f2, inp)
def test_partial_decomp(self):
def f(a, b, c):
x = torch.addmm(a, b, c)
y = torch.addmm(a, b, c, beta=2, alpha=1)
return x + y
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
fx_g = make_fx(f)(*inps)
def addmm(a, b, c, beta=1, alpha=1):
if beta == 1 and alpha == 1:
return NotImplemented
return beta * a + alpha * (b @ c)
decomposed_fx = make_fx(f, decomposition_table={aten.addmm.default: addmm})(*inps)
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
def test_decomp_of_capture(self):
val = torch.randn(5)
def f(x):
return x.t() + val.t()
def nop(x):
return x.cos()
traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_amp_cache(self):
layer = torch.nn.Conv2d(3, 3, 3).cuda()
def f(x, w):
return torch.nn.functional.conv2d(x, w, stride=layer.stride)
inp = torch.randn(4, 3, 10, 10, device='cuda')
with torch.autocast('cuda'):
out_graph = make_fx(f)(inp, layer.weight).graph
out_graph2 = make_fx(f)(inp, layer.weight).graph
self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
for a, b in zip(out_graph.nodes, out_graph2.nodes):
self.assertEqual(a.op, b.op)
def test_strides(self):
def f(x):
self.assertTrue(x.is_contiguous())
self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
x = x.permute(0, 3, 1, 2)
self.assertFalse(x.is_contiguous())
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
return x
make_fx(f)(torch.randn(2, 3, 4, 5))
def f(x):
self.assertTrue(x.is_contiguous())
y = x[:, 1]
self.assertFalse(y.is_contiguous())
y = x[:, ::2]
self.assertFalse(y.is_contiguous())
return x.cos()
make_fx(f)(torch.randn(2, 3, 4, 5))
def test_pr_86917(self):
# Tests the issue brought up here https://github.com/pytorch/pytorch/pull/86917#issuecomment-1283155344
def f(a, b):
return torch.ops.aten.nll_loss_forward(a, b, None, 1, 10)
self._test(f, [torch.randn(1, 10), torch.zeros(1, dtype=torch.long)])
class TestGenericProxyTensorReal(TestGenericProxyTensor):
tracing_mode = "real"
class TestGenericProxyTensorFake(TestGenericProxyTensor):
tracing_mode = "fake"
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
tracing_mode = "symbolic"
del TestGenericProxyTensor
class TestRealProxyTensor(TestCase):
def test_error_on_data_dependent_ops(self):
def f():
x = torch.randn([])
y = torch.randn([])
assert torch.allclose(x * y, y * x)
z = float(x)
z2 = float(y)
# Smoke tests
make_fx(f, _error_on_data_dependent_ops=False)()
make_fx(f, pre_dispatch=True, _error_on_data_dependent_ops=False)()
class TestFakeProxyTensor(TestCase):
def test_issue82547(self):
x = nn.Parameter(torch.randn(3, 3))
def f():
return torch.ops.aten.t.default(x)
self.assertRaisesRegex(Exception, "Please convert all Tensors", lambda: make_fx(f, tracing_mode="fake")())
class A(torch.Tensor):
pass
x = A(torch.randn(3, 3))
self.assertRaisesRegex(TypeError, "Multiple dispatch failed", lambda: make_fx(f, tracing_mode="fake")())
def test_use_fake_and_tensor(self):
def f(x, y):
z = torch.tensor([2.0, 3.0])
return x + y + z
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
x, y = torch.randn(2), torch.randn(2)
self.assertEqual(g(x, y), f(x, y))
def test_free_fake(self):
def f(x):
return torch.add(x, y)
with FakeTensorMode() as fake_mode:
y = torch.randn(2)
make_fx(f, tracing_mode="real")(torch.randn(2))
def test_fused_adam(self):
# See https://github.com/pytorch/pytorch/issues/99356
params = [torch.randn(10, 10) for _ in range(10)]
grads = [torch.randn(10, 10) for _ in range(10)]
exp_avgs = [torch.randn(10, 10) for _ in range(10)]
exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
max_exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
state_steps = [torch.tensor(0) for _ in range(10)]
def fused_adam(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps):
(new_params, _, _, _, _) = aten._fused_adam.default(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
lr=0.1,
beta1=0.9,
beta2=0.999,
weight_decay=0.01,
eps=1e-8,
amsgrad=False,
maximize=False,
)
for p, new_p in zip(params, new_params):
p.copy_(new_p)
return params
gm = make_fx(fused_adam, tracing_mode='fake')(
params,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
)
ensure_ops_have_val = [aten._fused_adam.default, operator.getitem]
for n in gm.graph.nodes:
if n.op == "call_function" and n.target in ensure_ops_have_val:
self.assertIn('val', n.meta)
def test_alias(self):
def f(x):
return torch.ops.aten.alias(x)
r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
# NB: this should not have a detach call
self.assertExpectedInline(r, """\
def forward(self, x_1):
alias = torch.ops.aten.alias.default(x_1); x_1 = None
return alias""")
def test_meta(self):
def f(x):
a = x.cos()
b = torch.var_mean(a, dim=0)
c = b * 2
return c
out = make_fx(f, tracing_mode="fake")(torch.randn(5, 5))
for n in out.graph.nodes:
if n.op == 'output':
continue
self.assertTrue('val' in n.meta)
def _get_node(fx_g, cond):
for n in fx_g.graph.nodes:
if cond(n):
return n
raise AssertionError
def _get_free_symbols(shape_env):
vars = tuple(shape_env.var_to_val.keys())
return len([var for var in vars if var not in shape_env.replacements])
def _trace(f, *args):
inps = [torch.randn(arg) for arg in args]
return make_fx(f, tracing_mode="symbolic")(*inps)
# TODO: Need to test the guards themselves specifically as well
class TestSymbolicTracing(TestCase):
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
"""
Tests fn traced with trace_inputs against test_inputs
Also returns shape env
"""
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
for input in test_inputs:
