blob: d7ae11177576d136a92f40d44e1560672a59ec8b [file] [log] [blame]
# Owner(s): ["oncall: mobile"]
import io
import itertools
import unittest
from hypothesis import assume, given, strategies as st
import torch
import torch.backends.xnnpack
import torch.testing._internal.hypothesis_utils as hu
from torch.nn import functional as F
from torch.testing import FileCheck
from torch.testing._internal.common_utils import (
IS_FBCODE,
run_tests,
slowTest,
TEST_WITH_TSAN,
TestCase,
)
from torch.utils.mobile_optimizer import optimize_for_mobile
@unittest.skipUnless(
torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests." " Please build with USE_XNNPACK=1.",
)
@unittest.skipIf(
TEST_WITH_TSAN,
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
)
class TestXNNPACKOps(TestCase):
@unittest.skip(
"Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488"
)
@given(
batch_size=st.integers(0, 3),
data_shape=hu.array_shapes(1, 3, 2, 64),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
)
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
data_shape = [batch_size] + list(data_shape)
input_data = torch.rand(data_shape)
weight = torch.rand((weight_output_dim, data_shape[-1]))
if use_bias:
bias = torch.rand(weight_output_dim)
else:
bias = None
ref_result = F.linear(input_data, weight, bias)
packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
output_linearprepacked = torch.ops.prepacked.linear_clamp_run(
input_data, packed_weight_bias
)
torch.testing.assert_close(
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
)
@given(
input_size=st.integers(2, 32),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
)
def test_linear_1d_input(self, input_size, weight_output_dim, use_bias):
input_data = torch.rand(input_size)
weight = torch.rand((weight_output_dim, input_data.shape[-1]))
if use_bias:
bias = torch.rand(weight_output_dim)
else:
bias = None
ref_result = F.linear(input_data, weight, bias)
packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
output_linearprepacked = torch.ops.prepacked.linear_clamp_run(
input_data, packed_weight_bias
)
torch.testing.assert_close(
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
)
@given(
batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans(),
format=st.sampled_from(
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
),
)
def test_conv2d(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
use_bias,
format,
):
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand(
(output_channels, input_channels_per_group, kernel_h, kernel_w)
)
bias = None
if use_bias:
bias = torch.rand(output_channels)
ref_result = F.conv2d(
input_data, weight, bias, strides, paddings, dilations, groups
)
packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(
weight, bias, strides, paddings, dilations, groups
)
xnnpack_result = torch.ops.prepacked.conv2d_clamp_run(
input_data, packed_weight_bias
)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@given(
batch_size=st.integers(1, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
output_pad_h=st.integers(0, 2),
output_pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans(),
format=st.sampled_from(
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
),
)
def test_conv2d_transpose(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
output_pad_h,
output_pad_w,
dilation,
use_bias,
format,
):
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
output_paddings = (output_pad_h, output_pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
assume((output_pad_h < stride_h) and (output_pad_h < dilation))
assume((output_pad_w < stride_w) and (output_pad_w < dilation))
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand(
(input_channels, output_channels_per_group, kernel_h, kernel_w)
)
bias = None
if use_bias:
bias = torch.rand(output_channels)
# Note that groups/dilation is in reverse order from conv2d
ref_result = F.conv_transpose2d(
input_data,
weight,
bias,
strides,
paddings,
output_paddings,
groups,
dilation,
)
packed_weight_bias = torch.ops.prepacked.conv2d_transpose_clamp_prepack(
weight, bias, strides, paddings, output_paddings, dilations, groups
)
xnnpack_result = torch.ops.prepacked.conv2d_transpose_clamp_run(
input_data, packed_weight_bias
)
torch.testing.assert_close(
ref_result.contiguous(), xnnpack_result.contiguous(), rtol=1e-2, atol=1e-3
