blob: d95fc5f9e48c5116bd176800de2de80a67e05ac3 [file] [log] [blame]
// conv_op_impl.h is the templated implementation of the conv_op.h file.
#ifndef CAFFE2_OPERATORS_CONV_OP_IMPL_H_
#define CAFFE2_OPERATORS_CONV_OP_IMPL_H_
#include "caffe2/operators/conv_op.h"
#include <array>
#include <vector>
#include "caffe2/core/context.h"
#include "caffe2/core/flags.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
bool ConvOp<T, Context>::RunOnDeviceWithOrderNCHW() {
const auto& X = Input(INPUT);
const auto& filter = Input(FILTER);
auto* Y = Output(0);
const int N = X.dim32(0);
const int C = X.dim32(1);
const int G = group_;
CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(
C,
filter.dim32(1) * G,
"Convolution op: input channels does not match: # of input channels ",
C,
" is not equal to kernel channels * group: ",
filter.dim32(1),
"*",
G);
CAFFE_ENFORCE_EQ(
M % G, 0, "The number of output channels is not divisible by group.");
int kernel_size = 1;
for (std::size_t i = 0; i < kernel_.size(); ++i) {
CAFFE_ENFORCE_EQ(filter.dim32(i + 2), kernel_[i]);
kernel_size *= kernel_[i];
}
ConvPoolOpBase<Context>::SetOutputSize(X, Y, M);
if (N == 0) {
Y->template mutable_data<T>();
return true;
}
const vector<int> X_dims = GetDims(X);
const vector<int> Y_dims = GetDims(*Y);
const int X_HxW = X.numel() / (N * C);
const int Y_HxW = Y->numel() / (N * M);
const vector<int> img_shape(X.sizes().cbegin() + 1, X.sizes().cend());
vector<int> buffer_shape(Y_dims.size() + 1);
buffer_shape[0] = C * kernel_size;
std::copy(Y_dims.cbegin(), Y_dims.cend(), buffer_shape.begin() + 1);
const int buffer_size = C * kernel_size * Y_HxW;
// The dimension of each kernel
const int kernel_dim = C / G * kernel_size;
const int X_stride = C * X_HxW;
const int Y_stride = M * Y_HxW;
const int filter_stride = filter.numel() / G;
// The col buffer is stored in CHW order as well - kernel_dim, and the height
// and width.
const T* X_data = X.template data<T>();
const T* filter_data = filter.template data<T>();
const T* bias_data = nullptr;
if (InputSize() == 3) {
const auto& bias = Input(BIAS);
CAFFE_ENFORCE_EQ(bias.dim(), 1);
CAFFE_ENFORCE_EQ(bias.dim32(0), M);
bias_data = bias.template data<T>();
ConvPoolOpBase<Context>::template SetBiasMultiplier<T>(
Y_HxW, &bias_multiplier_);
}
T* Y_data = Y->template mutable_data<T>();
// Shortcut for 1x1 conv.
if (kernel_size == 1 && !HasPad() && !HasStride()) {
return Run1x1ConvOnDeviceWithOrderNCHW(
N, C, X_HxW, M, X_data, filter_data, bias_data, Y_data);
}
const auto func = [&](Tensor* col_buffer) {
col_buffer->Resize(buffer_shape);
T* col_buffer_data = col_buffer->template mutable_data<T>();
// Im2Col, followed by gemm.