input = [torch.randn(shape) for shape in input]
rx, ry = traced_f(*input), fn(*input)
if assert_eq:
self.assertEqual(rx, ry)
return traced_f
def test_debug_interpreter(self):
import torch.library
from torch.library import Library
foo = Library("foo", "DEF") # noqa: TOR901
foo.define("foo(Tensor self) -> Tensor")
# Operator where meta and cpu disagree on strides
@torch.library.impl(foo, "foo", "CPU")
def foo_cpu(x):
return x.clone().T
@torch.library.impl(foo, "foo", "Meta")
def foo_meta(x):
return x.clone()
def f(x):
return torch.ops.foo.foo.default(x)
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2, 2))
from torch._functorch.compilers import DebugInterpreter
interp = DebugInterpreter(gm)
# input mismatch is caught (indicates guard problem)
self.assertRaisesRegex(
AssertionError, r"3 != 1",
lambda: interp.run(torch.randn(3, 3).T),
)
# Catch the incorrect meta
self.assertRaisesRegex(
AssertionError, r"\(3, 1\) != \(1, 3\)",
lambda: interp.run(torch.randn(3, 3))
)
def test_int_input(self):
def f(x, y):
return x.view(y)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 4), 12).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
view = torch.ops.aten.view.default(x_1, [y_1]); x_1 = y_1 = None
return view""")
def test_resize_from_zero(self):
def f(x, y):
x.resize_(y.size(0))
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(0), torch.empty(2)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
resize_ = torch.ops.aten.resize_.default(x_1, [sym_size_int]); x_1 = sym_size_int = resize_ = None
return None""")
def test_broadcast_shapes(self):
def f(x, y):
return torch.functional.broadcast_shapes(x.size(), y.size()[0])
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 1), torch.empty(5)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
return (sym_size_int, sym_size_int_1)""")
def test_deduped_shape(self):
def f(s0, s1, x, y):
return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])
x = torch.empty(3, 1)
y = torch.empty(5)
from torch.fx.experimental.symbolic_shapes import ShapeEnv
shape_env = ShapeEnv()
with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
x = fake_mode.from_tensor(x)
y = fake_mode.from_tensor(y)
r = str(make_fx(f, tracing_mode="real")(x.shape[0], y.shape[0], x, y).code).strip()
self.assertExpectedInline(r, """\
def forward(self, s0_1, s1_1, x_1, y_1):
empty = torch.ops.aten.empty.memory_format([s0_1], device = device(type='cpu'), pin_memory = False)
return ((s0_1, s1_1), empty)""")
def test_non_deduped_shape(self):
def f(x, y):
return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])
x = torch.empty(3, 1)
y = torch.empty(5)
from torch.fx.experimental.symbolic_shapes import ShapeEnv
shape_env = ShapeEnv()
with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
x = fake_mode.from_tensor(x)
y = fake_mode.from_tensor(y)
r = str(make_fx(f, tracing_mode="real")(x, y).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
empty = torch.ops.aten.empty.memory_format([sym_size_int], device = device(type='cpu'), pin_memory = False)
return ((sym_size_int, sym_size_int_1), empty)""")
def test_unary(self):
def f(x):
assert x.shape[0] < 20
return x.cos()
test_inputs = []
test_inputs.append([(2, 5)])
test_inputs.append([(6, 8)])
gm = self._test_dynamic(f, [(3, 4)], test_inputs)
self.assertTrue(eval_guards(gm, torch.randn(4, 5)))
self.assertEqual(repr(bind_symbols(gm, torch.randn(4, 5))), "{s0: 4, s1: 5}")
self.assertFalse(eval_guards(gm, torch.randn(25, 5)))
self.assertExpectedInline(show_guards(gm), """L['x'].size()[0] <= 19""")
def test_repeat_interleave(self):
def f(src_tokens, beam_size_src):
return src_tokens.repeat_interleave(beam_size_src.size(0), 0)
prompt_size = 64
vocab_size = 64
batch_size = 4
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
gm = make_fx(f, tracing_mode="symbolic")(src_tokens, torch.randn(5))
self.assertEqual(len(gm.shape_env.guards), 0)
def test_non_symint_size_spec(self):
# this isn't really a proxy tensor test, but it's the most convenient
# way to get a fake tensor with symbolic sizes
def f(x):
torch._C._non_sym_sizes(x)
return x + 1
x = torch.randn(2, 3)
make_fx(f, tracing_mode="symbolic")(x)
# https://github.com/pytorch/pytorch/issues/108195
def test_symbolic_repeat_interleave(self):
def f(y, x):
return y.repeat_interleave(x, dim=1)
y = torch.tensor([[1, 2], [3, 4]])
x = torch.tensor([2, 3])
r = str(make_fx(f, tracing_mode="symbolic")(y, x).code).strip()
self.assertExpectedInline(r, """\
def forward(self, y_1, x_1):
repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1); x_1 = None
index_select = torch.ops.aten.index_select.default(y_1, 1, repeat_interleave); y_1 = repeat_interleave = None
return index_select""")
def test_mod_gcd_unbacked(self):
def f(_a, _b, _stride):
a = _a.item()
b = _b.item()
stride = _stride.item()
torch._check_is_size(a)
torch._check_is_size(b)
torch._check_is_size(stride)
ta = torch.randn(a * stride)
tb = torch.randn(b * stride)
r = torch.cat([ta, tb])
return r.view(a + b, stride)
_a = torch.tensor(30)
_b = torch.tensor(20)
_stride = torch.tensor(10)
r = str(make_fx(f, tracing_mode="symbolic")(_a, _b, _stride).code).strip()
self.assertExpectedInline(r, """\
def forward(self, _a_1, _b_1, _stride_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(_a_1); _a_1 = None
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(_b_1); _b_1 = None
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(_stride_1); _stride_1 = None
mul = _local_scalar_dense * _local_scalar_dense_2