)
@unittest.skipUnless(
torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests." " Please build with USE_XNNPACK=1.",
)
@unittest.skipIf(
TEST_WITH_TSAN,
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
)
class TestXNNPACKSerDes(TestCase):
@unittest.skip(
"Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488"
)
@given(
batch_size=st.integers(0, 3),
data_shape=hu.array_shapes(1, 3, 2, 64),
weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
)
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
class Linear(torch.nn.Module):
def __init__(self, weight, bias=None):
super().__init__()
self.weight = weight
self.bias = bias
def forward(self, x):
return F.linear(x, self.weight, self.bias)
class LinearPrePacked(torch.nn.Module):
def __init__(self, weight, bias=None):
super().__init__()
self.packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(
weight, bias
)
def forward(self, x):
return torch.ops.prepacked.linear_clamp_run(x, self.packed_weight_bias)
data_shape = [batch_size] + list(data_shape)
weight = torch.rand((weight_output_dim, data_shape[-1]))
if use_bias:
bias = torch.rand(weight_output_dim)
else:
bias = None
scripted_linear = torch.jit.script(Linear(weight, bias))
scripted_linear_clamp_prepacked = torch.jit.script(
LinearPrePacked(weight, bias)
)
input_data = torch.rand(data_shape)
ref_result = scripted_linear(input_data)
output_linearprepacked = scripted_linear_clamp_prepacked(input_data)
torch.testing.assert_close(
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
)
# Serialize the modules and then deserialize
input_data = torch.rand(data_shape)
buffer = io.BytesIO()
torch.jit.save(scripted_linear, buffer)
buffer.seek(0)
deserialized_linear = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_linear_clamp_prepacked, buffer)
buffer.seek(0)
deserialized_linear_clamp_prepacked = torch.jit.load(buffer)
ref_result = deserialized_linear(input_data)
output_linearprepacked = deserialized_linear_clamp_prepacked(input_data)
torch.testing.assert_close(
ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3
)
@given(
batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans(),
format=st.sampled_from(
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
),
)
def test_conv2d(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
use_bias,
format,
):
class Conv2D(torch.nn.Module):
def __init__(self, weight, bias, strides, paddings, dilations, groups):
super().__init__()
self.weight = weight
self.bias = bias
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(
x,
self.weight,
self.bias,
self.strides,
self.paddings,
self.dilations,
self.groups,
)
class Conv2DPrePacked(torch.nn.Module):
def __init__(self, weight, bias, strides, paddings, dilations, groups):
super().__init__()
self.packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(
weight, bias, strides, paddings, dilations, groups
)
def forward(self, x):
return torch.ops.prepacked.conv2d_clamp_run(x, self.packed_weight_bias)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand(
(output_channels, input_channels_per_group, kernel_h, kernel_w)
)
bias = None
if use_bias:
bias = torch.rand(output_channels)
scripted_conv2d = torch.jit.script(
Conv2D(weight, bias, strides, paddings, dilations, groups)
)
scripted_conv2d_clamp_prepacked = torch.jit.script(
Conv2DPrePacked(weight, bias, strides, paddings, dilations, groups)
)
ref_result = scripted_conv2d(input_data)
xnnpack_result = scripted_conv2d_clamp_prepacked(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d, buffer)
buffer.seek(0)
deserialized_conv2d = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d_clamp_prepacked, buffer)
buffer.seek(0)
deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer)
ref_result = deserialized_conv2d(input_data)
xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@given(
batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
output_pad_h=st.integers(0, 2),
output_pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
use_bias=st.booleans(),
format=st.sampled_from(
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
),
)
def test_conv2d_transpose(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
output_pad_h,
output_pad_w,
dilation,
use_bias,
format,
):
class Conv2DT(torch.nn.Module):
def __init__(
self,
weight,
bias,
strides,