for (const auto image_id : c10::irange(N)) {
(void)image_id; // Suppress unused variable warning
if (kernel_.size() == 2) {
math::Im2Col<T, Context, StorageOrder::NCHW>(
C,
X_dims[0],
X_dims[1],
kernel_h(),
kernel_w(),
dilation_h(),
dilation_w(),
pad_t(),
pad_l(),
pad_b(),
pad_r(),
stride_h(),
stride_w(),
X_data,
col_buffer_data,
&context_);
} else {
math::Im2ColNd<T, Context, StorageOrder::NCHW>(
kernel_.size(),
C * X_HxW,
buffer_size,
img_shape.data(),
buffer_shape.data(),
kernel_.data(),
stride_.data(),
dilation_.data(),
pads_.data(),
X_data,
col_buffer_data,
&context_);
}
// Weight term
if (G == 1) {
math::Gemm<T, Context>(
CblasNoTrans,
CblasNoTrans,
M,
Y_HxW,
kernel_dim,
1.0f,
filter_data,
col_buffer_data,
0.0f,
Y_data,
&context_);
} else {
math::GemmStridedBatched<T, Context>(
CblasNoTrans,
CblasNoTrans,
G,
M / G,
Y_HxW,
kernel_dim,
1.0f,
filter_data,
filter_stride,
col_buffer_data,
buffer_size / G,
0.0f,
Y_data,
Y_stride / G,
&context_);
}
if (bias_data != nullptr) {
// Bias term can be carried out outside the group definition
// to be efficient.
math::Gemm<T, Context>(
CblasNoTrans,
CblasNoTrans,
M,
Y_HxW,
1,
1.0f,
bias_data,
bias_multiplier_.template data<T>(),
1.0f,
Y_data,
&context_);
}
X_data += X_stride;
Y_data += Y_stride;
}
};
if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) {
runWithSharedBuffer<Context>(ws_, func);
} else {
func(&col_buffer_);
}
return true;
}
// The implementations.
template <typename T, class Context>
bool ConvOp<T, Context>::RunOnDeviceWithOrderNHWC() {
CAFFE_ENFORCE_LE(
kernel_.size(),
3,
"Only 1-3d convolution is supported for NHWC storage type");
const Tensor& X = Input(INPUT);
const auto& filter = Input(FILTER);
Tensor* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(X.dim() - 1);
const int G = group_;
CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(
C,
filter.dim32(filter.dim() - 1) * G,
"Convolution op: input channels does not match: # of input channels ",
C,
" is not equal to kernel channels * group: ",
filter.dim32(filter.dim() - 1),
"*",
G);
CAFFE_ENFORCE_EQ(
M % G, 0, "The number of output channels is not divisible by group.");
int kernel_size = 1;
for (std::size_t i = 0; i < kernel_.size(); ++i) {
CAFFE_ENFORCE_EQ(filter.dim32(i + 1), kernel_[i]);
kernel_size *= kernel_[i];
}
ConvPoolOpBase<Context>::SetOutputSize(X, Y, M);
if (N == 0) {
Y->template mutable_data<T>();
return true;
}
const vector<int> Y_dims = GetDims(*Y);
const int X_HxW = X.numel() / (N * C);
const int Y_HxW = Y->numel() / (N * M);
const vector<int> img_shape(X.sizes().cbegin() + 1, X.sizes().cend());
vector<int> buffer_shape(Y_dims.size() + 1);
std::copy(Y_dims.cbegin(), Y_dims.cend(), buffer_shape.begin());
buffer_shape.back() = C * kernel_size;
const int buffer_size = C * kernel_size * Y_HxW;
// The dimension of each kernel
const int kernel_dim = C / G * kernel_size;
// The offset corresponding to a single input image, and a single output
// image.
const int input_offset = X_HxW * C;
const int output_offset = Y->numel() / Y->dim32(0);
// The output image size is the spatial size of the output.
// The col buffer is stored in HWC order as well - the height and width, and
// kernel_dim.
const T* X_data = X.template data<T>();
const T* filter_data = filter.template data<T>();
const T* bias_data = nullptr;
if (InputSize() == 3) {
const auto& bias = Input(BIAS);
CAFFE_ENFORCE_EQ(bias.dim(), 1);
CAFFE_ENFORCE_EQ(bias.dim32(0), M);
bias_data = bias.template data<T>();
}
T* Y_data = Y->template mutable_data<T>();
// Specialized path for 1 by 1 convolution with stride 1, pad 0 - we
// can skip im2col.
if (kernel_dim == (C / group_) && !HasPad() && !HasStride()) {
if (bias_data != nullptr) {
// For this specialized path, we need a bigger bias_multiplier_ because
// we're doing just 1 big GEMM.
