blob: a44efab68426df661fa673173b69622dae666f82 [file] [log] [blame]
from __future__ import annotations
from collections import defaultdict
from typing import Sequence
import torchgen.api.dispatcher as dispatcher
from torchgen.api.translate import translate
from torchgen.api.types import Binding, DispatcherSignature, Expr
from torchgen.context import with_native_function
from torchgen.model import (
Annotation,
Argument,
BackendIndex,
BackendMetadata,
BaseOperatorName,
BaseTy,
BaseType,
DEFAULT_KERNEL_NAMESPACE,
DeviceCheckType,
DispatchKey,
FunctionSchema,
NativeFunction,
NativeFunctionsGroup,
OperatorName,
Return,
SchemaKind,
Variant,
)
from torchgen.utils import concatMap
# See Note: [Out ops with functional variants that don't get grouped properly]
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
# This has a functional variant, but it's currently marked private.
# This function should be marked private as well (*_backward ops aren't exposed to python anyway).
"adaptive_avg_pool3d_backward.grad_input",
# There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly.
# Maybe we can kill this operator in favor of convolution_backward?
"_slow_conv2d_backward.grad_input",
]
# See Note: [Mutable ops that cannot get an out variant]
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
# should be out=?
"_cummax_helper",
# should be out=?
"_cummin_helper",
]
# All of these operators don't have any tensor like returns
FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
"_assert_async", # no return
"_assert_async.msg", # no return
"_cslt_sparse_mm_search", # returns an int
"_assert_scalar", # no return
"_dimI", # returns an int
"_dimV", # returns an int
"_has_same_storage_numel", # returns a boolean
"_linalg_check_errors", # no return
"_local_scalar_dense", # returns a Scalar
"_nested_tensor_from_mask_left_aligned", # returns a boolean
"_nnz", # returns an int
"_use_cudnn_ctc_loss", # returns a boolean
"_use_cudnn_ctc_loss.Tensor", # returns a boolean
"_validate_compressed_sparse_indices", # no return
"allclose", # returns a boolean
"dense_dim", # returns an int
"equal", # returns a boolean
"is_coalesced", # returns an boolean
"is_pinned", # returns a boolean
"is_same_size", # returns a boolean
"is_set_to", # returns a boolean
"q_per_channel_axis", # returns an int
"q_scale", # returns a float
"q_zero_point", # returns an int
"qscheme", # returns a QScheme
"record_stream", # no return
"sparse_dim", # returns an int
"sym_constrain_range", # no return
"sym_constrain_range_for_size", # no return
"_nested_tensor_storage_offsets", # returns a vector of ints
"_chunk_grad_outputs_efficient_attention", # returns a bool
"_fused_sdp_choice", # returns an int
"_print", # no return
"_sink_tokens", # no return
"_nested_get_ragged_idx", # returns an int
]
INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
# polygamma and polygamma.out both exist, but have a
# pre-self arg (while polygamma_ does not)
# We should either fix this schema so it can be grouped properly,
# or allow the codegen to generate new functional/out= NativeFunctions for this op
# (which would require changing its overload name to prevent overload ambiguity).
"polygamma_"
]
# Groups "similar" NativeFunctions together
# example add.Tensor, add_.Tensor, add.out
# "similar" NativeFunctions are all expected to have an identical `signature()`,
# But have differing SchemaKinds.
def pre_group_native_functions(
native_functions: Sequence[NativeFunction],
) -> dict[FunctionSchema, dict[SchemaKind, NativeFunction]]:
pre_grouped_native_functions: dict[
FunctionSchema, dict[SchemaKind, NativeFunction]
] = defaultdict(dict)
for f in native_functions:
d = pre_grouped_native_functions[f.func.signature()]
assert f.func.kind() not in d
d[f.func.kind()] = f
return pre_grouped_native_functions
# Returns the out variant overload name given a base function overload name
def get_expected_out_variant_overload_name(overload_name: str | None) -> str:
return "out" if not overload_name else f"{overload_name}_out"
# Helper function: given an inplace FunctionSchema, generate its corresponding out= variant
# Example before:
# _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
# Example after:
# _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out)
def self_to_out_signature(func: FunctionSchema) -> FunctionSchema:
# Generating an out= schema from an inplace schema.
assert func.kind() == SchemaKind.inplace
assert func.arguments.self_arg is not None
# The new out= schema has:
# - a new out argument with the same type as "func" (but with a mutable annotation)
# - The returns (if any) now alias the out= argument instead of "func"
# - an "out" overload name
return FunctionSchema(
name=func.name.remove_inplace().with_overload(
get_expected_out_variant_overload_name(func.name.overload_name)
),
arguments=func.arguments.remove_self_annotation().with_out_args(
[
Argument(
name="out",
type=func.arguments.self_arg.argument.type,
default=None,
annotation=func.arguments.self_arg.argument.annotation,
)
]
),
returns=func.returns,
)
# Helper function: given a functional FunctionSchema, generate its corresponding out= variant
# Example before:
# _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None,
# bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
# Example after:
# _to_copy._out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None,
# Tensor(a!) out) -> Tensor(a!)
def functional_to_out_signature(func: FunctionSchema) -> FunctionSchema:
# Generating an out= schema from a functional schema.
assert func.kind() == SchemaKind.functional
new_returns, new_out_args = generate_out_args_from_schema(func)
# The new out= schema has:
# - one or more new out argument(s) with the same type as returns (but with a mutable annotation)
# - The returns now alias the out= arguments
# - an "_out" overload name
return FunctionSchema(
name=func.name.with_overload(
get_expected_out_variant_overload_name(func.name.overload_name)
),
arguments=func.arguments.signature().with_out_args(
new_out_args,
),
returns=tuple(new_returns),
)
# Helper function: given a function schema, generate corresponding out arguments, also the updated return annotations.
def generate_out_args_from_schema(
func: FunctionSchema,
) -> tuple[list[Return], list[Argument]]:
# More of a sanity check - our existing restrictions on schemas should enforce that
# mutable schema kinds never return their mutable arguments.
assert not any(
r.annotation is not None and r.annotation.is_write for r in func.returns
)
tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()]
assert len(tensorlike_rets) > 0
used_annotations = concatMap(
lambda a: [] if a.annotation is None else a.annotation.alias_set,
func.arguments.flat_all,
)
valid_annotations = [
x for x in "abcdefghijklmnopqrstuvwxyz" if x not in used_annotations
]
all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns)
new_out_args: list[Argument] = []
# The end result of new_returns is that:
# - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added.
# - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any).
new_returns: list[Return] = []
for i, r in enumerate(func.returns):
if r.type.is_tensor_like():
new_out = Argument(
name="out" if len(func.returns) == 1 else f"out{i}",
type=r.type,
default=None,
annotation=Annotation.parse(f"{valid_annotations[i]}!"),
)
new_out_args.append(new_out)
if all_rets_are_tensors:
# The convention for out= schemas is that they only return their out arguments
# if the return is a plain Tensor (or if it's a tuple of plain Tensors)
new_ret = Return(
name=None, type=new_out.type, annotation=new_out.annotation
)
new_returns.append(new_ret)
else:
new_returns.append(r)
return new_returns, new_out_args
# Helper function: given a mutable FunctionSchema, generate its corresponding out= variant
# Example before:
# _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950
# Example after:
# _fused_moving_avg_obs_fq_helper._out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!)) # noqa: B950
def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema:
# Generating an out= schema from a mutable schema.
assert func.kind() == SchemaKind.mutable
# The new out= schema has:
# - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments
# (if the argument is a tensor then we also return it for method chaining,
# otherwise we return nothing)
# - an "out" overload name
#
# Note that:
# (1) This also means that we can *only* generate an out= variant from a mutable schema
# if the mutable schema has at least one tensor-like non-aliasing return.
# (2) The generated out= variant still has mutable positional arguments,
# but if necessary we could probably add another out= variant that also
# functionalizes the mutable arguments (a functional_out variant)
new_returns, new_out_args = generate_out_args_from_schema(func)
return FunctionSchema(
name=func.name.remove_inplace().with_overload(
get_expected_out_variant_overload_name(func.name.overload_name)
),
arguments=func.arguments.with_out_args(new_out_args),
returns=tuple(new_returns),
)
# This function, given function of one SchemaKind, as well as a target SchemaKind,
# generates a new NativeFunction with the same properties, but using the target SchemaKind.
# We only actually generate functions for either functional or out= SchemaKinds.
# This function returns a tuple, with:
# - The generated NativeFunction
# - a dictionary of `BackendIndex` objects, describing which dispatch keys
# we will generate kernels for, for the new NativeFunction.
# Details are in the function, but we only generate composite kernels (in some cases) today.
def generate_function(
f: NativeFunction, k: SchemaKind
) -> tuple[NativeFunction, dict[DispatchKey, dict[OperatorName, BackendMetadata]]]:
from torchgen.api import cpp
if k == SchemaKind.functional:
assert f.func.kind() != SchemaKind.functional
# The new "functional" NativeFunction has:
# - any mutable arguments have been converted into (immutable) returns.
# (if a mutable argument was not also a return, it gets converted to one)
# - "_functional" appended to the base name, ONLY IF this op has a mutable variant.
# See Note [Overload Ambiguity With Functional Variants]
# The default grouping logic in signature() actually already does this,
# so we can piggy-back off it (but we still want return names)
func = f.func.signature(keep_return_names=True).with_name(
OperatorName(
name=BaseOperatorName(
base=f.func.name.name.base,
inplace=False,
dunder_method=f.func.name.name.dunder_method,
# See Note [Overload Ambiguity With Functional Variants]
functional_overload=f.func.kind() == SchemaKind.mutable,
),
overload_name=f.func.name.overload_name,
)
)
elif k == SchemaKind.out:
# We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily,
# but at least today, there is no good reason to actually use them.
# we'll generate a dispatcher entry for them, but won't actually register any kernels for them.
if f.func.kind() == SchemaKind.inplace:
func = self_to_out_signature(f.func)
elif f.func.kind() == SchemaKind.mutable:
func = mutable_to_out_signature(f.func)
elif f.func.kind() == SchemaKind.functional:
func = functional_to_out_signature(f.func)
else:
raise AssertionError(
"We only bother generating out= functions from either inplace or mutable or functional variants"
)
else:
raise AssertionError(
"We currently only generate either functional or out= NativeFunctions"
)
# Generated kernel naming convention for out: <op_name>_<overload_name>. The reason for this is to
# disambiguate operator with the same name but different overload name, e.g., `randn.names_out` and
# `randn.generator_with_names_out`.
kernel_name = (
func.name.unambiguous_name()
if func.kind() == SchemaKind.out
else cpp.name(func)
)
if f.func.has_symint():
kernel_name += "_symint"
backend_metadata = {
DispatchKey.CompositeExplicitAutograd: {
func.name: BackendMetadata(
kernel=kernel_name,
structured=False,
cpp_namespace=DEFAULT_KERNEL_NAMESPACE,
)
}
}
tags = {"generated"} | set(
f.tags & {"nondeterministic_seeded", "view_copy", "pt2_compliant_tag"}
)
return (
NativeFunction(
func=func,
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
# These generated fn's aren't meant to be user friendly- don't generate methods.
variants={Variant.function},
structured=False,
structured_delegate=None,
structured_inherits=None,
precomputed=None,
autogen=[],
ufunc_inner_loop={},
manual_kernel_registration=False,
manual_cpp_binding=False,
python_module=None,
category_override=None,
device_guard=False,
device_check=DeviceCheckType.NoCheck,
loc=f.loc,
cpp_no_default_args=set(),
is_abstract=f.is_abstract,
has_composite_implicit_autograd_kernel=False,
has_composite_implicit_autograd_nested_tensor_kernel=False,
has_composite_explicit_autograd_kernel=True,
has_composite_explicit_autograd_non_functional_kernel=False,
# Every generated NativeFunction gets a "generated" tag, so it's easy to tell
# which NativeFunction objects did not come directly from native_functions.yaml.
tags=tags,
namespace=f.namespace,
),
backend_metadata,
)
# This function is responsible for adding generated NativeFunctions which don't appear
# explicitly in the codegen.
# You can inspect the full list of NativeFunctions yourself with the torchgen package, by running
# torchgen.parse_native_yaml("aten/src/ATen/native/native_functions.yaml", "aten/src/ATen/native/tags.yaml")
# (Maybe we should make a friendly API for this)
#
# Note: this function *mutates* its two inputs,
# adding the new NativeFunctions / BackendMetadata to them
def add_generated_native_functions(
rs: list[NativeFunction],
indices: dict[DispatchKey, dict[OperatorName, BackendMetadata]],
) -> None:
# The main code for generating new NativeFunctions
# First we group of NativeFunctions by schema kind,
# then we detect which ones are missing and generate them.
pre_grouped_native_functions = pre_group_native_functions(rs)
for d in pre_grouped_native_functions.values():