paddings,
output_paddings,
dilations,
groups,
):
super().__init__()
self.weight = weight
self.bias = bias
self.strides = strides
self.paddings = paddings
self.output_paddings = output_paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv_transpose2d(
x,
self.weight,
self.bias,
self.strides,
self.paddings,
self.output_paddings,
self.groups,
self.dilations,
)
class Conv2DTPrePacked(torch.nn.Module):
def __init__(
self,
weight,
bias,
strides,
paddings,
output_paddings,
dilations,
groups,
):
super().__init__()
self.packed_weight_bias = (
torch.ops.prepacked.conv2d_transpose_clamp_prepack(
weight,
bias,
strides,
paddings,
output_paddings,
dilations,
groups,
)
)
def forward(self, x):
return torch.ops.prepacked.conv2d_transpose_clamp_run(
x, self.packed_weight_bias
)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
output_paddings = (output_pad_h, output_pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
assume((output_pad_h < stride_h) and (output_pad_h < dilation))
assume((output_pad_w < stride_w) and (output_pad_w < dilation))
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
weight = torch.rand(
(input_channels, output_channels_per_group, kernel_h, kernel_w)
)
bias = None
if use_bias:
bias = torch.rand(output_channels)
scripted_conv2d = torch.jit.script(
Conv2DT(weight, bias, strides, paddings, output_paddings, dilations, groups)
)
scripted_conv2d_clamp_prepacked = torch.jit.script(
Conv2DTPrePacked(
weight, bias, strides, paddings, output_paddings, dilations, groups
)
)
ref_result = scripted_conv2d(input_data)
xnnpack_result = scripted_conv2d_clamp_prepacked(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d, buffer)
buffer.seek(0)
deserialized_conv2d = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_conv2d_clamp_prepacked, buffer)
buffer.seek(0)
deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer)
ref_result = deserialized_conv2d(input_data)
xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@unittest.skip(
"Fails on some platforms, see https://github.com/pytorch/pytorch/issues/73488"
)
@given(
batch_size=st.integers(0, 3),
input_channels_per_group=st.integers(1, 32),
height=st.integers(5, 64),
width=st.integers(5, 64),
output_channels_per_group=st.integers(1, 32),
groups=st.integers(1, 16),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
linear_weight_output_dim=st.integers(2, 64),
use_bias=st.booleans(),
format=st.sampled_from(
[None, torch.preserve_format, torch.contiguous_format, torch.channels_last]
),
)
def test_combined_model(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
linear_weight_output_dim,
use_bias,
format,
):
class M(torch.nn.Module):
def __init__(
self,
conv_weight,
conv_bias,
linear_weight,
linear_bias,
strides,
paddings,
dilations,
groups,
):
super().__init__()
self.conv_weight = conv_weight
self.conv_bias = conv_bias
self.linear_weight = linear_weight
self.linear_bias = linear_bias
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(
x,
self.conv_weight,
self.conv_bias,
self.strides,
self.paddings,
self.dilations,
self.groups,
)
o = o.permute([0, 2, 3, 1])
o = F.linear(o, self.linear_weight, self.linear_bias)
return F.relu(o)
class MPrePacked(torch.nn.Module):
def __init__(
self,
conv_weight,
conv_bias,
linear_weight,
linear_bias,
strides,
paddings,
dilations,
groups,
):
super().__init__()
self.conv2d_clamp_run_weight_bias = (
torch.ops.prepacked.conv2d_clamp_prepack(
conv_weight, conv_bias, strides, paddings, dilations, groups
)
)
self.linear_clamp_run_weight_bias = (
torch.ops.prepacked.linear_clamp_prepack(linear_weight, linear_bias)
)
def forward(self, x):
o = torch.ops.prepacked.conv2d_clamp_run(
x, self.conv2d_clamp_run_weight_bias
)
o = o.permute([0, 2, 3, 1])
o = torch.ops.prepacked.linear_clamp_run(
o, self.linear_clamp_run_weight_bias
)
return F.relu(o)
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
assume(height + 2 * paddings[0] >= dilations[0] * (kernels[0] - 1) + 1)
assume(width + 2 * paddings[1] >= dilations[1] * (kernels[1] - 1) + 1)
input_data = torch.rand((batch_size, input_channels, height, width))
if format is not None:
input_data = input_data.contiguous(memory_format=format)
conv_weight = torch.rand(
(output_channels, input_channels_per_group, kernel_h, kernel_w)
)
conv_bias = None
if use_bias:
conv_bias = torch.rand(output_channels)
