| from __future__ import annotations |
| |
| import argparse |
| import os |
| import re |
| from collections import Counter, defaultdict, namedtuple |
| from pathlib import Path |
| from typing import Sequence |
| |
| import yaml |
| |
| import torchgen.api.dispatcher as dispatcher |
| import torchgen.dest as dest |
| from torchgen.api.types import DispatcherSignature |
| from torchgen.code_template import CodeTemplate |
| from torchgen.context import native_function_manager |
| from torchgen.gen import get_grouped_native_functions, parse_native_yaml |
| from torchgen.model import ( |
| BackendIndex, |
| BackendMetadata, |
| DispatchKey, |
| NativeFunction, |
| NativeFunctionsGroup, |
| OperatorName, |
| ) |
| from torchgen.selective_build.selector import SelectiveBuilder |
| from torchgen.utils import concatMap, context, FileManager, NamespaceHelper, Target |
| from torchgen.yaml_utils import YamlLoader |
| |
| |
| # Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key. |
| # Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping) |
| ParsedExternalYaml = namedtuple( |
| "ParsedExternalYaml", |
| ["backend_key", "autograd_key", "class_name", "cpp_namespace", "backend_indices"], |
| ) |
| |
| |
| def parse_backend_yaml( |
| backend_yaml_path: str, |
| grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], |
| backend_indices: dict[DispatchKey, BackendIndex], |
| ) -> ParsedExternalYaml: |
| native_functions_map: dict[OperatorName, NativeFunction] = { |
| f.func.name: f |
| for f in concatMap( |
| lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), |
| grouped_native_functions, |
| ) |
| } |
| |
| with open(backend_yaml_path) as f: |
| yaml_values = yaml.load(f, Loader=YamlLoader) |
| assert isinstance(yaml_values, dict) |
| |
| valid_keys = [ |
| "backend", |
| "class_name", |
| "cpp_namespace", |
| "extra_headers", |
| "supported", |
| "autograd", |
| "full_codegen", |
| "non_native", |
| "ir_gen", |
| "symint", |
| ] |
| |
| backend = yaml_values.pop("backend", None) |
| assert backend is not None, 'You must provide a value for "backend"' |
| |
| class_name = yaml_values.pop("class_name", None) |
| |
| cpp_namespace = yaml_values.pop("cpp_namespace", None) |
| assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"' |
| |
| # Mostly just defaulting to false to stick with LazyTensor convention. |
| use_out_as_primary = yaml_values.pop("use_out_as_primary", False) |
| assert isinstance( |
| use_out_as_primary, bool |
| ), f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}" |
| |
| use_device_guard = yaml_values.pop("device_guard", False) |
| assert isinstance( |
| use_device_guard, bool |
| ), f"You must provide either True or False for device_guard. Provided: {use_device_guard}" |
| |
| supported = yaml_values.pop("supported", []) |
| if supported is None: |
| supported = [] # Allow an empty list of supported ops |
| assert isinstance( |
| supported, list |
| ), f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})' |
| |
| symint = yaml_values.pop("symint", []) |
| if symint is None: |
| symint = [] # Allow an empty list of symint ops |
| assert isinstance( |
| symint, list |
| ), f'expected "symint" to be a list, but got: {supported} (of type {type(supported)})' |
| symint_set = set(symint) |
| |
| supported_autograd = yaml_values.pop("autograd", []) |
| assert isinstance( |
| supported_autograd, list |
| ), f'expected "autograd" to be a list, but got: {supported_autograd}' |
| |
| # full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py |
| full_codegen = yaml_values.pop("full_codegen", []) |
| supported.extend(full_codegen) |
| |
| # non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py |
| yaml_values.pop("non_native", {}) |
| |
| # ir_gen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py |
| yaml_values.pop("ir_gen", {}) |
| |
| assert ( |
| len(yaml_values.keys()) == 0 |
