| ## @package conv |
| # Module caffe2.python.layers.conv |
| |
| |
| |
| |
| |
| from caffe2.python import schema |
| from caffe2.python.layers.layers import ( |
| ModelLayer, |
| ) |
| import numpy as np |
| |
| |
| class Conv(ModelLayer): |
| """ |
| Convolutional layer |
| Input: |
| - input_record: at least has the shape info of C (num_channels) |
| - output_dim: number of convolutional filters |
| - kernel_h, kernel_w: kernel size for h and w |
| - stride_h, stride_w: stride for h and w |
| - pad_b, pad_l, pad_r, pad_t: padding sizes, if stride == 1, |
| 'None' value will do auto padding |
| - order: either 'NHWC' or 'NCHW' |
| """ |
| |
| def __init__(self, model, input_record, output_dim, kernel_h, kernel_w, |
| stride_h, stride_w, pad_b=None, pad_l=None, pad_r=None, |
| pad_t=None, order='NHWC', kernel_init=None, bias_init=None, |
| kernel_optim=None, bias_optim=None, |
| name='conv', **kwargs): |
| |
| super(Conv, self).__init__(model, name, input_record, **kwargs) |
| assert isinstance(input_record, schema.Scalar), "Incorrect input type" |
| # input num_channels (C) is needed |
| input_dims = input_record.field_type().shape |
| |
| assert (kernel_h > 0 and isinstance(kernel_h, int)), ( |
| "kernel_h should be positive integer") |
| assert (kernel_w > 0 and isinstance(kernel_w, int)), ( |
| "kernel_w should be positive integer") |
| self.kernel_h = kernel_h |
| self.kernel_w = kernel_w |
| |
| assert (stride_h > 0 and isinstance(stride_h, int)), ( |
| "stride_h should be positive integer") |
| assert (stride_w > 0 and isinstance(stride_w, int)), ( |
| "stride_w should be positive integer") |
| self.stride_h = stride_h |
| self.stride_w = stride_w |
| |
| # output_dim calculation (http://cs231n.github.io/convolutional-networks/) |
| # output_dim_w = (input_dim_w - kernel_w + pad_r + pad_l) / stride_w + 1 |
| # so, do auto_padding requires |
| # pad_r, pad_l = [(input_dim_w - 1) * stride_w - input_dim_w + kernel_w] / 2 |
| # similair for pad_t and pad_b to auto pad kernel_h |
| # here we only do auto padding for stride = 1 case |
| if stride_h == 1: |
| pad_t = int((kernel_h - 1) / 2) if pad_t is None else pad_t |
| pad_b = int((kernel_h - 1) / 2) if pad_b is None else pad_b |
| else: |
| pad_t = 0 if pad_t is None else pad_t |
| pad_b = 0 if pad_b is None else pad_b |
| |
| if stride_w == 1: |
| pad_r = int((kernel_w - 1) / 2) if pad_r is None else pad_r |
| pad_l = int((kernel_w - 1) / 2) if pad_l is None else pad_l |
| else: |
| pad_r = 0 if pad_r is None else pad_r |
| pad_l = 0 if pad_l is None else pad_l |
| |
| assert (pad_t >= 0 and isinstance(pad_t, int)), "pad_t should be int >= 0" |
| assert (pad_b >= 0 and isinstance(pad_b, int)), "pad_b should be int >= 0" |
| assert (pad_r >= 0 and isinstance(pad_r, int)), "pad_r should be int >= 0" |
| assert (pad_l >= 0 and isinstance(pad_l, int)), "pad_l should be int >= 0" |
| self.pad_t = pad_t |
| self.pad_b = pad_b |
| self.pad_r = pad_r |
| self.pad_l = pad_l |
| |
| assert order in ['NHWC', 'NCHW'], "order should either 'NHWC' or 'NCHW'" |
| self.order = order |
| |
| if order == 'NHWC': |
| input_c = input_dims[-1] |
| kernel_shape = [output_dim, kernel_h, kernel_w, input_c] |
| elif order == 'NCHW': |
| input_c = input_dims[0] |
| kernel_shape = [output_dim, input_c, kernel_h, kernel_w] |
| assert input_c > 0, ( |
| "Number of input channels in conv parameters should be positive") |
| |
| kernel_init = kernel_init if kernel_init else ( |
| 'XavierFill', {} |
| ) |
| bias_init = bias_init if bias_init else ( |
| 'ConstantFill', {'value': 0.0} |
| ) |
| |
| self.kernel = self.create_param( |
| param_name='conv_kernel', |
| shape=kernel_shape, |
| initializer=kernel_init, |
| optimizer=kernel_optim, |
| ) |
| |
| self.bias = self.create_param( |
| param_name='conv_bias', |
| shape=[output_dim], |
| initializer=bias_init, |
| optimizer=bias_optim, |
| ) |
| |
| # the output_schema only has the num of output channels |
| # output_h and output_w would be inferred internally |
| self.output_schema = schema.Scalar( |
| (np.float32, (output_dim,)), |
| self.get_next_blob_reference('output') |
| ) |
| |
| def add_ops(self, net): |
| net.Conv( |
| self.input_record.field_blobs() + [self.kernel, self.bias], |
| self.output_schema.field_blobs(), |
| kernel_h=self.kernel_h, |
| kernel_w=self.kernel_w, |
| stride_h=self.stride_h, |
| stride_w=self.stride_w, |
| pad_t=self.pad_t, |
| pad_l=self.pad_l, |
| pad_b=self.pad_b, |
| pad_r=self.pad_r, |
| order=self.order |
| ) |