ConvPoolOpBase<Context>::template SetBiasMultiplier<T>(
N * X_HxW, &bias_multiplier_);
}
return Run1x1ConvOnDeviceWithOrderNHWC(
N, C, X_HxW, M, X_data, filter_data, bias_data, Y_data);
}
if (bias_data != nullptr) {
ConvPoolOpBase<Context>::template SetBiasMultiplier<T>(
Y_HxW, &bias_multiplier_);
}
auto f = [&](Tensor* col_buffer) {
col_buffer->Resize(buffer_shape);
T* col_buffer_data = col_buffer->template mutable_data<T>();
// Im2Col, followed by gemm.
for (const auto image_id : c10::irange(N)) {
(void)image_id; // Suppress unused variable warning
if (kernel_.size() <= 2) {
math::Im2Col<T, Context, StorageOrder::NHWC>(
C,
X.dim32(1),
kernel_.size() == 2 ? X.dim32(2) : 1,
kernel_h(),
kernel_.size() == 2 ? kernel_w() : 1,
dilation_h(),
kernel_.size() == 2 ? dilation_w() : 1,
pad_t(),
kernel_.size() == 2 ? pad_l() : 0,
kernel_.size() == 2 ? pad_b() : pad_l(),
kernel_.size() == 2 ? pad_r() : 0,
stride_h(),
kernel_.size() == 2 ? stride_w() : 1,
X_data,
col_buffer_data,
&context_,
group_);
} else {
math::Im2ColNd<T, Context, StorageOrder::NHWC>(
kernel_.size(),
C * X_HxW,
buffer_size,
img_shape.data(),
buffer_shape.data(),
kernel_.data(),
stride_.data(),
dilation_.data(),
pads_.data(),
X_data,
col_buffer_data,
&context_,
group_);
}
// Weight term
for (const auto group_id : c10::irange(group_)) {
// col_buffer_data in G (H W) (R S C/G) layout
// filter_data in G K/G (R S C/G) layout
math::GemmEx<T, Context>(
CblasNoTrans,
CblasTrans,
Y_HxW,
M / group_,
kernel_dim,
1,
col_buffer_data + group_id * kernel_dim,
group_ * kernel_dim,
filter_data + group_id * (M / group_) * kernel_dim,
kernel_dim,
0,
Y_data + group_id * (M / group_),
M,
&context_);
}
if (bias_data != nullptr) {
// Bias term
math::Gemm<T, Context>(
CblasNoTrans,
CblasNoTrans,
Y_HxW,
M,
1,
1,
bias_multiplier_.template data<T>(),
bias_data,
1,
Y_data,
&context_);
}
X_data += input_offset;
Y_data += output_offset;
}
};
if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) {
runWithSharedBuffer<Context>(ws_, f);
} else {
f(&col_buffer_);
}
return true;
}
template <typename T, class Context>
bool ConvOp<T, Context>::Run1x1ConvOnDeviceWithOrderNCHW(
const int N,
const int C,
const int HxW,
const int M,
const T* X,
const T* filter,
const T* bias,
T* Y) {
const int G = group_;
if (G == 1) {
math::GemmStridedBatched<T, Context>(
CblasNoTrans,
CblasNoTrans,
N,
M,
HxW,
C,
1.0f,
filter,
0,
X,
C * HxW,
0.0f,
Y,
M * HxW,
&context_);
} else {
const int batch_size = N * G;
const int D_X = C / G;
const int D_Y = M / G;
const int X_stride = D_X * HxW;
const int W_stride = D_Y * D_X;
const int Y_stride = D_Y * HxW;
std::vector<const T*> X_ptr(N * G);
std::vector<const T*> W_ptr(N * G);
std::vector<T*> Y_ptr(N * G);
for (const auto i : c10::irange(N)) {
for (const auto j : c10::irange(G)) {
const int index = i * G + j;
X_ptr[index] = X + index * X_stride;
W_ptr[index] = filter + j * W_stride;
Y_ptr[index] = Y + index * Y_stride;
}
}
math::GemmBatched<T, Context>(
CblasNoTrans,
CblasNoTrans,
batch_size,
D_Y,
HxW,
D_X,
1.0f,
W_ptr.data(),
X_ptr.data(),
0.0f,
Y_ptr.data(),
&context_);
}
if (bias != nullptr) {
const T* bias_multiplier_data = bias_multiplier_.template data<T>();