# This is done just to find the output shape of the result
# so that the shape of weight for the following linear layer
# can be determined.
result = F.conv2d(
input_data, conv_weight, conv_bias, strides, paddings, dilations, groups
)
linear_input_shape = result.shape[1]
linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape))
linear_bias = None
if use_bias:
linear_bias = torch.rand(linear_weight_output_dim)
scripted_m = torch.jit.script(
M(
conv_weight,
conv_bias,
linear_weight,
linear_bias,
strides,
paddings,
dilations,
groups,
)
)
scripted_m_prepacked = torch.jit.script(
MPrePacked(
conv_weight,
conv_bias,
linear_weight,
linear_bias,
strides,
paddings,
dilations,
groups,
)
)
ref_result = scripted_m(input_data)
xnnpack_result = scripted_m_prepacked(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
# Serialize the modules and then deserialize
input_data = torch.rand((batch_size, input_channels, height, width))
input_data = input_data.contiguous(memory_format=torch.channels_last)
buffer = io.BytesIO()
torch.jit.save(scripted_m, buffer)
buffer.seek(0)
deserialized_m = torch.jit.load(buffer)
buffer = io.BytesIO()
torch.jit.save(scripted_m_prepacked, buffer)
buffer.seek(0)
deserialized_m_prepacked = torch.jit.load(buffer)
ref_result = deserialized_m(input_data)
xnnpack_result = deserialized_m_prepacked(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@unittest.skipUnless(
torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests." " Please build with USE_XNNPACK=1.",
)
@unittest.skipIf(
TEST_WITH_TSAN,
"TSAN fails with XNNPACK. Does not seem to have a good reason for failures.",
)
class TestXNNPACKRewritePass(TestCase):
@staticmethod
def validate_transformed_module(
# To please flake
self,
pattern_count_map,
data_shape,
prepack_removal=False,
fuse_clamping_ops=False,
):
input_data = torch.normal(1, 20, size=data_shape)
for jit_method in ["script", "trace"]:
module_instance = self
if jit_method == "script":
scripted_model = torch.jit.script(module_instance)
else:
scripted_model = torch.jit.trace(module_instance, input_data)
scripted_model.eval()
ref_result = scripted_model(input_data)
torch._C._jit_pass_insert_prepacked_ops(scripted_model._c)
if fuse_clamping_ops or prepack_removal:
scripted_model._c = torch._C._freeze_module(scripted_model._c)
if fuse_clamping_ops:
torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv(scripted_model._c)
if prepack_removal:
torch._C._jit_pass_fold_prepacking_ops(scripted_model._c)
buffer = io.BytesIO()
torch.jit.save(scripted_model, buffer)
buffer.seek(0)
deserialized_scripted_model = torch.jit.load(buffer)
for pattern, v in pattern_count_map.items():
if v == 0:
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
elif v == -1:
FileCheck().check_not(pattern).run(
deserialized_scripted_model.graph
)
else:
FileCheck().check_count(pattern, v, exactly=True).run(
deserialized_scripted_model.graph
)
xnnpack_result = deserialized_scripted_model(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
def test_linear(self):
data_shape = [2, 3, 32]
weight_output_dim = 24
weight_shape = (weight_output_dim, data_shape[-1])
class Linear(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
return F.linear(x, self.weight, self.bias)
class LinearNoBias(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
def forward(self, x):
return F.linear(x, self.weight, None)