has_functional = SchemaKind.functional in d
has_inplace = SchemaKind.inplace in d
has_mutable = SchemaKind.mutable in d
has_out = SchemaKind.out in d
# We automatically generate a few native functions that don't exist in the yaml, for a few reasons:
# (1) If an operator has an inplace/out= variant but no functional variant, we can generate
# a simple functional variant that the functionalization pass can consume.
# (2) If an operator has an inplace or functional but no out= variant, we generate an out=
# variant, mostly so we can easily pair up functions into NativeFunctionsGroup,
# while maintaining the constraint that the out= variant is "required".
if has_mutable or has_inplace or has_out or has_functional:
# Don't bother generating functions trio's for native functions that bypass the dispatcher.
are_manual = all(f.manual_cpp_binding for f in d.values())
# Don't bother generating functional + out= variants for view operators
# set_ is technically an inplace_view, but for now it is treated
# as a normal inplace op in the codegen
has_view_ops = any(
f.is_view_op and str(f.func.name.name) != "set_" for f in d.values()
)
# Don't generate the other variants for CompositeImplicitAutograd operators.
# We could probably do this, but the main benefit of generating the function triplets
# is for transforms that need them, and transforms don't need to act directly
# on CompositeImplicitAutograd operators (since we let them decompose).
are_composite_implicit = all(
f.has_composite_implicit_autograd_kernel for f in d.values()
)
if are_manual or has_view_ops or are_composite_implicit:
continue
if has_out and len(d.values()) == 1:
# Note: [Out ops with functional variants that don't get grouped properly]
# In theory we could validly have an out= operator in native_functions.yaml
# that has no other variants.
# But today, all of the operators where that's the case actually do have
# functional variants, that we are just unable to pair up properly.
# I think banning this all together is probably safer
# (you can always add a functional variant yourself if you want to add a new out= operator).
#
# We should probably fix the existing cases; this check is to prevent us from adding more over time.
if (
str(d[SchemaKind.out].func.name)
not in OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY
):
raise AssertionError(
f"Found an out= operator that we could not find any other variants of: {str(d[SchemaKind.out].func)}"
)
continue
# Some inplace ops that have problematic schemas (that we should fix), which prevent us
# from generating out= and functional variants
if (
has_inplace
and str(d[SchemaKind.inplace].func.name)
in INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY
):
continue
base_fn = (
d[SchemaKind.inplace]
if has_inplace
else d[SchemaKind.mutable]
if has_mutable
else d[SchemaKind.out]
if has_out
else d[SchemaKind.functional]
)
# Note: [Mutable ops that cannot get an out variant]
# We can only generate an out= variant if either:
# - the original function has tensor-like returns (since we can convert them to out kwargs)
# - or it's inplace (since we can convert `self` to an out kwarg)
# There are only two functions that don't fit this criteria today though,
# and they both look like they should be fixed to be out= variants,
# so if feels safer to ban this schema all-together
base_fn_valid = base_fn.func.kind() == SchemaKind.inplace or any(
r.type.is_tensor_like() for r in base_fn.func.returns
)
# Note: [Loosen the assertion that all functional should have out variant]
# By design all functional operators should have our variants. The needs_out check
# is loosening this requirement, changing it to only generate out variant if there's
# an `autogen` block in the native function, in the long run it should be removed.
# FIXME: Remove this after figuring out CI job failures related to min, max, mean
needs_out = any("out" in str(op_name) for op_name in base_fn.autogen)
gets_out_variant = not has_out and base_fn_valid and needs_out
if not has_out and not base_fn_valid:
if (
str(base_fn.func.name)
not in MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
and str(base_fn.func.name)
not in FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
):
raise AssertionError(
f"""Found an operator that we could not generate an out= variant for: {str(base_fn.func)}.
This type of operators don't have tensor-like return, making it difficult to generate a proper out= variant. If
out= variant is not needed, please add the function name into FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT list."""
)
# Generate an out= variant
if gets_out_variant:
fn, metadata = generate_function(base_fn, SchemaKind.out)
d[SchemaKind.out] = fn
BackendIndex.grow_index(indices, metadata)
rs.append(fn)
# Generate a functional variant, but only do it if the operator got an out= variant
# (Functional variants are only useful if we can group up the variants,
# which we can only do if they have an out= variant)
if not has_functional and (has_out or gets_out_variant):
fn, metadata = generate_function(base_fn, SchemaKind.functional)
d[SchemaKind.functional] = fn
BackendIndex.grow_index(indices, metadata)
rs.append(fn)
def return_str(rets: tuple[Return, ...], names: list[str]) -> str:
assert len(rets) == len(names)
if len(rets) == 0:
return ""
elif len(rets) == 1:
return f"return {names[0]};"
else:
return f"return {dispatcher.returns_type(rets).cpp_type()}({', '.join(names)});"
# Given a function, and the name of a variable corresponding to the output of that function,
# gather up all of the individual returns that are not aliased
def gather_nonaliased_inner_rets(func: FunctionSchema, out_var: str) -> list[str]:
aliased_rets = func.aliased_return_names()
non_aliased_names = []
is_out_var_a_tuple = len(func.returns) > 1
for i, r in enumerate(aliased_rets):
if r is None:
non_aliased_names.append(
f"std::get<{i}>({out_var})" if is_out_var_a_tuple else out_var
)