| ), f'{backend_yaml_path} contains unexpected keys: {", ".join(yaml_values.keys())}. \ |
| Only the following keys are supported: {", ".join(valid_keys)}' |
| |
| def create_backend_index( |
| backend_ops: list[str], |
| symint_ops: set[str], |
| dispatch_key: DispatchKey, |
| *, |
| use_out_as_primary: bool, |
| use_device_guard: bool, |
| ) -> BackendIndex: |
| metadata: dict[OperatorName, BackendMetadata] = {} |
| for op in backend_ops: |
| op_name = OperatorName.parse(op) |
| assert ( |
| op_name in native_functions_map |
| ), f"Found an invalid operator name: {op_name}" |
| # See Note [External Backends Follow Dispatcher API] |
| kernel_name = dispatcher.name(native_functions_map[op_name].func) |
| if op in symint_ops: |
| kernel_name += "_symint" |
| # TODO: allow structured external backends later. |
| m = BackendMetadata( |
| kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace |
| ) |
| metadata[op_name] = m |
| return BackendIndex( |
| dispatch_key=dispatch_key, |
| use_out_as_primary=use_out_as_primary, |
| external=True, |
| device_guard=use_device_guard, |
| index=metadata, |
| ) |
| |
| backend_key: DispatchKey | None = None |
| if len(supported) > 0: |
| with context( |
| lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.' |
| ): |
| backend_key = DispatchKey.parse(backend) |
| |
| backend_idx = create_backend_index( |
| supported, |
| symint_set, |
| backend_key, |
| use_out_as_primary=use_out_as_primary, |
| use_device_guard=use_device_guard, |
| ) |
| assert backend_key not in backend_indices |
| backend_indices[backend_key] = backend_idx |
| |
| autograd_key: DispatchKey | None = None |
| if len(supported_autograd) > 0: |
| with context( |
| lambda: f'The "autograd" key was specified, which indicates that you would like to override \ |
| the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.' |
| ): |
| autograd_key = DispatchKey.parse(f"Autograd{backend}") |
| |
| autograd_idx = create_backend_index( |
| supported_autograd, |
| symint_set, |
| autograd_key, |
| use_out_as_primary=use_out_as_primary, |
| use_device_guard=use_device_guard, |
| ) |
| assert autograd_key not in backend_indices |
| backend_indices[autograd_key] = autograd_idx |
| |
| for g in grouped_native_functions: |
| if isinstance(g, NativeFunction): |
| forward_kernels = ( |
| [] |
| if backend_key is None |
| else [ |
| m |
| for m in [backend_indices[backend_key].get_kernel(g)] |
| if m is not None |
| ] |
| ) |
| backward_kernels = ( |
| [] |
| if autograd_key is None |
| else [ |
| m |
| for m in [backend_indices[autograd_key].get_kernel(g)] |
| if m is not None |
| ] |
| ) |
| else: |
| forward_kernels = ( |
| [] |
| if backend_key is None |
| else [ |
| m |
| for m in [ |
| backend_indices[backend_key].get_kernel(f) |
| for f in g.functions() |
| ] |
| if m is not None |
| ] |
| ) |
| backward_kernels = ( |
| [] |
| if autograd_key is None |
| else [ |
| m |
| for m in [ |
| backend_indices[autograd_key].get_kernel(f) |
| for f in g.functions() |
| ] |
| if m is not None |
| ] |
| ) |
| |
| forward_kernels = [f for f in forward_kernels if f is not None] |
| backward_kernels = [f for f in backward_kernels if f is not None] |
| assert ( |
| len(forward_kernels) == 0 or len(backward_kernels) == 0 |
| ), f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \ |
| autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \ |
| {forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".' |
| |
| return ParsedExternalYaml( |
| backend_key, autograd_key, class_name, cpp_namespace, backend_indices |
| ) |
| |
| |
| def error_on_missing_kernels( |
| native_functions: Sequence[NativeFunction], |
| backend_indices: dict[DispatchKey, BackendIndex], |
| backend_key: DispatchKey, |
| autograd_key: DispatchKey | None, |
| class_name: str, |
| kernel_defn_file_path: str, |
| full_codegen: list[OperatorName] | None = None, |
| ) -> None: |