randn = torch.ops.aten.randn.default([mul], device = device(type='cpu'), pin_memory = False); mul = None
mul_1 = _local_scalar_dense_1 * _local_scalar_dense_2
randn_1 = torch.ops.aten.randn.default([mul_1], device = device(type='cpu'), pin_memory = False); mul_1 = None
cat = torch.ops.aten.cat.default([randn, randn_1]); randn = randn_1 = None
add = _local_scalar_dense + _local_scalar_dense_1; _local_scalar_dense = _local_scalar_dense_1 = None
view = torch.ops.aten.view.default(cat, [add, _local_scalar_dense_2]); cat = add = _local_scalar_dense_2 = None
return view""")
def test_cumsum_unbacked(self):
def f(x):
y = x.item()
z = torch.randn((3, y, 3))
return z.cumsum(0)
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([5])).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
randn = torch.ops.aten.randn.default([3, _local_scalar_dense, 3], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
cumsum = torch.ops.aten.cumsum.default(randn, 0); randn = None
return cumsum""" # noqa: B950
)
def test_repeat_interleave_unbacked_output_size(self):
def f(x, y):
s = x.sum().item()
return y.repeat_interleave(x, dim=0, output_size=s)
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([2, 3]), torch.randn(2)).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1, y_1):
sum_1 = torch.ops.aten.sum.default(x_1)
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(sum_1); sum_1 = None
repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1, output_size = _local_scalar_dense); x_1 = _local_scalar_dense = None
index_select = torch.ops.aten.index_select.default(y_1, 0, repeat_interleave); y_1 = repeat_interleave = None
return index_select""" # noqa: B950
)
def test_arange_unbacked_output_size(self):
def f(x):
return torch.arange(0, x)
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10)).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
arange = torch.ops.aten.arange.start(0, _local_scalar_dense, device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
return arange""" # noqa: B950
)
def test_adv_index_batch(self):
def f(src_tokens):
bsz, src_len = src_tokens.size()[:2]
start_step = src_tokens.shape[1]
beam_size = 1
generate_size = 64
max_len = src_len + generate_size
tokens = torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0)
tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0)
return tokens
prompt_size = 64
vocab_size = 64
batch_size = 4
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
gm = make_fx(f, tracing_mode="symbolic")(src_tokens)
# Guards to rule out batch_size == sys.maxsize (wobbling between 2 and
# 1 ok)
self.assertEqual(len(gm.shape_env.guards), 1)
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_cpu_scalar_cuda(self):
# Extracted from wave2vec2
def f(a, b):
return (a * b) @ b
r = str(
make_fx(f, tracing_mode="symbolic")(
torch.tensor(1.0), torch.randn(2, 2, device='cuda')
).code
).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1, b_1):
mul = torch.ops.aten.mul.Tensor(a_1, b_1); a_1 = None
mm = torch.ops.aten.mm.default(mul, b_1); mul = b_1 = None
return mm""")
def test_binary_broadcast(self):
def f(a, b):
c = a * b
return c
test_inputs = []
test_inputs.append([(1, 5), (3, 1)])
test_inputs.append([(1, 4), (4, 1)])
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs).shape_env
assert len(shape_env.guards) == 0
def test_multiply_shape(self):
def f(a):
return torch.empty(a.shape[0] * 2)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0); a_1 = None
mul = sym_size_int * 2; sym_size_int = None
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
return empty""")
def test_item(self):
def f(a):
r = a.item()
return r * a
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(1)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1)
mul = torch.ops.aten.mul.Tensor(a_1, _local_scalar_dense); a_1 = _local_scalar_dense = None
return mul""")
def test_tensor_symfloat(self):
def f(a):
r = torch.tensor(a.size(0) ** 2.0)
assert r.dtype is torch.float
return r
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2))
r = str(gm.code).strip()
# NB: this specializes, which is fine, the point is to make sure the
# dtype inference is correct
self.assertExpectedInline(r, """\
def forward(self, a_1):
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
return lift_fresh_copy""")
self.assertEqual(gm._tensor_constant0, torch.tensor(4.0))
def test_item_to_constructor(self):
def f(a):
r = a.item()
return torch.empty(r)
r = str(make_fx(f, tracing_mode="symbolic")(torch.randint(5, (1,))).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, a_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1); a_1 = None
empty = torch.ops.aten.empty.memory_format([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
return empty""" # noqa: B950
)
def test_setitem_symint(self):
# from moco
# https://github.com/pytorch/pytorch/issues/101939
def f(x):
x[0] = x.size(0)
return x
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(10)).code).strip()
self.assertExpectedInline(
r, """\
def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
scalar_tensor = torch.ops.aten.scalar_tensor.default(sym_size_int, dtype = torch.float32, layout = torch.strided, device = device(type='cpu')); sym_size_int = None
select = torch.ops.aten.select.int(x_1, 0, 0)
copy_ = torch.ops.aten.copy_.default(select, scalar_tensor); select = scalar_tensor = copy_ = None
return x_1""" # noqa: B950
)
def test_dynamic_pointwise_scalar(self):
def f(gravity, mask):
gravity[mask, 0] = gravity[mask, 0] * -1
r = str(make_fx(f, tracing_mode="symbolic")(