math::GemmStridedBatched<T, Context>(
CblasNoTrans,
CblasNoTrans,
N,
M,
HxW,
1,
1.0f,
bias,
0,
bias_multiplier_data,
0,
1.0f,
Y,
M * HxW,
&context_);
}
return true;
}
template <typename T, class Context>
bool ConvOp<T, Context>::Run1x1ConvOnDeviceWithOrderNHWC(
const int N,
const int C,
const int HxW,
const int M,
const T* X,
const T* filter,
const T* bias,
T* Y) {
const int G = group_;
const int kernel_dim = C / G;
for (const auto group_id : c10::irange(group_)) {
math::GemmEx<T, Context>(
CblasNoTrans,
CblasTrans,
N * HxW,
M / group_,
kernel_dim,
1.0f,
X + group_id * kernel_dim,
C,
filter + group_id * (M / group_) * kernel_dim,
kernel_dim,
0.0f,
Y + group_id * (M / group_),
M,
&context_);
}
if (bias != nullptr) {
const T* bias_multiplier_data = bias_multiplier_.template data<T>();
math::Gemm<T, Context>(
CblasNoTrans,
CblasNoTrans,
N * HxW,
M,
1,
1.0f,
bias_multiplier_data,
bias,
1.0f,
Y,
&context_);
}
return true;
}
template <typename T, class Context>
bool ConvGradientOp<T, Context>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(INPUT);
auto& filter = Input(FILTER);
auto& dY = Input(OUTPUT_GRAD);
const int N = X.dim32(0), C = X.dim32(1);
const vector<int> input_dims = this->GetDims(X);
const int input_image_size = this->GetDimsSize(X);
const vector<int> output_dims = this->GetDims(dY);
// The output image size is the spatial size of the output.
const int output_image_size = this->GetDimsSize(dY);
ConvPoolOpBase<Context>::ComputePads(input_dims);
CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(C, filter.dim32(1) * group_);
int kernel_dims_size = 1;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto i : c10::irange(kernel_.size())) {
CAFFE_ENFORCE_EQ(filter.dim32(i + 2), kernel_[i]);
kernel_dims_size *= kernel_[i];
}
CAFFE_ENFORCE_EQ(M % group_, 0);
auto* dfilter = Output(FILTER_GRAD, filter.sizes(), at::dtype<T>());
// The dimension of each kernel
const int kernel_dim = C / group_ * kernel_dims_size;
// The col buffer is stored in CHW order as well - kernel_dim, and the height
// and width.
vector<int> img_shape;
img_shape.assign(X.sizes().begin() + 1, X.sizes().end());
vector<int> col_buffer_shape;
col_buffer_shape.push_back(C / group_ * kernel_dims_size);
col_buffer_shape.insert(
col_buffer_shape.end(), output_dims.begin(), output_dims.end());
vector<int64_t> col_buffer_shape_64;
std::copy(
col_buffer_shape.cbegin(),
col_buffer_shape.cend(),
std::back_inserter(col_buffer_shape_64));
ReinitializeTensor(
&col_buffer_,
col_buffer_shape_64,
at::dtype<T>().device(Context::GetDeviceType()));
if (kernel_.size() != 2) {
// TODO: SetDeviceTensor accept vector<int64_t>
SetDeviceTensor(img_shape, &img_shape_device_);
SetDeviceTensor(col_buffer_shape, &col_buffer_shape_device_);
}
const int col_buffer_size =
(C / group_) * kernel_dims_size * output_image_size;
const T* Xdata = X.template data<T>();
const T* filter_data = filter.template data<T>();
const T* dYdata = dY.template data<T>();
T* col_buffer_data = col_buffer_.template mutable_data<T>();
T* dfilter_data = dfilter->template mutable_data<T>();
// Pre-setting the gradients to zero.