| try: |
| with open(kernel_defn_file_path) as f: |
| backend_defns = f.read() |
| except OSError as e: |
| raise AssertionError( |
| f"Unable to read from the specified impl_path file: {kernel_defn_file_path}" |
| ) from e |
| |
| if full_codegen is None: |
| full_codegen = [] |
| |
| indices = [backend_indices[backend_key].index] + ( |
| [] if autograd_key is None else [backend_indices[autograd_key].index] |
| ) |
| # Quick mapping from each OperatorName used by the external backend |
| # to its backend kernel name |
| expected_backend_op_names: dict[OperatorName, str] = dict( |
| list( |
| concatMap( |
| lambda index: [ |
| (op_name, metadata.kernel) for op_name, metadata in index.items() |
| ], |
| indices, |
| ) |
| ) |
| ) |
| expected_backend_native_funcs: list[NativeFunction] = [ |
| f |
| for f in native_functions |
| if f.func.name in expected_backend_op_names.keys() |
| and f.func.name not in full_codegen |
| ] |
| expected_backend_kernel_name_counts: dict[str, list[NativeFunction]] = defaultdict( |
| list |
| ) |
| for native_f in expected_backend_native_funcs: |
| expected_backend_kernel_name_counts[ |
| expected_backend_op_names[native_f.func.name] |
| ].append(native_f) |
| |
| # This just looks for lines containing "foo(", and assumes that the kernel foo has been implemented. |
| # It might cause false negatives (we won't catch all cases), but that's ok - if we catch a missing kernel |
| # here, then we get a nicer error message. If we miss it, you get a linker error. |
| kernel_defn_regex = rf"(.*){class_name}::\s*([\w\d]*)\(" |
| actual_backend_kernel_name_counts = Counter( |
| # A bit unwieldy (this could probably be moved into regex), |
| # but we don't want to include kernel names that come from function calls, |
| # like "return torch_xla::XLANativeFunctions::empty_strided_symint(...)". |
| # Easy check is to ignore any lines with colons before the class name. |
| [ |
| y |
| for (x, y) in re.findall(kernel_defn_regex, backend_defns) |
| if not x.endswith(":") |
| ] |
| ) |
| |
| missing_kernels_err_msg = "" |
| for expected_name, funcs in expected_backend_kernel_name_counts.items(): |
| expected_overload_count = len(funcs) |
| actual_overload_count = actual_backend_kernel_name_counts[expected_name] |
| if expected_overload_count != actual_overload_count: |
| |
| def create_decl(f: NativeFunction) -> str: |
| with native_function_manager(f): |
| return DispatcherSignature.from_schema(f.func).decl() |
| |
| expected_schemas_str = "\n".join([create_decl(f) for f in funcs]) |
| missing_kernels_err_msg += f""" |
| {class_name} is missing a kernel definition for {expected_name}. We found {actual_overload_count} kernel(s) with that name, |
| but expected {expected_overload_count} kernel(s). The expected function schemas for the missing operator are: |
| {expected_schemas_str} |
| |
| """ |
| assert missing_kernels_err_msg == "", missing_kernels_err_msg |
| |
| |
| def main() -> None: |
| parser = argparse.ArgumentParser(description="Generate backend stub files") |
| parser.add_argument( |
| "-s", |
| "--source-yaml", |
| "--source_yaml", |
| help="path to source yaml file containing operator external definitions", |
| ) |
| parser.add_argument("-o", "--output-dir", "--output_dir", help="output directory") |
| parser.add_argument( |
| "--dry-run", "--dry_run", type=bool, default=False, help="output directory" |
| ) |
| parser.add_argument( |
| "--impl-path", |
| "--impl_path", |
| type=str, |
| default=None, |
| help="path to the source C++ file containing kernel definitions", |
| ) |
| options = parser.parse_args() |
| |
| run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path) |
| |
| |
| def gen_dispatchkey_nativefunc_headers( |
| fm: FileManager, |
| class_name: str, |
| cpp_namespace: str, |
| backend_indices: dict[DispatchKey, BackendIndex], |
| grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], |