torch.randn((12, 4)),
torch.randint(0, 2, (12,), dtype=torch.bool)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, gravity_1, mask_1):
select = torch.ops.aten.select.int(gravity_1, 1, 0)
index = torch.ops.aten.index.Tensor(select, [mask_1]); select = None
mul = torch.ops.aten.mul.Tensor(index, -1); index = None
select_1 = torch.ops.aten.select.int(gravity_1, 1, 0); gravity_1 = None
index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul); select_1 = mask_1 = mul = index_put_ = None
return None""")
def test_reflect_r_over_x(self):
def reflect_R_over_x(R):
reflect = torch.eye(3, device=R.device)
reflect[0, 0] = -1
return reflect @ R @ reflect
def f(crop_camera, mask):
crop_camera[mask] = reflect_R_over_x(crop_camera[mask])
r = str(make_fx(f, tracing_mode="symbolic")(
torch.randn((12, 3, 3)),
torch.randint(0, 2, (12,), dtype=torch.bool)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, crop_camera_1, mask_1):
index = torch.ops.aten.index.Tensor(crop_camera_1, [mask_1])
eye = torch.ops.aten.eye.default(3, device = device(type='cpu'), pin_memory = False)
_tensor_constant0 = self._tensor_constant0
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
select = torch.ops.aten.select.int(eye, 0, 0)
select_1 = torch.ops.aten.select.int(select, 0, 0); select = None
copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy); select_1 = lift_fresh_copy = copy_ = None
sym_size_int = torch.ops.aten.sym_size.int(index, 0)
expand = torch.ops.aten.expand.default(eye, [sym_size_int, 3, 3])
view = torch.ops.aten.view.default(expand, [sym_size_int, 3, 3]); expand = None
sym_size_int_1 = torch.ops.aten.sym_size.int(crop_camera_1, 1)
sym_size_int_2 = torch.ops.aten.sym_size.int(crop_camera_1, 2)
expand_1 = torch.ops.aten.expand.default(index, [sym_size_int, sym_size_int_1, sym_size_int_2]); index = None
view_1 = torch.ops.aten.view.default(expand_1, [sym_size_int, sym_size_int_1, sym_size_int_2]); expand_1 = sym_size_int_1 = sym_size_int_2 = None
bmm = torch.ops.aten.bmm.default(view, view_1); view = view_1 = None
view_2 = torch.ops.aten.view.default(bmm, [sym_size_int, 3, 3]); bmm = None
mul_4 = sym_size_int * 3
view_3 = torch.ops.aten.view.default(view_2, [mul_4, 3]); view_2 = mul_4 = None
mm = torch.ops.aten.mm.default(view_3, eye); view_3 = eye = None
view_4 = torch.ops.aten.view.default(mm, [sym_size_int, 3, 3]); mm = sym_size_int = None
index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], view_4); crop_camera_1 = mask_1 = view_4 = index_put_ = None
return None""") # noqa: B950
def test_unbacked_slice(self):
def f(x, m):
x = x[m]
return x[slice(None, None, None), slice(None, None, None), slice(None, 2, None)]
make_fx(f, tracing_mode="symbolic")(
torch.randn((12, 3, 3)),
torch.randint(0, 2, (12,), dtype=torch.bool)
)
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_unbacked_batch_resnet(self):
mod = torchvision.models.resnet18()
def f(x, mask, params, buffers):
for p in itertools.chain([x, mask], params.values(), buffers.values()):
for s in p.shape:
guard_int(s)
x = x[mask]
torch._check(x.shape[0] >= 1)
for p in params.values():
p.grad = None
return torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
make_fx(f, tracing_mode="symbolic")(
torch.randn(3, 3, 250, 250),
torch.randint(0, 2, (3,), dtype=torch.bool),
dict(mod.named_parameters()),
dict(mod.named_buffers()),
)
def test_boolean_index(self):
def f(images, handedness, valid):
images = images[valid]
handedness = handedness[valid]
right_hand_mask = handedness == 1
images[right_hand_mask] = images[right_hand_mask].flip(-1)
r = str(make_fx(f, tracing_mode="symbolic")(
torch.randint(0, 256, (512, 1, 96, 96)),
torch.randint(0, 1, (512,)),
torch.randint(0, 2, (512,), dtype=torch.bool)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, images_1, handedness_1, valid_1):
index = torch.ops.aten.index.Tensor(images_1, [valid_1]); images_1 = None
index_1 = torch.ops.aten.index.Tensor(handedness_1, [valid_1]); handedness_1 = valid_1 = None
eq = torch.ops.aten.eq.Scalar(index_1, 1); index_1 = None
index_2 = torch.ops.aten.index.Tensor(index, [eq])
flip = torch.ops.aten.flip.default(index_2, [-1]); index_2 = None
index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip); index = eq = flip = index_put_ = None
return None""")
def test_neg_shape(self):
def f(a):
return torch.empty(-a.shape[0] + 10)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(2)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0); a_1 = None
neg = -sym_size_int; sym_size_int = None
add = neg + 10; neg = None
empty = torch.ops.aten.empty.memory_format([add], device = device(type='cpu'), pin_memory = False); add = None
return empty""")
def test_unbacked_unification(self):
def f(x, y):
z = torch.zeros(x.item())
return z + y
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
add = torch.ops.aten.add.Tensor(zeros, y_1); zeros = y_1 = None
return add""") # noqa: B950
def test_reshape_divisibility_unbacked(self):
def f(x):
i0 = x.item()
r = torch.zeros(i0, 4, 20)
r = r.transpose(2, 1)
return r.reshape(-1, 80)
make_fx(f, tracing_mode="symbolic")(torch.tensor(24))
def test_view_divisibility_unbacked(self):
def f(x):
i0 = x.item()
r = torch.zeros(i0, 192)
return r.view(12, -1, 192)
make_fx(f, tracing_mode="symbolic")(torch.tensor(24))
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_view_divisibility_unbacked_relatively_prime(self):
# See https://github.com/pytorch/pytorch/issues/123651
def f(x):
i0 = x.item()
torch._check_is_size(i0)