# Linear with bias pattern.
pattern_count_map = {
"Tensor = prim::CallFunction": -1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
Linear(), pattern_count_map, data_shape
)
TestXNNPACKRewritePass.validate_transformed_module(
LinearNoBias(), pattern_count_map, data_shape
)
# Conv params
batch_size = 2
input_channels_per_group = 6
height = 16
width = 16
output_channels_per_group = 6
groups = 4
kernel_h = kernel_w = 3
stride_h = stride_w = 1
pad_h = pad_w = 1
output_pad_h = output_pad_w = 0
dilation = 1
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
output_paddings = (output_pad_h, output_pad_w)
dilations = (dilation, dilation)
conv_weight_shape = (
output_channels,
input_channels_per_group,
kernel_h,
kernel_w,
)
conv_transpose_weight_shape = (
input_channels,
output_channels_per_group,
kernel_h,
kernel_w,
)
conv_bias_shape = output_channels
class Conv2D(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(conv_weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(conv_bias_shape), requires_grad=False
)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(
x,
self.weight,
self.bias,
self.strides,
self.paddings,
self.dilations,
self.groups,
)
class Conv2DT(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(conv_transpose_weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(conv_bias_shape), requires_grad=False
)
self.strides = strides
self.paddings = paddings
self.output_paddings = output_paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv_transpose2d(
x,
self.weight,
self.bias,
self.strides,
self.paddings,
self.output_paddings,
self.groups,
self.dilations,
)
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {
"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": 1,
"prepacked::conv2d_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
Conv2D(), pattern_count_map, data_shape
)
transpose_data_shape = (batch_size, input_channels, height, width)
transpose_pattern_count_map = {
"Tensor = aten::conv_transpose2d": -1,
"prepacked::conv2d_transpose_clamp_prepack": 1,
"prepacked::conv2d_transpose_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
Conv2DT(), transpose_pattern_count_map, data_shape
)
input_data = torch.rand((batch_size, input_channels, height, width))
conv_weight = torch.rand(
(output_channels, input_channels_per_group, kernel_h, kernel_w)
)
conv_bias = torch.rand(output_channels)
result = F.conv2d(
input_data, conv_weight, conv_bias, strides, paddings, dilations, groups
)
linear_input_shape = result.shape[1]
linear_weight_shape = (weight_output_dim, linear_input_shape)
class M(torch.nn.Module):
def __init__(self, activation_fn=F.relu):
super().__init__()
self.conv_weight = torch.nn.Parameter(
torch.rand(conv_weight_shape), requires_grad=False
)
self.conv_bias = torch.nn.Parameter(
torch.rand(conv_bias_shape), requires_grad=False
)
self.linear_weight = torch.nn.Parameter(
torch.rand(linear_weight_shape), requires_grad=False
)
self.linear_bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
self.activation_fn = activation_fn
def forward(self, x):
o = F.conv2d(
x,
self.conv_weight,
self.conv_bias,
self.strides,
self.paddings,
self.dilations,
self.groups,
)
o = self.activation_fn(o)
o = o.permute([0, 2, 3, 1])
o = F.linear(o, self.linear_weight, self.linear_bias)
return self.activation_fn(o)
pattern_count_map = {
"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": 1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
M(), pattern_count_map, data_shape
)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["Tensor = prim::CallFunction"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
TestXNNPACKRewritePass.validate_transformed_module(
M(), pattern_count_map, data_shape, prepack_removal=True
)
# Not inplace relu fusion test.
pattern_count_map = {
"aten::relu": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
M(), pattern_count_map, data_shape, prepack_removal=True
)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::relu"] = -1
TestXNNPACKRewritePass.validate_transformed_module(
M(),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True,
)
# Inplace relu fusion test.
pattern_count_map = {
"aten::relu": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
M(F.relu_), pattern_count_map, data_shape, prepack_removal=True
)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::relu"] = -1
TestXNNPACKRewritePass.validate_transformed_module(
M(F.relu_),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True,
)
# Not inplace hardtanh fusion test.
pattern_count_map = {
"aten::hardtanh": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
M(F.hardtanh), pattern_count_map, data_shape, prepack_removal=True
)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::hardtanh"] = -1
TestXNNPACKRewritePass.validate_transformed_module(
M(F.hardtanh),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True,
)
# Inplace hardtanh fusion test.
pattern_count_map = {
"aten::hardtanh_": 2,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
M(F.hardtanh_), pattern_count_map, data_shape, prepack_removal=True
)
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
pattern_count_map["aten::hardtanh_"] = -1
TestXNNPACKRewritePass.validate_transformed_module(
M(F.hardtanh_),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True,
)
class MFusionAntiPattern(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear_weight = torch.nn.Parameter(
torch.rand(linear_weight_shape), requires_grad=False
)
self.linear_bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.linear(x, self.linear_weight, self.linear_bias)
o = F.relu(o)
o = F.hardtanh(o)
return o
# Unfusable hardtanh.
pattern_count_map = {
"aten::hardtanh": 1, # hardtanh cannot be.
"aten::relu": -1, # relu is fused.