math::Set<T, Context>(dfilter->numel(), 0, dfilter_data, &context_);
T* dbias_data = nullptr;
if (!no_bias_) {
auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>());
// Removed the check for whether bias_multiplier_ has correct size or not
ReinitializeTensor(
&bias_multiplier_,
vector<int64_t>(1, output_image_size),
at::dtype<T>().device(Context::GetDeviceType()));
math::Set<T, Context>(
output_image_size,
static_cast<T>(1),
bias_multiplier_.template mutable_data<T>(),
&context_);
dbias_data = dbias->template mutable_data<T>();
math::Set<T, Context>(dbias->numel(), 0, dbias_data, &context_);
}
if (N == 0) {
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD,
X.sizes(),
at::dtype<T>());
dX->template mutable_data<T>();
}
return true;
}
// The offset corresponding to a single input image, and a single output
// image.
const int input_offset = C / group_ * input_image_size;
const int output_offset = dY.numel() / dY.dim32(0) / group_;
const int filter_offset = filter.numel() / group_;
for (const auto image_id : c10::irange(N)) {
(void)image_id; // Suppress unused variable warning
for (const auto group_id : c10::irange(group_)) {
// When we compute the gradient with respect to the filters, we need to do
// im2col to allow gemm-type computation.
if (kernel_.size() == 2) {
math::Im2Col<T, Context, StorageOrder::NCHW>(
C / group_,
input_dims[0],
input_dims[1],
kernel_h(),
kernel_w(),
dilation_h(),
dilation_w(),
pad_t(),
pad_l(),
pad_b(),
pad_r(),
stride_h(),
stride_w(),
Xdata + group_id * input_offset,
col_buffer_data,
&context_);
} else {
math::Im2ColNd<T, Context, StorageOrder::NCHW>(
kernel_.size(),
input_offset,
col_buffer_size,
img_shape.data(),
col_buffer_shape.data(),
kernel_.data(),
stride_.data(),
dilation_.data(),
pads_.data(),
Xdata + group_id * input_offset,
col_buffer_data,
&context_);
}
// Gradient with respect to filter.
math::Gemm<T, Context>(
CblasNoTrans,
CblasTrans,
M / group_,
kernel_dim,
output_image_size,
1,
dYdata + group_id * output_offset,
col_buffer_data,
1,
dfilter_data + group_id * filter_offset,
&context_);
}
if (!no_bias_) {
// Gradient with respect to bias can be computed independent from group.
math::Gemv<T, Context>(
CblasNoTrans,
M,
output_image_size,
1,
dYdata,
bias_multiplier_.template data<T>(),
1,
dbias_data,
&context_);
}
Xdata += input_offset * group_;
dYdata += output_offset * group_;
}
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
// Compute the gradient w.r.t. the input.
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>());
T* dXdata = dX->template mutable_data<T>();
dYdata = dY.template data<T>();
for (const auto image_id : c10::irange(N)) {
(void)image_id; // Suppress unused variable warning
for (const auto group_id : c10::irange(group_)) {
// Compute gradient into col_buffer.