# To trigger the original issue, the max bound has to
# be chosen such that 448 / 447 < 2 (which it is.)
torch._check(i0 <= 448)
return torch.zeros(256 * i0).view(-1, 447)
make_fx(f, tracing_mode="symbolic")(torch.tensor(256 * 447, device="cuda"))
def test_unbacked_unify_guard(self):
def f(x, y):
z = torch.zeros(x.item())
torch._check(z.size(0) == y.size(0)) # refines i0 = s0
if z.size(0) == 4:
return y * 2
else:
return y + 2
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, x_1, y_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = zeros = None
add = torch.ops.aten.add.Tensor(y_1, 2); y_1 = None
return add""") # noqa: B950
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
@unittest.expectedFailure
def test_unbacked_unify_guard_transitivity(self):
def f(x1, x2, y):
z1 = torch.zeros(x1.item())
z2 = torch.zeros(x2.item())
torch._check(z1.size(0) == z2.size(0)) # refines i0 = i1
torch._check(z2.size(0) == y.size(0)) # refines i0 = s0
if z1.size(0) == 4:
return y * 2
else:
return y + 2
gm = make_fx(f, tracing_mode="symbolic")(
torch.tensor(10, device="cuda"),
torch.tensor(10, device="cuda"),
torch.randn(10, device="cuda")
)
insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
gm.recompile()
r = str(gm.code).strip()
# self.assertExpectedInline(
# r, """""" # noqa: B950
# )
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_unbacked_unify_dependency_violation(self):
def f(x1, x2, x3, y):
z1 = x1.item()
torch._check(z1 // 9 == 1)
z2 = x2.item()
z3 = x3.item()
torch._check(z1 == z2 + z3)
return y * 2
if z2 + z3 == z1:
return y * 2
else:
return y + 3
# NB: inputs are done as CUDA to ensure they aren't queried to be
# backed
gm = make_fx(f, tracing_mode="symbolic")(
torch.tensor(10, device="cuda"), torch.tensor(5, device="cuda"),
torch.tensor(5, device="cuda"), torch.randn(1, device="cuda")
)
insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
gm.recompile()
self.assertEqual(gm(
torch.tensor(12, device="cuda"), torch.tensor(6, device="cuda"),
torch.tensor(6, device="cuda"), torch.tensor([1.0], device="cuda")),
torch.tensor([2.0], device="cuda")
)
with self.assertRaises(RuntimeError):
gm(
torch.tensor(20, device="cuda"), torch.tensor(10, device="cuda"),
torch.tensor(10, device="cuda"), torch.tensor([1.0], device="cuda")
)
def test_split_unbacked_sizes(self):
def f(lengths, values):
# tolist not directly supported atm
sizes = [lengths[i].item() for i in range(lengths.size(0))]
for s in sizes:
# TODO(avik): no assertion generated with torch._check_is_size?
torch._constrain_as_size(s)
return torch.split(values, sizes)
r = str(make_fx(f, tracing_mode="symbolic")(
torch.tensor([2, 3, 4]),
torch.randn(9)
).code).strip()
self.assertExpectedInline(r, """\
def forward(self, lengths_1, values_1):
select = torch.ops.aten.select.int(lengths_1, 0, 0)
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(select); select = None
select_1 = torch.ops.aten.select.int(lengths_1, 0, 1)
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(select_1); select_1 = None
select_2 = torch.ops.aten.select.int(lengths_1, 0, 2); lengths_1 = None
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(select_2); select_2 = None
sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense); sym_constrain_range_for_size = None
sym_constrain_range_for_size_1 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_1); sym_constrain_range_for_size_1 = None
sym_constrain_range_for_size_2 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_2); sym_constrain_range_for_size_2 = None
split_with_sizes = torch.ops.aten.split_with_sizes.default(values_1, [_local_scalar_dense, _local_scalar_dense_1, _local_scalar_dense_2]); values_1 = _local_scalar_dense = _local_scalar_dense_1 = _local_scalar_dense_2 = None
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]
getitem_2 = split_with_sizes[2]; split_with_sizes = None
return (getitem, getitem_1, getitem_2)""") # noqa: B950
def test_invalidate_nonzero(self):
ok = False
def f(a):
nonlocal ok
b = a.clone()
x = b.nonzero()
x1 = b.nonzero()
x2 = b.nonzero()
assert x1.shape[0] == x2.shape[0]
ok = True
b.normal_()
y = b.nonzero()
try:
bool(x1.shape[0] == y.shape[0])
self.fail("didn't raise exception")
except GuardOnDataDependentSymNode:
pass
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
@torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True)
def test_invalidate_nonzero_propagate_real_tensors(self):
def f(a):
b = a.clone()
x = b.nonzero()
x1 = b.nonzero()
x2 = b.nonzero()
assert x1.shape[0] == x2.shape[0]
b.normal_()
y = b.nonzero()
# Because you're not actually going to generate exactly zero with
# normal_ lol
assert x1.shape[0] == y.shape[0]
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
def test_sqrt_size(self):
def f(a):
return a / a.size(-1) ** 0.5
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
sym_float = torch.sym_float(sym_size_int); sym_size_int = None
pow_1 = sym_float ** 0.5; sym_float = None
div = torch.ops.aten.div.Tensor(a_1, pow_1); a_1 = pow_1 = None
return div""")
def test_make_fx_with_custom_tracer_preserving_nn_module_stack(self):
class Bar(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
return x + 1
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.bar = Bar()
def forward(self, x):
return x + self.bar(x)
gm = make_fx(Foo())(torch.randn(4, 4))
for node in gm.graph.nodes:
self.assertTrue("nn_module_stack" not in node.meta)
foo = Foo()
def functional_call(*args, **kwargs):
with stateless._reparametrize_module(foo, {}):
return foo(*args, **kwargs)
functional_call._orig_mod = foo
gm_with_stack = make_fx(functional_call, record_module_stack=True)(torch.randn(4, 4))
found = False
for node in gm_with_stack.graph.nodes:
if "nn_module_stack" in node.meta:
if len(node.meta["nn_module_stack"]) == 1:
self.assertTrue("custom_tracer_preserving_nn_module_stack.<locals>.Foo" in str(node.meta["nn_module_stack"]))
found = True
elif len(node.meta["nn_module_stack"]) == 2:
self.assertTrue("preserving_nn_module_stack.<locals>.Bar" in str(node.meta["nn_module_stack"]))
found = True
else:
# there can be at most 2 level
self.assertTrue(False)
self.assertTrue(found)
gm_without_stack = make_fx(functional_call)(torch.randn(4, 4))
for node in gm_without_stack.graph.nodes:
self.assertTrue("nn_module_stack" not in node.meta)
def test_symint_to_tensor(self):
def f(a):
return a / a.shape[0]
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
div = torch.ops.aten.div.Tensor(a_1, sym_size_int); a_1 = sym_size_int = None
return div""")
r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
sym_float = torch.sym_float(sym_size_int); sym_size_int = None
div = torch.ops.prims.div.default(a_1, sym_float); a_1 = sym_float = None
return div""")
def test_cat(self):
def f(a, b):
val = torch.mul(a, b)
out = torch.cat([val, val])
if out.shape[0] * out.shape[1] > 20:
out = out.cos()
return out
test_inputs = []
test_inputs.append([(1, 5), (6, 1)])
test_inputs.append([(1, 4), (3, 1)])
gm = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
self.assertTrue(eval_guards(gm, torch.randn(1, 10), torch.randn(6, 1)))
self.assertFalse(eval_guards(gm, torch.randn(1, 2), torch.randn(4, 1)))
self.assertExpectedInline(show_guards(gm), """2*L['a'].size()[1]*L['b'].size()[0] > 20""")
def test_new_empty(self):
def f(a, b):
return a.new_empty(b.shape[0], b.shape[1] * 2)
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False).shape_env
def test_size_with_tensor(self):
# I think I messed up writing this test case originally, I think
# I'm supposed to hit an error case, but the code here works in both
# eager and tracing
def f(tensor):
max_size = torch.tensor([800, 1216], dtype=torch.int64)
batch_shape = [2] + list(tensor.shape[:-2]) + list(max_size)
return tensor.new_empty(batch_shape)
a = torch.randn(3, 800, 1199)
f(a)
make_fx(f, tracing_mode="symbolic")(a)
def test_fake_tensor_as_size(self):
def f(x):
r = torch.zeros([x])
return r
fx_g = make_fx(f, tracing_mode="symbolic")(torch.tensor(4))
self.assertExpectedInline(fx_g.code.strip(), """\
def forward(self, x_1):
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
return zeros""") # noqa: B950
def test_expand(self):
def f(a):
b = torch.mul(a, a)
c = b.expand(a.shape)
return c
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
def test_metadata(self):
def f(a, b):
d = a.new_empty(a.shape[0] + b.shape[0])
return d
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
self.assertTrue(meta_c.meta['val'].shape[0].node.expr == meta_d.meta['val'].node.expr)
def test_metadata_fresh(self):
def f(x):
assert x.shape[0] == 3
return x.cos()
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(3))
meta_cos = _get_node(fx_g, lambda x: x.target == aten.cos.default)
meta_inp = _get_node(fx_g, lambda x: x.op == 'placeholder')
self.assertTrue(meta_cos.meta['val'].shape[0] == 3)
# Checks if the input expr has been updated even though the constraint
# happened afterwards
self.assertTrue(meta_inp.meta['val'].shape[0] == 3)