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
MFusionAntiPattern(),
pattern_count_map,
(16, linear_weight_shape[1]),
prepack_removal=True,
fuse_clamping_ops=True,
)
class MFusionAntiPatternParamMinMax(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear_weight = torch.nn.Parameter(
torch.rand(linear_weight_shape), requires_grad=False
)
self.linear_bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
min = x[0, 0]
max = min + 10
o = F.linear(x, self.linear_weight, self.linear_bias)
o = F.hardtanh(o, min, max)
return o
# Unfusable hardtanh.
pattern_count_map = {
"aten::hardtanh": 1, # hardtanh cannot be.
"prepacked::linear_clamp_prepack": -1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
MFusionAntiPatternParamMinMax(),
pattern_count_map,
(16, linear_weight_shape[1]),
prepack_removal=True,
fuse_clamping_ops=True,
)
def test_decomposed_linear(self):
data_shape = [2, 32]
weight_output_dim = 24
weight_shape = (weight_output_dim, data_shape[-1])
class DecomposedLinearAddmm(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
weight_t = self.weight.t()
return torch.addmm(self.bias, x, weight_t)
class DecomposedLinearMatmulAdd(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
weight_t = self.weight.t()
y = torch.matmul(x, weight_t)
res = y.add_(self.bias)
return res
class DecomposedLinearMatmul(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(weight_output_dim), requires_grad=False
)
def forward(self, x):
weight_t = self.weight.t()
res = torch.matmul(x, weight_t)
return res
# Linear with bias pattern.
pattern_count_map = {
"Tensor = prim::CallFunction": -1,
"prepacked::linear_clamp_prepack": 1,
"prepacked::linear_clamp_run": 1,
}
TestXNNPACKRewritePass.validate_transformed_module(
DecomposedLinearAddmm(), pattern_count_map, data_shape
)
TestXNNPACKRewritePass.validate_transformed_module(
DecomposedLinearMatmulAdd(), pattern_count_map, data_shape
)
TestXNNPACKRewritePass.validate_transformed_module(
DecomposedLinearMatmul(), pattern_count_map, data_shape
)
@unittest.skipUnless(
torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests." " Please build with USE_XNNPACK=1.",
)
@unittest.skipIf(
TEST_WITH_TSAN,
"TSAN is not fork-safe since we're forking in a multi-threaded environment",
)
class TestXNNPACKConv1dTransformPass(TestCase):
@staticmethod
def validate_transform_conv1d_to_conv2d(
self, pattern_count_transformed_map, pattern_count_optimized_map, data_shape
):
input_data = torch.normal(1, 20, size=data_shape)
for jit_method in ["script", "trace"]:
module_instance = self
if jit_method == "script":
scripted_model = torch.jit.script(module_instance)
else:
scripted_model = torch.jit.trace(module_instance, input_data)
scripted_model.eval()
ref_result = scripted_model(input_data)
torch._C._jit_pass_transform_conv1d_to_conv2d(scripted_model._c)
optimized_scripted_model = optimize_for_mobile(scripted_model)
buffer = io.BytesIO()
torch.jit.save(scripted_model, buffer)
buffer.seek(0)
deserialized_scripted_model = torch.jit.load(buffer)
for pattern, v in pattern_count_transformed_map.items():
if v == 0:
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
elif v == -1:
FileCheck().check_not(pattern).run(
deserialized_scripted_model.graph
)
else:
FileCheck().check_count(pattern, v, exactly=True).run(
deserialized_scripted_model.graph
)
transformed_result = deserialized_scripted_model(input_data)
torch.testing.assert_close(
ref_result, transformed_result, rtol=1e-2, atol=1e-3
)
optimized_buffer = io.BytesIO()
torch.jit.save(optimized_scripted_model, optimized_buffer)
optimized_buffer.seek(0)
deserialized_optimized_scripted_model = torch.jit.load(optimized_buffer)
for pattern, v in pattern_count_optimized_map.items():
if v == 0:
FileCheck().check(pattern).run(
deserialized_optimized_scripted_model.graph
)
elif v == -1:
FileCheck().check_not(pattern).run(
deserialized_optimized_scripted_model.graph
)
else:
FileCheck().check_count(pattern, v, exactly=True).run(
deserialized_optimized_scripted_model.graph
)