math::Gemm<T, Context>(
CblasTrans,
CblasNoTrans,
kernel_dim,
output_image_size,
M / group_,
1,
filter_data + group_id * filter_offset,
dYdata,
0,
col_buffer_data,
&context_);
if (kernel_.size() == 2) {
math::Col2Im<T, Context, StorageOrder::NCHW>(
C / group_,
input_dims[0],
input_dims[1],
kernel_h(),
kernel_w(),
dilation_h(),
dilation_w(),
pad_t(),
pad_l(),
pad_b(),
pad_r(),
stride_h(),
stride_w(),
col_buffer_data,
dXdata,
&context_);
} else {
math::Col2ImNd<T, Context, StorageOrder::NCHW>(
kernel_.size(),
input_offset,
col_buffer_size,
img_shape.data(),
col_buffer_shape.data(),
kernel_.data(),
stride_.data(),
dilation_.data(),
pads_.data(),
col_buffer_data,
dXdata,
&context_);
}
dXdata += input_offset;
dYdata += output_offset;
}
}
}
return true;
}
template <typename T, class Context>
bool ConvGradientOp<T, Context>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(INPUT);
auto& filter = Input(FILTER);
auto& dY = Input(OUTPUT_GRAD);
const int N = X.dim32(0), C = X.dim32(X.dim() - 1);
const vector<int> input_dims = this->GetDims(X);
const int input_image_size = this->GetDimsSize(X);
const vector<int> output_dims = this->GetDims(dY);
// The output image size is the spatial size of the output.
const int output_image_size = this->GetDimsSize(dY);
ConvPoolOpBase<Context>::ComputePads(input_dims);
CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE_EQ(C, filter.dim32(filter.dim() - 1) * group_);
int kernel_dims_size = 1;
for (const auto i : c10::irange(kernel_.size())) {
CAFFE_ENFORCE_EQ(filter.dim32(i + 1), kernel_[i]);
kernel_dims_size *= kernel_[i];
}
CAFFE_ENFORCE_EQ(M % group_, 0);
auto* dfilter = Output(FILTER_GRAD, filter.sizes(), at::dtype<T>());
// The dimension of each kernel
const int kernel_dim = C / group_ * kernel_dims_size;
// The col buffer is stored in HWC order as well - the height and width, and
// kernel_dim.
vector<int> img_shape(X.sizes().cbegin() + 1, X.sizes().cend());
vector<int> col_buffer_shape(output_dims.size() + 1);
std::copy(output_dims.cbegin(), output_dims.cend(), col_buffer_shape.begin());
col_buffer_shape.back() = C * kernel_dims_size;
vector<int64_t> col_buffer_shape_64;
std::copy(
col_buffer_shape.cbegin(),
col_buffer_shape.cend(),
std::back_inserter(col_buffer_shape_64));
ReinitializeTensor(
&col_buffer_,
col_buffer_shape_64,
at::dtype<T>().device(Context::GetDeviceType()));
if (kernel_.size() != 2) {
SetDeviceTensor(img_shape, &img_shape_device_);
SetDeviceTensor(col_buffer_shape, &col_buffer_shape_device_);
}
const int col_buffer_size = C * kernel_dims_size * output_image_size;
const T* Xdata = X.template data<T>();
const T* const filter_data = filter.template data<T>();
const T* const dYdata = dY.template data<T>();
T* col_buffer_data = col_buffer_.template mutable_data<T>();
T* dfilter_data = dfilter->template mutable_data<T>();
// Pre-setting the gradients to zero.
math::Set<T, Context>(dfilter->numel(), 0, dfilter_data, &context_);
T* dbias_data = nullptr;
if (!no_bias_) {
auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>());
dbias_data = dbias->template mutable_data<T>();
math::Set<T, Context>(dbias->numel(), 0, dbias_data, &context_);
// Removed the check for whether bias_multiplier_ has correct size or not
ReinitializeTensor(
&bias_multiplier_,
vector<int64_t>(1, output_image_size),
at::dtype<T>().device(Context::GetDeviceType()));
math::Set<T, Context>(
output_image_size,
static_cast<T>(1),
bias_multiplier_.template mutable_data<T>(),
&context_);
}
if (N == 0) {
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD,
X.sizes(),
at::dtype<T>());
dX->template mutable_data<T>();
}
return true;
}
// The offset corresponding to a single input image, and a single output
// image.