| backend_dispatch_key: DispatchKey, |
| autograd_dispatch_key: DispatchKey | None, |
| backend_name: str = "", |
| ) -> None: |
| assert class_name is not None |
| generated_comment = ( |
| "Autogenerated file by gen_backend_stubs.py. Do not edit directly!" |
| ) |
| |
| # Convert to a set first to remove duplicate kernel names. |
| # Backends are allowed to repeat kernel names; only generate the declaration once! |
| # Sort for deterministic output. |
| backend_declarations = sorted( |
| set( |
| concatMap( |
| lambda f: dest.compute_native_function_declaration( |
| f, backend_indices[backend_dispatch_key] |
| ), |
| grouped_native_functions, |
| ) |
| ) |
| ) |
| autograd_declarations = sorted( |
| set( |
| concatMap( |
| lambda f: [] |
| if autograd_dispatch_key is None |
| else dest.compute_native_function_declaration( |
| f, backend_indices[autograd_dispatch_key] |
| ), |
| grouped_native_functions, |
| ) |
| ) |
| ) |
| |
| ns_helper = NamespaceHelper(cpp_namespace) |
| fm.write_with_template( |
| f"{backend_dispatch_key}NativeFunctions.h", |
| "DispatchKeyNativeFunctions.h", |
| lambda: { |
| "generated_comment": generated_comment, |
| "namespace_prologue": ns_helper.prologue, |
| "class_name": class_name, |
| "namespace_epilogue": ns_helper.epilogue, |
| "dispatch_declarations": backend_declarations + autograd_declarations, |
| "BackendName": backend_name, |
| "DispatchKey": backend_dispatch_key, |
| }, |
| ) |
| |
| |
| def gen_dispatcher_registrations( |
| fm: FileManager, |
| output_dir: str, |
| class_name: str, |
| backend_indices: dict[DispatchKey, BackendIndex], |
| grouped_native_functions: Sequence[NativeFunction | NativeFunctionsGroup], |
| backend_dispatch_key: DispatchKey, |
| dispatch_key: DispatchKey, |
| selector: SelectiveBuilder, |
| # build_in_tree is true for lazy TS backend and affects include paths, not used for external backends |
| build_in_tree: bool = False, |
| per_operator_headers: bool = False, |
| backend_name: str = "", |
| eager_registration: bool = True, |
| ) -> None: |
| headers = [ |
| f"{output_dir}/{backend_dispatch_key}NativeFunctions.h", |
| ] |
| if build_in_tree: |
| external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers) |
| else: |
| external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers) |
| |
| assert class_name is not None |
| backend_index = backend_indices[dispatch_key] |
| |
| dispatch_registrations_body = list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_index, |
| Target.REGISTRATION, |
| selector, |
| rocm=False, |
| symint=True, |
| class_method_name=f"{class_name}", |
| skip_dispatcher_op_registration=False, |
| ), |
| grouped_native_functions, |
| ) |
| ) |
| newline = "\n" |
| ns_helper = NamespaceHelper(namespace_str="at") |
| deferred_dispatch_registrations = "" |
| static_init_dispatch_registrations = "" |
| if eager_registration: |
| static_template = CodeTemplate( |
| """\ |
| TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) { |
| $dispatch_registrations_body |
| };""" |
| ) |
| static_init_dispatch_registrations = static_template.substitute( |
| dispatch_key=dispatch_key, |
| dispatch_registrations_body=dispatch_registrations_body, |
| ) |
| else: |
| deferred_template = CodeTemplate( |
| """\ |
| TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions(); |
| TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() { |
| static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key); |
| $dispatch_registrations_body |
| }""" |
| ) |
| deferred_dispatch_registrations = deferred_template.substitute( |
| backend_name=backend_name, |
| dispatch_key=dispatch_key, |
| dispatch_registrations_body=dispatch_registrations_body, |
| ) |
| |
| fm.write_with_template( |
| f"Register{dispatch_key}.cpp", |
| "RegisterDispatchKey.cpp", |
| lambda: { |
| "extra_cuda_headers": "", |
