blob: e317a840514fcde322366ecc7bbbe7eabd753eb6 [file] [log] [blame]
# Owner(s): ["module: unknown"]
import torch
from torch.testing._internal.common_utils import run_tests, TemporaryFileName, TestCase
from torch.utils import ThroughputBenchmark
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super().__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
@torch.jit.script_method
def forward(self, x1, x2):
h1_relu = self.linear1(x1).clamp(min=0)
h2_relu = self.linear1(x2).clamp(min=0)
cat = torch.cat((h1_relu, h2_relu), 1)
y_pred = self.linear2(cat)
return y_pred
class TwoLayerNetModule(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super().__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
def forward(self, x1, x2):
h1_relu = self.linear1(x1).clamp(min=0)
h2_relu = self.linear1(x2).clamp(min=0)
cat = torch.cat((h1_relu, h2_relu), 1)
y_pred = self.linear2(cat)
return y_pred
class TestThroughputBenchmark(TestCase):
def linear_test(self, Module, profiler_output_path=""):
D_in = 10
H = 5
D_out = 15
B = 8
NUM_INPUTS = 2
module = Module(D_in, H, D_out)
inputs = []
for i in range(NUM_INPUTS):
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
bench = ThroughputBenchmark(module)
for input in inputs:
# can do both args and kwargs here
bench.add_input(input[0], x2=input[1])
for i in range(NUM_INPUTS):
# or just unpack the list of inputs
module_result = module(*inputs[i])
bench_result = bench.run_once(*inputs[i])
torch.testing.assert_close(bench_result, module_result)
stats = bench.benchmark(
num_calling_threads=4,
num_warmup_iters=100,
num_iters=1000,
profiler_output_path=profiler_output_path,
)
print(stats)
def test_script_module(self):
self.linear_test(TwoLayerNet)
def test_module(self):
self.linear_test(TwoLayerNetModule)
def test_profiling(self):
with TemporaryFileName() as fname:
self.linear_test(TwoLayerNetModule, profiler_output_path=fname)
if __name__ == "__main__":
run_tests()