def test_elementwise_meta_with_sym_numbers(self):
def f(x, offset, as_sym_float=False):
x0 = x.size()[0]
if as_sym_float:
x0 = torch.sym_float(x0)
return torch.add(x0, offset)
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2.0, False)
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
self.assertEqual(meta_add.meta['val'].shape, ())
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, False)
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
self.assertEqual(meta_add.meta['val'].shape, ())
self.assertEqual(meta_add.meta['val'].dtype, torch.int64)
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, True)
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
self.assertEqual(meta_add.meta['val'].shape, ())
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
def test_return_symint(self):
def f(x):
return x.shape[0], x.cos(), x.shape[0] / 5
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
def f(x):
return x.shape
self._test_dynamic(f, [(5, 3)], [[(4, 6)]])
def test_rmethod(self):
def f(x):
return x.size(0) + x
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
def test_mega_guard(self):
def f(a, b):
assert a.shape[0] == b.shape[0] * 2
return a.cos()
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(16), torch.randn(8))
from torch._dynamo.source import LocalSource
self.assertExpectedInline(
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=False)), # noqa: B950
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "L['a'].stride()[0] == 1", "L['a'].storage_offset() == 0", "L['b'].stride()[0] == 1", "L['b'].storage_offset() == 0", "2 <= L['b'].size()[0]"]""" # noqa: B950
)
self.assertExpectedInline(
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=True)), # noqa: B950
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "2 <= L['b'].size()[0]"]""" # noqa: B950
)
def test_guard_upperbound_range_refinement(self):
def f(a):
assert a.shape[0] > 5 and a.shape[0] > 12
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
self.assertExpectedInline(show_guards(tensor), """13 <= L['a'].size()[0]""")
def test_guard_lowerbound_range_refinement(self):
def f(a):
assert a.shape[0] < 20 and a.shape[0] < 30
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
self.assertExpectedInline(show_guards(tensor), """L['a'].size()[0] <= 19""")
def test_guard_upperbound_range_refinement_multivariate(self):
def f(a):
assert a.shape[0] > 5 and a.shape[0] > 12
assert a.shape[1] > 5 and a.shape[1] > a.shape[0]
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 20)))
self.assertExpectedInline(show_guards(tensor), """\
L['a'].size()[1] > L['a'].size()[0]
13 <= L['a'].size()[0]
14 <= L['a'].size()[1]""")
def test_guard_lowerbound_range_refinement_multivariate(self):
def f(a):
assert a.shape[0] < 20 and a.shape[0] < 30
assert a.shape[1] < 30 and a.shape[1] < a.shape[0]
return a.cos()
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 5)))
self.assertExpectedInline(
show_guards(tensor),
"""\
L['a'].size()[1] < L['a'].size()[0]
L['a'].size()[0] <= 19
L['a'].size()[1] <= 18""")
def test_sym_storage_offset(self):
def f(x, y):
return x + y
inp = (torch.randn(8)[3:], torch.randn(5))
fx_g = make_fx(f, tracing_mode="symbolic")(*inp)
inp = (torch.randn(8)[3:], torch.randn(5))
self.assertEqual(fx_g(*inp), f(*inp))
def _assert_no_guards(self, fx_g, free_symbols):
assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()
def test_guards_equal(self):
def f(a, b):
return a * b
# NB: Numbers are carefully chosen to avoid duck shaping from applying
fx_g = _trace(f, (5, 6), (5, 6))
self._assert_no_guards(fx_g, 2)
fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
self._assert_no_guards(fx_g, 3)
fx_g = _trace(f, (5, 1), (1, 6))
self._assert_no_guards(fx_g, 2)
def f(a, b, c, d):
a = a + b
cat = torch.cat([c, d])
return a + cat
fx_g = _trace(f, 7, 7, 4, 3)
self._assert_no_guards(fx_g, 2)
def f(a, b, c, d, e):
vals = [a, b, c, d, e]
x = a
for idx in range(len(vals) - 1):
x = torch.cat([x, vals[idx]]) + vals[idx + 1]
return x
fx_g = _trace(f, 2, 4, 8, 16, 32)
self._assert_no_guards(fx_g, 1)
def f(a, b):
a = a.view(b.shape[0])
return a + b.sum()
fx_g = _trace(f, (4, 2), 8)
self._assert_no_guards(fx_g, 2)
fx_g = _trace(f, (4, 2), (8, 5))
self._assert_no_guards(fx_g, 3)
fx_g = _trace(f, (2, 3, 4), 24)
self._assert_no_guards(fx_g, 3)
def test_nonidentity_transitive_guards(self):
def f(a, b, c, d, e):
vals = [a, b, c, d, e]
cat_vals = []
for idx in range(len(vals) - 1):
cat_vals.append(torch.cat([vals[idx], vals[idx]]))
final_vals = []
for a, b in reversed(list(zip(cat_vals, vals[1:]))):
final_vals.append(a + b)
return final_vals
fx_g = _trace(f, 2, 4, 8, 16, 32)
self.assertExpectedInline(show_guards(fx_g), """""")
@torch.fx.experimental._config.patch(translation_validation=True)
def test_constant_specialization(self):
def f(t):
assert t.shape[0] == 10
return t
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(10))
self.assertExpectedInline(show_guards(tensor), """""")
make_fx_failures = {
# unknown
xfail('allclose'),
xfail('equal'),
# empty
skip('new_empty'),
skip('empty_like'),
skip('empty'),
skip('empty_permuted'),
# flaky
skip('linalg.lstsq', 'grad_oriented'),
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
skip('linalg.lstsq'), # flaky, probably just a precision issue
# data-dependent control flow
skip('item'),
xfail('cov'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('tensor_split'),
xfail('corrcoef'),
xfail('quantile'),
xfail('nanquantile'),
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
xfail('sparse.sampled_addmm'),
xfail('sparse.mm', 'reduce'),
# proxy tensor doesn't support sparse correctly right now
skip('to_sparse'),
# segfaults
skip('block_diag'),
# AssertionError: Tensor-likes are not close!
skip('empty_strided', '', device_type='cpu'),
}
only_real_tensor_failures = {
xfail('narrow'),
}
only_fake_tensor_failures = {
xfail('narrow'),
}
fake_tensor_failures = {
# ASAN failures due to divide by 0
skip('nn.functional.nll_loss'),
}
symbolic_tensor_failures = {
xfail('combinations', ''),
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.ctc_loss'), # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('unique_consecutive', ''), # aten.unique_consecutive.default - couldn't find symbolic meta function/decomposition
xfail('max_pool2d_with_indices_backward', ''), # Expected a value of type 'List[int]' for argument 'kernel_size' but...