| "external_backend_headers": external_backend_headers_str, |
| "ops_headers": "#include <ATen/Functions.h>" |
| if not per_operator_headers |
| else "", |
| "DispatchKey": dispatch_key, |
| "dispatch_namespace": dispatch_key.lower(), |
| "dispatch_headers": dest.gen_registration_headers( |
| backend_index, per_operator_headers=per_operator_headers, rocm=False |
| ), |
| "dispatch_definitions": fm.substitute_with_template( |
| "RegisterDispatchDefinitions.ini", |
| lambda: { |
| "ns_prologue": ns_helper.prologue, |
| "ns_epilogue": ns_helper.epilogue, |
| "static_init_dispatch_registrations": static_init_dispatch_registrations, |
| "deferred_dispatch_registrations": deferred_dispatch_registrations, |
| "dispatch_helpers": dest.gen_registration_helpers(backend_index), |
| "dispatch_namespace": dispatch_key.lower(), |
| "dispatch_namespaced_definitions": "", |
| "dispatch_anonymous_definitions": list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_index, |
| Target.ANONYMOUS_DEFINITION, |
| selector, |
| rocm=False, |
| symint=True, |
| class_method_name=f"{class_name}", |
| skip_dispatcher_op_registration=False, |
| ), |
| grouped_native_functions, |
| ) |
| ), |
| }, |
| ).split(newline), |
| }, |
| ) |
| |
| |
| def run( |
| source_yaml: str, output_dir: str, dry_run: bool, impl_path: str | None = None |
| ) -> None: |
| # Assumes that this file lives at PYTORCH_ROOT/torchgen/gen_backend_stubs.py |
| pytorch_root = Path(__file__).parent.parent.absolute() |
| template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") |
| |
| def make_file_manager(install_dir: str) -> FileManager: |
| return FileManager( |
| install_dir=install_dir, template_dir=template_dir, dry_run=dry_run |
| ) |
| |
| fm = make_file_manager(output_dir) |
| |
| native_yaml_path = os.path.join( |
| pytorch_root, "aten/src/ATen/native/native_functions.yaml" |
| ) |
| tags_yaml_path = os.path.join(pytorch_root, "aten/src/ATen/native/tags.yaml") |
| parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) |
| native_functions, backend_indices = ( |
| parsed_yaml.native_functions, |
| parsed_yaml.backend_indices, |
| ) |
| grouped_native_functions = get_grouped_native_functions(native_functions) |
| parsed_backend_yaml = parse_backend_yaml( |
| source_yaml, grouped_native_functions, backend_indices |
| ) |
| backend_key = parsed_backend_yaml.backend_key |
| autograd_key = parsed_backend_yaml.autograd_key |
| cpp_namespace = parsed_backend_yaml.cpp_namespace |
| class_name = parsed_backend_yaml.class_name |
| backend_indices = parsed_backend_yaml.backend_indices |
| |
| selector = SelectiveBuilder.get_nop_selector() |
| |
| if backend_key is None: |
| # This could be useful if a backend wants to quickly set up a noop yaml file but doesn't have any kernels ready yet. |
| return |
| |
| if class_name is None: |
| # class_name is an optional argument to backend yaml file. |
| # if specified it allows an external backend to override |
| # the name of the class that all generated kernel definitions live under. |
| # if not specified, its value is given as native_function_class_name. |
| class_name = backend_indices[backend_key].native_function_class_name() |
| assert class_name is not None |
| |
| if impl_path is not None: |
| error_on_missing_kernels( |
| native_functions, |
| backend_indices, |
| backend_key, |
| autograd_key, |
| class_name, |
| impl_path, |
| ) |
| |
| gen_dispatchkey_nativefunc_headers( |
| fm, |
| class_name, |
| cpp_namespace, |
| backend_indices, |
| grouped_native_functions, |
| backend_key, |
| autograd_key, |
| ) |
| |
| for dispatch_key in ( |
| [backend_key] if autograd_key is None else [backend_key, autograd_key] |
| ): |
| gen_dispatcher_registrations( |
| fm, |
| output_dir, |
| class_name, |
| backend_indices, |
| grouped_native_functions, |
| backend_key, |
| dispatch_key, |
| selector, |
| ) |
| |
| |
| if __name__ == "__main__": |
| main() |