xnnpack_result = deserialized_optimized_scripted_model(input_data)
torch.testing.assert_close(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
@unittest.skipIf(IS_FBCODE, "T137513244")
def test_conv1d_basic(self):
batch_size_list = range(1, 3)
input_channels_per_group_list = range(10, 12)
width_list = range(10, 12)
output_channels_per_group_list = range(10, 12)
groups_list = range(1, 3)
kernel_list = range(1, 4)
stride_list = range(1, 3)
padding_list = range(0, 3)
dilation_list = range(1, 3)
for hparams in itertools.product(
batch_size_list,
input_channels_per_group_list,
width_list,
output_channels_per_group_list,
groups_list,
kernel_list,
stride_list,
padding_list,
dilation_list,
):
(
batch_size,
input_channels_per_group,
width,
output_channels_per_group,
groups,
kernel,
stride,
padding,
dilation,
) = hparams
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
conv_weight_shape = (output_channels, input_channels_per_group, kernel)
conv_bias_shape = output_channels
class Conv1D(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.weight = torch.nn.Parameter(
torch.rand(conv_weight_shape), requires_grad=False
)
self.bias = torch.nn.Parameter(
torch.rand(conv_bias_shape), requires_grad=False
)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, x):
return F.conv1d(
x,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
data_shape = (batch_size, input_channels, width)
pattern_count_transformed_map = {
"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": 1,
}
pattern_count_optimized_map = {
"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
}
TestXNNPACKConv1dTransformPass.validate_transform_conv1d_to_conv2d(
Conv1D(),
pattern_count_transformed_map,
pattern_count_optimized_map,
data_shape,
)
# See https://github.com/pytorch/pytorch/issues/46066
@slowTest
def test_conv1d_with_relu_fc(self):
batch_size_list = range(1, 3)
input_channels_per_group_list = range(10, 12)
width_list = range(10, 12)
output_channels_per_group_list = range(10, 12)
groups_list = range(1, 3)
kernel_list = range(1, 4)
stride_list = range(1, 3)
padding_list = range(0, 3)
dilation_list = range(1, 3)
output_features_list = range(1, 3)
for hparams in itertools.product(
batch_size_list,
input_channels_per_group_list,
width_list,
output_channels_per_group_list,
groups_list,
kernel_list,
stride_list,
padding_list,
dilation_list,
output_features_list,
):
(
batch_size,
input_channels_per_group,
width,
output_channels_per_group,
groups,
kernel,
stride,
padding,
dilation,
output_features,
) = hparams
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
conv_weight_shape = (output_channels, input_channels_per_group, kernel)
conv_bias_shape = output_channels
conv_output_width = (
int((width + 2 * padding - dilation * (kernel - 1) - 1) / stride) + 1
)
fc_weight_shape = (output_features, output_channels * conv_output_width)
fc_bias_shape = output_features
class Net(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv_weight = torch.nn.Parameter(
torch.rand(conv_weight_shape), requires_grad=False
)
self.conv_bias = torch.nn.Parameter(
torch.rand(conv_bias_shape), requires_grad=False
)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.fc_weight = torch.nn.Parameter(
torch.rand(fc_weight_shape), requires_grad=False
)
self.fc_bias = torch.nn.Parameter(
torch.rand(fc_bias_shape), requires_grad=False
)
def forward(self, x):
x = F.conv1d(
x,
self.conv_weight,
self.conv_bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
x = F.relu(x)
x = x.view(x.size(0), -1)
x = F.linear(x, self.fc_weight, self.fc_bias)
return x
data_shape = (batch_size, input_channels, width)
pattern_count_transformed_map = {
"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": 1,
}
pattern_count_optimized_map = {
"Tensor = aten::conv1d": -1,
"Tensor = aten::conv2d": -1,
"prepacked::conv2d_clamp_prepack": -1,
"prepacked::conv2d_clamp_run": 1,
}
TestXNNPACKConv1dTransformPass.validate_transform_conv1d_to_conv2d(
Net(),
pattern_count_transformed_map,
pattern_count_optimized_map,
data_shape,
)
if __name__ == "__main__":
run_tests()