# many complex operators incorrect striding, metadata
xfail('fft.fft', ''),
xfail('fft.hfft2', ''),
xfail('fft.hfft', ''),
xfail('fft.hfftn', ''),
xfail('fft.ifft', ''),
xfail('fft.ihfft2', ''),
xfail('fft.ihfft', ''),
xfail('fft.ihfftn', ''),
xfail('fft.ihfft2', ''),
xfail('fft.irfft2', ''),
xfail('fft.irfft', ''),
xfail('fft.irfftn', ''),
xfail('fft.rfft2', ''),
xfail('fft.rfft', ''),
xfail('fft.rfftn', ''),
xfail('stft', '')
}
symbolic_tensor_segfaults = {
skip('nn.functional.batch_norm') # Segfault??
}
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
inplace_symbolic_tensor_failures = {
# bugs
xfail('float_power', ''), # base given to float_power_ has dtype Float but the operation's result requires dtype Double
}
out_symbolic_tensor_failures = {
# Cast error details: Unable to cast (...) to Tensor
#
# This happens because the test is set up to call the out variant using the `out` kwarg:
# torch._some_op(arg1, arg2, out=(out1, out2, out3))
#
# However, this only works on torch ops, not aten ops. For `_batch_norm_with_update`,
# this fails because the op has no python bindings, so it doesn't support the `out` kwarg
# way of calling its out variant.
xfail('_batch_norm_with_update', ''),
xfail('_native_batch_norm_legit', ''),
xfail('angle', ''),
xfail('argmax', ''),
xfail('argmin', ''),
xfail('fft.fft2', ''),
xfail('fft.fftn', ''),
xfail('fft.ifft2', ''),
xfail('fft.ifftn', ''),
xfail('gather', ''),
xfail('linalg.pinv', ''),
xfail('linalg.pinv', 'hermitian'),
xfail('lu', ''),
xfail('scatter_add', ''),
xfail('scatter', ''),
xfail('take_along_dim', ''),
xfail('triangular_solve', ''),
# SymIntArrayRef expected to contain only concrete
xfail('ones', ''),
xfail('randn', ''),
xfail('zeros', ''),
# RuntimeError: Cannot call numel() on tensor with symbolic sizes/strides
xfail('index_reduce', 'prod'),
xfail('index_reduce', 'mean'),
xfail('index_reduce', 'amax'),
xfail('index_reduce', 'amin'),
}
out_symbolic_tensor_segfaults = {
skip('nanmean', ''),
}
out_symbolic_tensor_failures.update(out_symbolic_tensor_segfaults)
# Copies inputs to inplace operations to avoid inplace modifications
# to leaves requiring gradient
def _get_safe_inplace(inplace_variant):
@functools.wraps(inplace_variant)
def _fn(t, *args, **kwargs):
return inplace_variant(t.clone(), *args, **kwargs)
return _fn
def _test_make_fx_helper(self, device, dtype, op, tracing_mode, inplace=False, out=False):
fn = _get_safe_inplace(op.get_inplace()) if inplace else op.op
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
# Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
count = 100
if out:
count = 5
for sample_input in itertools.islice(sample_inputs_itr, count):
if inplace and sample_input.broadcasts_input:
continue
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
if out:
expected = fn(*args, **kwargs)
kwargs['out'] = expected
try:
optests.make_fx_check(fn, args, kwargs, tracing_mode, self.assertEqual,
randomize_data=True)
except DynamicOutputShapeException:
self.skipTest("Dynamic output shape operation in trace")
def skipIfNameMatches(pattern):
"""
Decorator to skip a test if its name matches the given pattern.
"""
def decorator(test_func):
def wrapper(*args, **kwargs):
if re.match(pattern, test_func.__name__):
raise unittest.SkipTest(f"Test '{test_func.__name__}' skipped because its name matches the pattern '{pattern}'")
return test_func(*args, **kwargs)
return wrapper
return decorator
# Auto functionalize shouldn't work with make_fx directly
filtered_hop_db = [op for op in hop_db if op.name != "auto_functionalize"]
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "Cond requires dynamo")
class TestProxyTensorOpInfo(TestCase):
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures.union(only_real_tensor_failures))
def test_make_fx_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "real")
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive',
make_fx_failures.union(fake_tensor_failures, only_fake_tensor_failures))
def test_make_fx_fake_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "fake")
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "symbolic")
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_inplace',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | inplace_symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive_inplace(self, device, dtype, op):
if not op.get_inplace():
self.skipTest("No inplace variable for this op")
_test_make_fx_helper(self, device, dtype, op, "symbolic", inplace=True)
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_out',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | out_symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive_out(self, device, dtype, op):
if not op.supports_out:
self.skipTest("Op doesn't support out")
_test_make_fx_helper(self, device, dtype, op, "symbolic", out=True)
only_for = ("cpu")
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()