return non_aliased_names
# Generates functional kernels in terms of their inplace.mutable counterparts.
# We only do this for "generated" NativeFunctions
@with_native_function
def gen_composite_functional_kernel(g: NativeFunctionsGroup) -> str | None:
# We should only be generating these for code-generated NativeFunctions
if "generated" not in g.functional.tags:
return None
# And we always write the kernel for a generated op in terms of a non-generated op.
if g.inplace is not None and "generated" not in g.inplace.tags:
target_f = g.inplace
elif g.mutable is not None and "generated" not in g.mutable.tags:
target_f = g.mutable
else:
# We should be guaranteed to have a valid inplace/mutable variant to call into.
# See Note: [Mutable Ops Not Using Functionalization]
raise AssertionError(str(g.functional.func))
sig = DispatcherSignature(g.functional.func)
target_sig = DispatcherSignature(target_f.func)
context: list[Binding | Expr] = []
clone_mutable_inputs = []
cloned_return_names = []
# We can't just directly pass all of the arguments from the functional op into the mutating op.
# We need to check for which inputs to the mutating operator are mutable,
# and clone those inputs first.
for a_curr, a_tgt in zip(
dispatcher.jit_arguments(g.functional.func),
dispatcher.jit_arguments(target_f.func),
):
if a_tgt.annotation is not None and a_tgt.annotation.is_write:
clone_mutable_inputs.append(
f"auto {a_curr.name}_clone = clone_arg({a_curr.name});"
)
context.append(
Expr(
expr=f"{a_curr.name}_clone",
type=dispatcher.argument_type(a_curr, binds=a_curr.name),
)
)
# Invariant: mutable arguments on the inner mutable op are always returns on the functional op.
cloned_return_names.append(f"{a_curr.name}_clone")
else:
context.append(dispatcher.argument(a_curr))
exprs = ", ".join([e.expr for e in translate(context, target_sig.arguments())])
out_name = "output"
maybe_assign = f"auto {out_name} = " if len(target_f.func.returns) > 0 else ""
inner_return_names = gather_nonaliased_inner_rets(target_f.func, out_name)
ret_str = return_str(
g.functional.func.returns, inner_return_names + cloned_return_names
)
clone_mutable_inputs_str = "\n".join(clone_mutable_inputs)
return f"""
{sig.defn(name=sig.name() + ("_symint" if g.out.func.has_symint() else ""))} {{
{clone_mutable_inputs_str}
{maybe_assign}at::_ops::{target_f.func.name.unambiguous_name()}::call({exprs});
{ret_str}
}}
"""
# Generates out= kernels in terms of their functional counterparts.
# We only do this for "generated" NativeFunctions
@with_native_function
def gen_composite_out_kernel(g: NativeFunctionsGroup) -> str | None:
# We should only be generating these for code-generated NativeFunctions
if "generated" not in g.out.tags:
return None
# And we always write the kernel for the out= op in terms of the functional.
# Note that the functional op might have also been generated, but we don't have to
# worry about cycles, because the generated functional kernels are always implemented
# in terms of non-generated kernels (see gen_composite_functional_kernel).
sig = DispatcherSignature(g.out.func)
target_sig = DispatcherSignature(g.functional.func)
exprs = ", ".join(
[e.expr for e in translate(sig.arguments(), target_sig.arguments())]
)
copy_outs = []
out_name = "tmp_output"
for i, out_arg in enumerate(g.out.func.arguments.out):
functional_return_name = (
out_name
if len(g.functional.func.returns) == 1
else f"std::get<{i}>({out_name})"
)
copy_outs.append(
f"""\
resize_out_helper({out_arg.name}, {functional_return_name});
copy_arg({out_arg.name}, {functional_return_name});"""
)
rets = []
# For each return arg in the calling (out=) operator,
# If it corresponds to an aliased input, return the input.
# Otherwise, return the corresponding output from calling the functional operator.
for i, ret_name in enumerate(g.out.func.aliased_return_names()):
if ret_name is not None:
rets.append(ret_name)
else:
functional_return_name = (
out_name
if len(g.functional.func.returns) == 1
else f"std::get<{i}>({out_name})"
)
rets.append(functional_return_name)
copy_outs_str = "\n".join(copy_outs)
# Kernel name needs to follow the naming convention defined in `generate_function()`
return f"""
{sig.defn(name=g.out.func.name.unambiguous_name() + ("_symint" if g.out.func.has_symint() else ""))} {{
auto {out_name} = at::_ops::{g.functional.func.name.unambiguous_name()}::call({exprs});
{copy_outs_str}
{return_str(g.out.func.returns, rets)}
}}
"""