const size_t input_offset = C * input_image_size;
const size_t output_offset = dY.numel() / dY.dim32(0);
for (const auto image_id : c10::irange(N)) {
// When we compute the gradient with respect to the filters, we need to do
// im2col to allow gemm-type computation.
if (kernel_.size() <= 2) {
math::Im2Col<T, Context, StorageOrder::NHWC>(
C,
X.size(1),
kernel_.size() == 2 ? X.dim32(2) : 1,
kernel_h(),
kernel_.size() == 2 ? kernel_w() : 1,
dilation_h(),
kernel_.size() == 2 ? dilation_w() : 1,
pad_t(),
kernel_.size() == 2 ? pad_l() : 0,
kernel_.size() == 2 ? pad_b() : pad_l(),
kernel_.size() == 2 ? pad_r() : 0,
stride_h(),
kernel_.size() == 2 ? stride_w() : 1,
Xdata,
col_buffer_data,
&context_,
group_);
} else {
math::Im2ColNd<T, Context, StorageOrder::NHWC>(
kernel_.size(),
C * input_image_size,
col_buffer_size,
img_shape.data(),
col_buffer_shape.data(),
kernel_.data(),
stride_.data(),
dilation_.data(),
pads_.data(),
Xdata,
col_buffer_data,
&context_,
group_);
}
// Gradient with respect to filter.
for (const auto group_id : c10::irange(group_)) {
math::GemmEx<T, Context>(
CblasTrans,
CblasNoTrans,
M / group_,
kernel_dim,
output_image_size,
1,
dYdata + output_offset * image_id + group_id * (M / group_),
M,
col_buffer_data + group_id * kernel_dim,
group_ * kernel_dim,
1,
dfilter_data + group_id * (M / group_) * kernel_dim,
kernel_dim,
&context_);
}
if (!no_bias_) {
// Gradient with respect to bias
math::Gemv<T, Context>(
CblasTrans,
output_image_size,
M,
1,
dYdata + output_offset * image_id,
bias_multiplier_.template data<T>(),
1,
dbias_data,
&context_);
}
Xdata += input_offset;
} // for each image
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
// Compute the gradient w.r.t. the input.
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>());
T* dXdata = dX->template mutable_data<T>();
for (const auto image_id : c10::irange(N)) {
// Compute gradient into col_buffer.
for (const auto group_id : c10::irange(group_)) {
math::GemmEx<T, Context>(
CblasNoTrans,
CblasNoTrans,
output_image_size,
kernel_dim,
M / group_,
1,
dYdata + output_offset * image_id + group_id * (M / group_),
M,
filter_data + group_id * (M / group_) * kernel_dim,
kernel_dim,
0,
col_buffer_data + group_id * kernel_dim,
group_ * kernel_dim,
&context_);
}
if (kernel_.size() <= 2) {
math::Col2Im<T, Context, StorageOrder::NHWC>(
C,
X.size(1),
kernel_.size() == 2 ? X.dim32(2) : 1,
kernel_h(),
kernel_.size() == 2 ? kernel_w() : 1,
dilation_h(),
kernel_.size() == 2 ? dilation_w() : 1,
pad_t(),
kernel_.size() == 2 ? pad_l() : 0,
kernel_.size() == 2 ? pad_b() : pad_l(),
kernel_.size() == 2 ? pad_r() : 0,
stride_h(),
kernel_.size() == 2 ? stride_w() : 1,
col_buffer_data,
dXdata,
&context_,
group_);
} else {
math::Col2ImNd<T, Context, StorageOrder::NHWC>(
kernel_.size(),
C * input_image_size,
col_buffer_size,
img_shape.data(),
col_buffer_shape.data(),
kernel_.data(),
stride_.data(),
dilation_.data(),
pads_.data(),
col_buffer_data,
dXdata,
&context_,
group_);
}
dXdata += input_offset;
} // for each image
}
return true;
}
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CONV_OP_IMPL_H_